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 
Abstract—In this paper, we extend the versatility and usefulness 

of GIS as a methodology for any river basin hydrologic 
characteristics analysis (HCA). The Gurara River basin located in 
North-Central Nigeria is presented in this study. It is an on-going 
research using spatial Digital Elevation Model (DEM) and Arc-
Hydro tools to take inventory of the basin characteristics in order to 
predict water abstraction quantification on streamflow regime. One of 
the main concerns of hydrological modelling is the quantification of 
runoff from rainstorm events. In practice, the soil conservation 
service curve (SCS) method and the Conventional procedure called 
rational technique are still generally used these traditional 
hydrological lumped models convert statistical properties of rainfall 
in river basin to observed runoff and hydrograph. However, the 
models give little or no information about spatially dispersed 
information on rainfall and basin physical characteristics. Therefore, 
this paper synthesizes morphometric parameters in generating runoff. 
The expected results of the basin characteristics such as size, area, 
shape, slope of the watershed and stream distribution network 
analysis could be useful in estimating streamflow discharge. Water 
resources managers and irrigation farmers could utilize the tool for 
determining net return from available scarce water resources, where 
past data records are sparse for the aspect of land and climate.  
 

Keywords—Hydrological characteristic, land and climate, runoff 
discharge, streamflow. 

I.INTRODUCTION 

TREAMFLOW forecasting plays a pivotal role in water 
resources planning and management. Forecasting of 

streamflow has proved useful in flood caution, reservoir 
operation, quantification and assessment of water for 
hydropower generation, domestic and irrigation water 
scheduling among other uses [1]. The importance of accurate 
and reliable streamflow forecasts also helps decision makers 
in creating water allocation policies for sustainable economic 
development of an area. 

Streamflow is a spatio-temporal interval representation of 
runoff over a basin [2], and thus, can exhibit strong nonlinear 
dependency on hydro-meteorological and anthropogenic 
factors [3]. 

Watershed characteristic factors that could potentially affect 
basin streamflow predictability have been the subject of 
immense interest in recent years: [4]-[6], as well as the impact 
of climate change on streamflow [7]-[9]. Thus, the flow of any 
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stream has been influenced by climatic factors of precipitation 
and the physical characteristics of the drainage basin. For most 
rivers basin, the physical characteristics include: topographic 
terrain characteristic, type of drainage network, basin 
orientation, extent of artificial and indirect drainage, land use, 
soil type and vegetation cover [10], [11]. These hydrologic 
characteristics of a watershed reveal the volume of discharge 
hydrograph produced by a specific rainfall hyetograph [12]. 
However, the influence of land and soil cover on storm water 
runoff generation has been interwovenly complicated. This 
has an effect on rainfall interception, surface retention, 
evapotranspiration, and resistance to overland flow. 

Tropical regions like the Guinean forest-savanna mosaic in 
the ecoregion of Nigeria, the study area (Gurara Basin) (see 
Fig. 1), have been susceptible to climate change and large 
water withdrawals stress [13]. 

Recent rapid agricultural and economic development has 
occurred in the Gurara basin following the inter-basin water 
transfer to supply Abuja, the Federal Capital Territory (FCT) 
municipality and to augment the lower Usama-Shiroro 
hydropower generation plant [14]. The water transfer 
infrastructures have led to increasing competition among the 
riparian communities for the Gurara waters. As the watershed 
becomes more developed, it is witnessing more 
geomorphological active terrain reflecting streamflow 
entrance and exit. Thus, constitutes unexpected hydraulic 
discharge rate and the expected flood volume. This 
development calls for a modern scientific approach to 
investigate the basin characteristics to predict water 
abstraction on streamflow regime quantification. This will 
support efficient, equitable, and environmentally sustainable 
water uses for socio-economic development in the basin. 
Changes in sectoral water availability have affected many 
aspects of human society. These impacts vary from 
agricultural productivity to flood control, municipal and 
industrial water supply to fisheries and wildlife management 
[15], [16]. 

The present study acknowledges the work of Alexander, 
Dingbao [17] upon which some review sections of this work 
were built. Works by Wang and Hejazi [8] strengthen the idea 
that streamflow prediction is a function of spatial rainfall 
distribution and basin characterization. This research tends to 
improve the previous conventional method of SCS in 
forecasting streamflow from rainfall-runoff studies. The 
studies highlight a novel way on the usage of Arc Hydro tools 
for integrated land and water resources management. They 
depict modern methods in water management, especially in 
semi-arid Africa, where its majority rural dwellers depend on 

Hydrological Characterization of a Watershed for 
Streamflow Prediction 

Oseni Taiwo Amoo, Bloodless Dzwairo 

S



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:11, No:5, 2017

432

 

 

the available scare water resources to feed their irrigated 
farmland from streamflow diversion. New methods are needed 
to safeguard against the compounded problem of climate 
variability and its impact on watershed or basin predictor 
variables; notwithstanding, the supportive managerial role of 
inclusive policy and institutional reform that support the ever-
growing population is required, despite the daunting economic 

decline and paucity scarcity of water in many regions. The rest 
of the paper is organised thus: Section I introduces the main 
objective of this work, which is in twofold. Firstly, to conduct 
critical review and analysis of the existing streamflow 
forecasting methods and secondly to demonstrate a GIS 
Muskingum River routing with modified SCS methods as a 
versatile streamflow prediction model. 

 

 

Fig. 1 Gurara located in Central Nigeria 
 
Section II examines the utilization and comparison of 

synthesis convoluted SCS method with spatially distributed 
basin characteristics, in which all hydrologic processes are 
simulated within a GIS framework. Section III presents the 
results and discussion of watershed characteristic factors that 
could potentially affect basin streamflow predictability. 
Finally, Section IV summarizes the main findings and 
provides a concise usage of slope, shape factor and stream 
length synthesis from GIS hydrologic similarity and prediction 
in ungauged basins. 

A. Review of Existing Method for Streamflow Prediction 

Streamflow forecasting has been broadly categorised into 
three: physics-based methods, time series methods, and 
machine learning methods [18]. Physics-based models are 
mathematical abstractions of physical processes that govern 
the water movement and storage in watersheds [19]. These 
models suffer from uncertain physical parameters input and 
equifinality challenges [19]. Aside from that, most have been 
built on small scale physics, and application to large 
watersheds have been difficult due to “the effects of spatial 
heterogeneity in landscape properties, integral complexity of 
hydrological processes and interactions at that scales” [20], 
[21]. 

Traditional time series methods are linear regression models 
that are most suited for short-term forecasting based on daily 
or weekly timescales. They are found wanting in the long-
term, particularly in annual and seasonal timescales, where 

they cannot handle the non-linearity exhibited by rainfall-
runoff models [22]-[25]. These challenges and others explain 
the hydrologic community interest in machine learning 
methods.  

Machine learning methods and supervised learning methods 
refer broadly to statistical techniques for developing predictive 
models using training data. Unlike physics-based models, 
machine learning methods are data-driven and rely almost 
exclusively on information embedded in training datasets. 
Artificial neural network (ANN) is one of the earliest machine 
learning methods adopted by the hydrologic community. 
Despite its popularity in streamflow forecasting [22], [25]-
[27], main issues of ANN include its tendency to over fit 
training data and instability with short training data records 
[28]. Poor generalization may result from either over fitting or 
under fitting. Recent years have seen a surge of interest in the 
development of machine learning methods, and in particular, 
the support vector machine (SVM) algorithm [29] was 
introduced to address two challenges alluded in the above, 
namely, (a) how to establish a relationship between the 
training data size and the generalization performance of the 
trained model, and (b) how to incorporate such knowledge 
gain during training process in overcoming over fitting 
challenge. SVM projects the input data such that the projected 
training data exhibit linearity and linear regression methods 
can be applied.  

Both the SVM and ANN are deterministic algorithms per se 
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and do not provide a direct quantification of uncertainty 
prediction. Ensembling of SVM or ANN models through 
uncertain resampling and cross validation has improved 
quantify prediction performance [30], [31]. Notable work done 
on relevance vector machine (RVM) was designed to improve 
the original SVM deficiencies, which have been well 
documented in [32]. A main limitation of the use of RVM is 
that it can produce unreliable results when a tested data point 
is located far from the relevance cluster vectors. The projected 

distribution will be a Gaussian with mean and variance 
tending to zero [33].  

To mitigate the issue of RVM, the Gaussian Process 
Regression (GPR) was introduced. The GPR is a full Bayesian 
learning algorithm that has received significant attention in the 
machine learning community for applications such as model 
approximation, multivariate regression, and experiment design 
[33]-[35]. 

 

 

Fig. 2 Gurara hydrological sub-basin stations 
 
GPR capability in lowering the regression processes and 

easy results interpretation has offered superior benefits over 
other machine learning approaches. Value added include its 
all-in -one integration of tasks [37], parameters assessment 
[38] and uncertainty estimation [39]; notwithstanding, it is 
available in the public domain for various hydrological 
applications [36].  

In comparison to the above mentioned methods, GPR can 
be considered a type of multivariate regression technique that 
is closely related to the generalized least squares method, and 
has enjoyed wide populace in regional regression analysis 
[24], [37]. However, the application of GPR in streamflow 

forecasting has been rather limited [17]. 
Recent advances in hydrological modelling seek to 

investigate the effects of land-use and land-cover changes on 
water resources, and their contributions to storm runoff 
generation [4]. A drainage basin has been acclaimed as the 
fundamental unit for the collection and distribution of water, 
solutes, and sediment in fluvial landscapes studies [40], as 
against previous traditional conceptual rainfall-runoff models 
that consider the entire catchment or sub-catchment as one 
unit, and illustrate the conversion of rainfall to runoff with 
simple concepts. These limitations in model 
conceptualizations brought the development of lumped 
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catchment models which carefully imbibed predicting the 
impacts of land-use change on catchment runoff [41].  

Among the many methods used in the estimation of storm 
flow, among them is the rational method and SCS. The SCS 
runoff method can evolve storm flow at every location using 
different antecedent moisture conditions (AMC) to generate 
the runoff potential and compute the peak runoff rate. The 
streamflow dynamic forecasting distribution varies both in 
spatial and temporal entity. This physiographic terrain 
configuration (morphometric analysis) provides a quantitative 
description of the drainage system, which is an important 
aspect of the characterization of watersheds [42]. 

B. Description of the Study Area 

The Gurara River basin is situated in Northern Nigeria, 
between latitudes 8°15' and 10°05' N and longitudes 6°30' and 
8°30' E. It has a total catchment area of 15,402 km2. Between 
1961 and 1981, four hydrological sub-basin stations namely: 
Gurara at Gantan, Gurara at Jere, Gurara at Kurmin Musa and 

Gurara at Izom were established on the River Gurara and its 
major tributaries for monitoring the streamflow [43]. Fig. 2 
depicts the sub catchment location. 

However, the availability of in-situ gauge data have not 
been forthcoming owning to a variety of many factors, among 
which are paucity of funds in carrying out the task as at when 
due, human laxity, and inadequate employment and trained 
handling personnel, as well as natural factors such as death, 
sickness, heavy storm, and lack of storage facilities. This 
hinders proper information documentation of both real-time 
and historical data. Obsolete staff scale equipment in gauge 
height readings and current meter discharge readings are still 
used [43]. These measuring instruments are not automated but 
are manually placed and read within a specified time. The 
Niger and Kaduna State Water Board reads and records gauge 
and discharge data [44], which has resulted in the paucity of 
relevant and accurate data required for hydrological 
modelling. 

 

 

Fig. 4 Gurara dominant soil classification bases on FAO 
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Undulating surfaces and dissected terrain characterize the 
study area. The dominant underlying rock structure shows 
conformity undifferentiated basement complex [45].  

Its geology is predominantly Precambrian (Archean + 
Proterozoic). Savannah grassland interspersed with tropical 
forest remnants characterizes the vegetation type with shrubs 
and coarse tall grasses [45]. The mean annual rainfall varies 
from 1,100 mm-1,600 mm and the mean monthly maximum 
and minimum temperature is in the range of 37.3°C and 
19.7°C, respectively, mostly occurring in the months of 
February, March and April. [45]. Prolonged human activities 
and animal grazing coupled with seasonal variation have 
caused a degrading of land and dry areas. The watercourses 
are forested with large trees [46]. Fig. 4 illustrates the six 
dominant soil classification based on the Food Agricultural 
Organisation (FAO). 

II. MATERIALS AND METHODS 

Rainfall-runoff computation by distributed hydrological 
models and the use of GIS methods have become 
progressively possible, popular and practical, despite the 
adjourn weakness that most GIS and simulation software 
customization processes are time consuming, requiring 
technical expertise in many languages [47]. These models are 
becoming more prominent in geospatial representation for 
predicting streamflow and aiding decision-making towards 
integrated watershed management. Most of the river basins in 
sub-Sahara Africa are ungauged, lacking modern stream 
discharge measurement. The physically employed on-site 
manual method requires much effort and time, and the lack of 
relevant and accurate data for design purposes has been a 
major challenge. 

Grid-based GIS appears to be a very suitable tool for 
spatially distributed hydrologic modelling using a DEM, and 
soil and land raster format maps. Geographic information 
systems (GIS) allows for merging vector-based soil map units 
with the raster-based land use and land cover (LULC) map 
into a delineated hydrologic response unit (HRU). The flow 
movement is then routed through the grid network cell [47]. 
Fig. 3 depicts the research methodology flowchart adapted 
after Arun [48]. 

A. Data Collection and Processing 

The spatial pattern of the seasonality of rainfall in the study 
area was determined by analysing mean daily rainfall data and 
the available streamflow discharge data collected at NIMET 
and Niger State Water Board/Kaduna River Basin 
Development Authority (KRBDA) for Gurara gauging station 
spanning 30 years (1970-2003) with some missing data for 
four years.  

The scant streamflow data (1980-1989) were used for 
channel outflow for Gurara channel routing. The study made 
use of spatially distributed satellite imagery such as digital the 
elevation model (DEM) acquired from ASTER (Advanced 
Space-borne Thermal Emission and Reflection Radiometer), 
and land use, and soil information as inputs for processes 
using spatial analysis tool box in ESRI ArcGIS. These data 

were processed to determine natural channel storage 
estimation to compute the water surface profile for each 
possible condition of flow in the channel. The routing analysis 
was carried out in the GISJ algorithm to determine the volume 
of water to be expected at downstream of Gurara River during 
any month of the year. Fig. 4 is the soil routing and dominant 
FAO base classification, while Fig. 5 shows the DEM of the 
basin. 

 

 

Fig. 3 Research methodology flowchart 

B. Watershed Delineation/Clipping in GIS for Channel 
Routing Development 

The Gurara River Basin was delineated from the main data 
set of Nigeria hydrological watershed boundaries and stream 
networks DEM image, using Arc Hydro tool in GIS. This 
selected boundary serves as one of the basic inputs to ArcInfo 
for further analysis. Using the SHAPEARC command in the 
spatial tool box converts the shape file into a cover. Both these 
files were further converted into grid form using the 
POLYGRID command. Otherwise, the given data itself can be 
saved in raster/grid (Gurara DEM) form. The grid file can 
directly be accessed and processed using spatial tools in GIS 
once the file is saved in the working directory. 

The ‘‘lateral flow procedure’’ using the DEM steepest 
method allows for a raster-based drainage network to be 
implemented to build a digital river flow routing model from 
the external upstream node to the internal downstream 
junction node. At each junction, the discharge is then routed to 
the next grid junction until the river flow is routed to the outlet 
of the catchment. This routing phenomenon is modelled after 
the Muskingum method, refer to (1)-(3), 
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S ൌ Kሼܺܫ ൅	ሺ1 െ ܺሻܳሽ       (1) 
 
where S= storage (cumulative channel storage); I = inflow 
(volume/time); Q = Outflow (volume/time); and K = 
Proportionality coefficient indicative of residence time, while 
X = weighting factor. 

ܳ௃ାଵ ൌ Cଵ ∗ ௃ାଵܫ ൅ Cଶ ∗ ௃ܫ ൅ Cଷ ∗ ܳ௃    (2) 
 
where 

ଵܥ ൌ
∆௧ି	ଶ∗௄∗௑

ଶ∗௄ሺଵି௑ሻା∆௧
ଶܥ ’ ൌ

∆௧ା	ଶ∗௄∗௑	

ଶ∗௄ሺଵି௑ሻା∆௧
ଷܥ	 ൌ

ଶ∗௄ሺଵି௑ሻି∆௧

ଶ∗௄ሺଵି௑ሻା∆௧
	 (3) 

 

 

Fig. 5 Gurara Elevation model 
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Fig. 6 Drainage intensity 
 
The routing coefficients Cଵ	Cଶ	Cଷare required in the 

Muskingum routing techniques to generate the outflow (Q) 
hydrographs where: ∆t = routing period, days; ܳ௃ାଵ= outflow 
of the first day, ܫ௃ାଵ= inflow of the first day, ܫ௃= Inflow of the 
previous day, ܳ௃= Outflow of the previous day, J and J + 1 
denote the times separated by the interval ∆ݐ௃. 

The dimensional weighting factor X and the corresponding 
channel constant K was obtained from (1) through Grid base 
analysis. 	ܥଵ,	ܥଶ,  ଷ are computed from (3), Figs. 6 and 7ܥ	݀݊ܽ
depict the drainage intensity and drainage density aspect to the 
discharge prediction. 
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Fig. 7 Illustration of the drainage density 
 

C. Flow Direction Conversion into Flow Accumulation 

The spatial tools for slope and aspect were executed using 
commands slope and aspect, respectively. The output network 
of aspect was used as the input grid for the flow direction 
calculation, which was further converted into flow 
accumulation through the flow accumulation command [51].  

The default approach for estimating overland velocity from 
land cover uses Manning’s equation with values of hydraulic 
radius assigned to each cell based on drainage area by user is 
also supported by using the different AML programme and 

tools in ArcGIS. This is further processed to compute 
important morphological parameters which can be determined 
for different aspects of the basin. Fig. 8-10 show the overland, 
slope and land use/land cover maps. 

D. Calculation of Runoff from the Basin 

For runoff quantification, modified SCS-CN method is 
used. The SCN method is referred to (4)-(7) [52].  

 

ܵ ൌ ଵ଴଴଴

஼ே
െ 10         (4) 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:11, No:5, 2017

439

 

 

where S = potential maximum retention after runoff begins. 
For a given precipitation event, the CN method partitions a 

given uniform depth of precipitation into infiltration 
abstraction and a runoff component generated refer to (8), (9), 
[50]. 

 

ܳ ൌ
ሺ௉ିூೌሻమ

ሺ௉ିூೌሻାௌ
         (5) 

where Q= runoff (m3/s); P = rainfall (mm); S= potential 
maximum retention after runoff begins; ܫ௔= Initial abstraction, 
represents that portion of retention associated with 
interception, ponding, and wetting of soil and vegetation 
surfaces. 

 
	௔ܫ ൌ 0.2ܵ         (6) 

 

 

Fig. 8 Maps of overland routed flow along the grid 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:11, No:5, 2017

440

 

 

 

Fig. 9 GIS Slope image for the area 
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Fig. 10 Map of the land use land cover classification for the area 
 
Substituting (9) in (8) gives:  
 

ܳ௠య௦షభ ൌ
ሺ௉ି଴.ଶௌூೌሻమ

ሺ௉ା଴.଼ூೌሻାௌ
         (7) 

For a given uniform depth precipitation event (P), Q, the 
uniform depth of runoff (in mm) is then determined. Effective 
rainfall and direct runoff can then be derived by the convolute 
formula for the unit hydrograph model, refer to (8), 
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ܴ.ܷ ൌ ܳ              (8) 
 
where 

R=൥
ܴଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ܴ௠

൩ 		ܷ ൌ ൥
ଵܷ

ଶܷ
ܷேିெ

൩	 and 		ܳ ൌ ൥
ܳଵ
ܳ௠
ܳே

൩  

 
Therefore, 

ܳ௜ ൌ ∑ ܴெ ௜ܷିெାଵ
ேஸெ
ெିଵ          (9) 

 
where ܴ௠ is effective rainfall,	 ௜ܷ is the unit hydrograph 
ordinate, ܳ௜ 

is direct runoff, M is the number of rainfall 
values. Solving the linear system, refer to (10), can be tedious, 
but with MATLAB, the equation can be solved with one 
command line: >> % solve the linear equation by QR 
decomposition.  

 

 ܷ ൌ ோ

ொ
                 (10) 

E. Estimating Peak Discharge 

The peak discharge can be obtained refer to (10)-(15) [49]. 
 

௣ݍ ൌ
ଶ.଴଼஺

௧೛
         (11) 

where	ݍ௣ = Peak discharge (m3/s), A = watershed area (km2), 

௣ܶ  = time to peak (hr), Time to peak and lag time 
 

௣ݐ ൌ
௧ೝ
ଶ
൅  ௅             (12)ݐ

 
or 

௣ݐ ൌ
௧೎ା	଴.ଵଷଷ௧೎

ଵ.଻
              (13) 

 
where ݐ௖ = time of concentration (hr), ݐ௥ = storm duration (hr), 
 ௖ = time of concentration (hr) (Kirpich’sݐ ,௅ = lag time (hr)ݐ
equation) 

 

௖ݐ   ൌ 0.06628 ቂ ௅
బ.ళళ

ௌబ.యవఱ
ቃ        (14) 

 
where L = length of channel (stream) in km, S = Slope of 
channel (m/m), tL= Lag time equivalent to 

 
௅ݐ ൌ            (15)	௖ݐ0.6

 
Measured and derived data for time to peak and peak runoff 
forecasting refer to (11)-(15), and see Tables I and II. 

 
TABLE I 

GURARA STATIONS DERIVED DATA FROM SPATIAL IMAGE ANALYSIS 

Basin ID L(km) A(Km)2 tc(hr) Slope tL(hr) tr(hr) tp(hr) qp (km3/hr) 

Gantan 506.86 6064.39 7.48 4.73 4.49 0.82 4.98 7077.93 

Jere 256.73 4108.04 4.61 4.73 2.76 0.50 3.07 2331.84 

Kurmin-Musa 306.61 5016.91 3.87 4.73 2.32 0.42 2.58 4724.08 

Izom 57.02 536.12 2.74 4.73 1.65 0.30 1.83 3231.60 

 
TABLE II 

ANALYSIS OF SUB BASIN (IZOM) UNIT HYDROGRAPH FOR PEAK RUNOFF FORECASTING 

t/tp Tp t(hr) q/qp Qp q(km3/hr 

0.00 3.07 0.00 0.00 2336.84 0.00 

0.20 3.07 0.61 0.08 2336.84 1748.76 

0.40 3.07 1.23 0.28 2336.84 6528.72 

0.60 3.07 1.84 0.60 2336.84 1399.11 

0.80 3.07 2.46 0.89 2336.84 2075.99 

1.00 3.07 3.07 1.00 2316.84 2336.84 

1.20 3.07 3.68 0.92 2336.84 21451.5 

1.40 3.07 4.30 0.75 2336.84 1747.63 

1.60 3.07 4.91 0.56 2336.84 1307.43 

1.8 3.07 5.52 0.42 2336.84 979.07 

2.00 3.07 6.14 0.32 2336.84 7461.39 

2.20 3.07 6.75 0.24 2336.84 5596.04 

2.40 3.07 7.37 0.18 2336.84 4197.03 

2.60 3.07 7.98 0.13 2336.84 3031.19 

2.80 3.07 8.59 0.098 2316.84 2285.05 

3.00 3.07 9.21 0.075 2336.84 1748.76 

3.50 3.07 10.74 0.036 2336.84 839.41 

4.00 3.07 12.28 0.018 2336.84 419.70 

4.50 3.07 13.81 0.009 2336.84 209.85 

5.00 3.07 15.35 0.004 2336.84 93.27 
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Fig. 11 The hydrograph for Izom sub-catchment area 
 

TABLE III 
ANNUAL RAINFALL FOR PERIOD OF SELECTED 11 YEARS 

YEAR RAINFALL(MM) RANK-M FREQUENCY(%)(M/N+1) 

2002 647.50 1 8.33 

2001 547.45 2 16.67 

1993 511.28 3 25.00 

1981 423.49 4 33.33 

1986 416.38 5 41.67 

1983 369.04 6 50.00 

1982 350.51 7 58.33 

1985 342.53 8 66.67 

1984 340.81 9 75.00 

1978 268.89 10 83.33 

1977 45.60 11 91.67 

 

 

Fig. 12 The graph of rainfall against percentage frequency 
 
The unit-hydrograph response estimation routine computes 

the distribution of flow at the sub-basin catchment outlet. The 
following instantaneous input event and the resulting Izom 
unit hydrograph, is represented in Fig. 11. 

The frequency recurrence intervals curve can be used to 
derived the required rainfall at probable time interval is 
analyzed in Table III, while the graph of (‘P vs. F’) on a semi-
log paper (Fig. 12) gives the frequency recurrence intervals 
curve. 

III. RESULTS AND DISCUSSION 

Based on the obtained results from the Arc Hydro 
morphometric analysis and SCS-CN validation of the stream-
flow discharge, a good knowledge of the catchment dynamic 
and watershed characteristic factors that can potentially affect 
basin streamflow predictability represent a key step in 
developing spatial data driven streamflow forecasting models. 
The cumulative discharge is often calculated as the runoff 
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coefficient which depends upon the influence of catchment 
slope, land use, and soil type multiplied by net precipitation. 
This represents the aggregation of topographical and 
geological features upon which rainfall intensity and soil 
moisture depend. The result of the downstream unit hydrology 
indicates streamflows from high altitude, lithological variation 
and moderately steep slopes. Other catchment factors affecting 
the distribution of runoff are:  

A. Elevation 

The heterogeneous elevation nature of the area range from 0 
m to 184 m above mean sea level (Fig. 5); part of the basin 
lies in the intermediate zone of the Sahara North and the sub-
humid climate in the South. On the contrary, flatland and 
gentle slopes characterize the southern and central parts of the 
study area. 

B. Drainage 

The drainage pattern of the area derived from soil and land-
use accumulation flow depicts a dendritic varying pattern 
which indicates the homogeneity in texture and lack of 
structural control (Fig. 8). The drainage density index gives a 
good idea of the complexity and development degree of the 
watershed’s drainage system [52]. A rich drainage system has 
a greater water concentration capacity because water runs 
through less distance to the streams. Likewise, a poorer system 
gives place to higher infiltration values, and therefore, lower 
and delayed flow peaks are expected. It indicates the closeness 
of spacing of the channels. The calculated value for the 
drainage intensity using a network shapefile in ArcGIS was 
0.822 km/km2. The Elongation ratio (0.44) helps to give an 
idea about the hydrological character of a drainage basin. The 
area of dense drainage work was found to have a high runoff 
volume. 

C. Slope 

For this basin, the observed slope has been group into 
classes (Fig. 9). A higher slope produces higher and faster 
runoff peaks. It determines the concentration time. It expresses 
the time elapsed since the beginning of the precipitation until 
the moment in which the total area of the watershed 
contributes to the runoff at the outlet.  

D. Land Use/Soil Type 

The soil profile characteristics are important in relation to 
their effects upon infiltration and generation of interflow (Fig. 
4). Open texture sandy soils will tend to be associated with 
high infiltration volumes than fine grained closely compacted 
clay soil. The extracted drainage network from the DEM land 
use shows that the basin LULC base on the Global Land 
Cover Characterization (GLCC) database is characterized 
majorly by cultivated and managed Terrestrial Bar Areas -
woodland; Sparse Terrestrial vegetation to rainfed -
Herbaceous crops in the South (Fig. 10). The soils types have 
different distributions ranging from light silt loam and dark to 
dark red clay soils. 

 
 

E. Vegetation and Drainage Network 

The effect of vegetation and drainage network influence of 
river discharge; its morphology characterization depicts the 
streamflow in time variation (Fig. 7). The Gurara basin is 
highly undulating with various inconsistent vegetation, shrubs, 
isolated hills, and ridges. Some prominent hills are Zuma rock, 
at the North-eastern boundary with FCT, Abuja, and Kusheriki 
ridge in the North Central part of the country. 

IV. CONCLUSION 

In this paper, a GIS and Muskingum River Routing (MRR) 
hydrologic approach was adopted for the assessment of land-
use change on streamflow prediction processes. This study 
advances the GIS underlying processes of catchment 
modelling. The applied methodology considers the spatial 
heterogeneity of the basin parameters, especially for an 
ungauged watershed, to predict discharge hydrographs. Given 
the satisfactory AMC of soil parameter determination, the 
effect of land use change on streamflows prediction has been 
easier. Also, manual derivation of CN’s for large drainage 
basins can be time consuming and labour intensive, thus 
making raster data structure and processing in GIS 
environment an appropriate tool for use. 

The improved SCS Method to estimate flow parameters 
found usefulness in reconnaissance investigations, and can be 
used to extend quantification of streamflow for farm irrigation 
purposes, where past records are sparse or unavailable. 
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