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Abstract—This paper presents an analytical solution to get a 

reliable estimation of the hydrodynamic pressure on gravity dams 
induced by vertical component earthquake when solving the fluid and 
dam interaction problem. Presented analytical technique is presented 
for calculation of earthquake-induced hydrodynamic pressure in the 
reservoir of gravity dams allowing for water compressibility and 
wave absorption at the reservoir bottom. This new analytical solution 
can take into account the effect of bottom material on seismic 
response of gravity dams. It is concluded that because the vertical 
component of ground motion causes significant hydrodynamic forces 
in the horizontal direction on a vertical upstream face, responses to 
the vertical component of ground motion are of special importance in 
analysis of concrete gravity dams subjected to earthquakes. 

   
Keywords—Dam, Reservoir, Analytical solution, Vertical 

component, Earthquake    

I. INTRODUCTION 

HERE are a large number of concrete gravity dams all 
over the world. Some of these dams are built in 

seismically active areas. The analysis of dams is a complex 
problem due to the dam-water-foundation interaction. An 
important factor in the design of dams in seismic regions is the 
effect of hydrodynamic pressure exerted on the face of dam as 
a result of earthquake ground motions [1]. For a rational 
analysis of a dam-reservoir system, it is essential that the 
hydrodynamic effects and interaction between the foundation 
and reservoir are properly considered. The dynamic behavior 
of a concrete gravity dam is affected by the adjacent reservoir 
and the flexible strata consisting of porous sediments on which 
it rests. The developed hydrodynamic pressure on dam is 
dependent on the physical characteristic of the boundaries 
surrounding the reservoir including reservoir bottom. In 
various methods proposed by different researchers for 
simplification of the analytical procedures, the reservoir 
bottom is generally considered to be rigid. This assumption 
does not represent the actual behavior of the system. The 
hydrodynamic pressure in the reservoir is usually affected by 
radiation of waves from foundation. When the reservoir 
bottom is considered to be rigid, the pressure waves are 
reflected from the reservoir bed and consequently the 
hydrodynamic pressure is over-estimated. Due to the 
absorption at the reservoir bottom, the magnitude of 
hydrodynamic pressure due to ground motion will be reduced.  
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Therefore, the hydrodynamic pressure exerted on the 

upstream face of dams will be less and the displacement and 
stress field in the dam will be affected. Thus, an accurate 
evaluation of hydrodynamic pressure on the dam must 
consider the effect of induced hydrodynamic pressure under 
vertical component of earthquake beside of horizontal 
component to achievement of reliable seismic behavior of 
concrete gravity dams. In this paper, hydrodynamic pressures 
induced by vertical component of earthquake ground motions, 
including bottom absorption are investigated [2].  

II. GOVERNING EQUATION AND BOUNDARY CONDITIONS  
Consider a gravity dam with a vertical upstream face, 

impounding a reservoir of constant depth and extending to 
infinity in the upstream direction. It is assumed that the dam 
and reservoir are resting on a flexible foundation which is 
modeled as a viscoelastic half-plane. Assuming the water in 
the reservoir to be inviscid, compressible, irrotational and its 
motion to be of small amplitude, the hydrodynamic pressure 
equation will be [3]:    
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where Δ , P , C  and  are the Laplacian operator, 
hydrodynamic pressure in the reservoir, velocity of sound in 
water and reservoir domain, respectively. Two-dimensional 
form of Eq. 1 can be written as [4, 5]: 
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where x  and y  are the cartesian coordinates and t  is the 
time variable. Eq. 2 together with the appropriate boundary 
conditions, defines completely the hydrodynamic aspects of 
the problem. Figure 1 shows reservoir domain and boundaries 
under vertical component of earthquake. 

 
Fig. 1 Reservoir domain and boundaries 

 
The boundary conditions to be satisfied are as follows: 
(a) At the dam-reservoir interface: 
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in which n  denotes the inward normal direction to a 
boundary, na  the normal component of boundary acceleration 

and wρ  the mass density of water. 
(b) At the reservoir-bed interface assuming the absorbing 
boundary for reservoir bottom, the condition will be: 
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where  
q  is the damping coefficient of the reservoir bottom  

ss

w

C
q

ρ
ρ

=                                                                              (5) 

sρ  and sC  are mass density and sound wave velocity in 
sediment. The portion of the wave amplitude reflected back to 
the reservoir can be represented by the wave reflection 
coefficient α  defined by 
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−
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1α                                                                              (6) 

where α  may vary from 0 for full wave absorption to 1 for 
full wave reflection. 

),( txa y  is the vertical acceleration of ground motion at 
foundation. For a vertical bottom excitation, the vertical 
acceleration is zero. In this case, the bottom boundary 
condition leads to an eigenvalue problem. 
(c) At the reservoir farfield, perfect damping is assumed:  

0lim =
∞→

P
x

   on   3S                                                           (7) 

(d) At the free surface, neglecting the effects of water surface 
waves, the boundary condition is: 
 

0=P   on    4S                                                                    (8) 
When an excitation is caused by a harmonic vertical 
acceleration, the pressure field in the rectangular reservoir is 
governed by the following boundary conditions: 
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For harmonic ground motion, the pressure in the reservoir 
can be expressed in the frequency domain as 

)()(),,( kxtieyPtyxP −= ω , where ω  is the excitation 

frequency, k  the wave number and )(yP  the complex-
valued frequency response function for hydrodynamic 
pressure. Substitution of this expression into equation (2) 
yields to the classical Helmholtz equation: 
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The general solution of Eq. 13 is obtained as: 
yByAyP λλ sincos)( +=                                           (15) 

In the above equation, A  and B  are constant and are 
determined using boundary conditions.  
At first the case with no bottom absorption is considered, in 
which 0=q . Applying the boundary condition to the general 
solution of equation (15) which already satisfies the free 
surface boundary condition yields: 

0sincos)( =+= HBHAHP λλ                               (16) 
and 

HAB λcot−=                                                                   (17) 
So, the general solution of equation (13) led to:  

)sincot(cos)( yHyAyP λλλ −=                             (18) 

To satisfy the dam-reservoir interface boundary condition k
must be equal to zero in equation (13). So, it can be mentioned 
that for a vertical excitation, the hydrodynamic pressure 
independent of x . The solution for the hydrodynamic 
pressure is written as following: 

tieyPP ω)(=                                                                     (19) 
The reservoir-foundation interface boundary condition is 
applied with assumption of a vertical time-harmonic 
acceleration in the form of ti

yy eaa ωˆ= to get: 
ti

y
ti eaeyHyA ωω ρλλλλ ˆ)coscot(sin −=+− at 0=y       (20) 

or 
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This yields for A : 
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So, the hydrodynamic pressure distribution in the reservoir 
will be in the following form: 
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The peaks arise at the eigenfrequencies of the undamped 

system ,...
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It is interesting to investigate the limit as 0→ω . Then also 

0→λ , 
H

H 1cot →λλ  and 
H
yyH →sincot λ . In this 

case, the pressure has the hydrostatic pressure distribution: 
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And 
)()( yHayP y −→ ρ                                                      (26) 

If bottom absorption is included, the boundary condition at 
the reservoir bottom becomes as equation (10).  This boundary 
condition is applied to the general solution for P  which 
already satisfies the free surface boundary condition to get 
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Which determines A  as  
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The boundary condition at the dam is automatically satisfied 
because 0=k . Then the )(yP  is determined as:    
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As for the bottom with no absorption, at the limit as 0→ω , 
the pressure has the hydrostatic pressure distribution and the 
peaks arise at the eigenfrequencies of the undamped system 
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III. MODEL ANALYSIS   
To assess the effectiveness and ability of the proposed 

analytical solution, the dam-reservoir model is considered in 
this section. To have a good understanding of the effect of this 
parameter and check the feasibility of the present analytical 
solution, several situations were studied where the wave 
reflection coefficient and excitation frequency are varied over 
a wide range. Case study is the model of a rigid dam with 
reservoir which is subjected to harmonic excitation in the 
vertical direction. The full depth of the reservoir was 
considered to be 100 m . The mass density of water was 
assumed to be 1000 3/ mkg  and the acoustic velocity of 
water 1440 sm / . The amplitude of the external vertical 
acceleration was assumed to be equal to g3.0 . The model is 
analyzed for two cases of neglecting and considering bottom 
absorption. 
Figures 2 to 4 show the results for the case of no bottom 
absorption.  

Figure 3 illustrates the hydrodynamic pressure distribution 
along the height for the case of no botton absorption. In 
addition the normalized hydrodynamic pressure gHP ρ/  

was selected as variable for the cases of Ω<ω  and Ω>ω
to compare the results, where Ω  is the natural frequency of 
the reservoir given by HC 2/π=Ω and C  is the acoustic 
velocity.  

 

 
Fig. 2 Hydrodynamic pressure distribution on dam height for 

different values of ω  
 

It is interesting to illustrate the hydrodynamic pressure 
distribution along the height for the limit as 0→ω . Figure 3 
shows the case in which the excitation frequency is equal to 
zero. 

 

 
Fig. 3 Hydrodynamic pressure distribution on dam height for the 

case 0→ω  
According to figure 3, it can be concluded that at the limit 

as 0→ω , the pressure has the hydrostatic pressure 
distribution and shows a linear relation with the height. 

The reservoir of example is analyzed to illustrate the 
influence of the frequency ratio Ω/ω  and reflection 
coefficient α equal to unit on the variation of maximum 
hydrodynamic pressure exerted on dam. Figure 4 shows the 
effect of Ω/ω  on maximum hydrodynamic pressure for the 
case of bottom with no absorption.  
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Fig. 4 Maximum hydrodynamic pressure variation due to Ω/ω  

for 0.1=α  
To show the effect of bottom absorption on the 

hydrodynamic response of reservoir, the model was analyzed 
considering the absorption at the bottom and the results are 
obtained for the condition of partial damping due to wave 
absorption in the alluvial deposit at the bottom of the 
reservoir.  The results shown in figures 5 and 6 have been 
obtained from proposed analytical solution for different 
condition of bottom absorption and excitation frequency. 

 

 
Fig. 5 Hydrodynamic pressure distribution on dam height for 

different values of α  
 

 
Fig. 6 Hydrodynamic pressure distribution on dam height for 

different values of ω  
 

Similar to case of no bottom absorption, the pressure has 
the hydrostatic pressure distribution at the limit as 0→ω for 
all value of reflection coefficient. Figure 7 show the result for 
this case. 

 

 
Fig. 7 Hydrodynamic pressure distribution on dam height for the 

case 0→ω  
 

Finally, the example of this case is analyzed to illustrate the 
influence of the frequency ratio Ω/ω  and reflection 
coefficient α  on the variation of maximum hydrodynamic 
pressure exerted on the upstream face near the bottom of dam. 
Figures 8 and 9 show the effect of Ω/ω  and α  on 
maximum hydrodynamic pressure for different cases. 
 

 
Fig. 8 Maximum hydrodynamic pressure variation due to α  for 

different values of ω  
 

 
Fig. 9 Maximum hydrodynamic pressure variation due to Ω/ω  

for different values of α  
 

It is obvious from figures 4 and 9 that the response becomes 
so much complicated when excitation frequencies are close to 
natural frequency of reservoir, where resonant is observed. 
With increasing wave absorption at the reservoir bottom and 
decreasing α , the fundamental resonant peak due to vertical 
ground motion decreases in amplitude. Figure 8 represents 
similarity in behavior of maximum pressure variation due to 
α  for both case of excitation frequencies (less and more than 
the natural frequency of the reservoir). In addition the 
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magnitude of hydrodynamic pressure exceeds when Ω<ω  
compared with the case of Ω>ω .   

IV. CONCLUSION 
   The paper has presented a new analytical technique to 
estimate the earthquake-induced hydrodynamic pressure on 
gravity dams allowing for water compressibility and wave 
absorption at the reservoir bottom. This new analytical 
solution can take into account the effect of bottom material on 
seismic response of gravity dams under vertical loading. 
Obtained results show the considerable values of induced 
hydrodynamic pressure due to vertical component of 
earthquake which can affect on dam. This effect has been 
neglected in most previous researches. Obtained results show 
the effect of bottom absorption and excitation frequency on 
hydrodynamic response of reservoir under vertical loading. 
Consider to results it can be concluded that the fundamental 
resonant peak due to vertical ground motion decreases in 
amplitude with increasing wave absorption and the magnitude 
of hydrodynamic pressure exceeds when the excitation 
frequency less than the natural frequency of the reservoir 
compared with the case in which the excitation frequency 
more than the natural frequency. In addition the method can be 
easily incorporated in dynamic analysis of dam.  
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