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Abstract—Markov games can be effectively used to design 

controllers for nonlinear systems. The paper presents two novel 
controller design algorithms by incorporating ideas from game-
theory literature that address safety and consistency issues of the 
‘learned’ control strategy. A more widely used approach for 
controller design is the ∞H optimal control, which suffers from high 
computational demand and at times, may be infeasible. We generate 
an optimal control policy for the agent (controller) via a simple 
Linear Program enabling the controller to learn about the unknown 
environment. The controller is facing an unknown environment and 
in our formulation this environment corresponds to the behavior rules 
of the noise modeled as the opponent. Proposed approaches aim to 
achieve ‘safe-consistent’ and ‘safe-universally consistent’ controller 
behavior by hybridizing ‘min-max’, ‘fictitious play’ and ‘cautious 
fictitious play’ approaches drawn from game theory. We empirically 
evaluate the approaches on a simulated Inverted Pendulum swing-up 
task and compare its performance against standard Q learning.   
 

Keywords—Fictitious Play, Cautious Fictitious Play, Inverted 
Pendulum, Controller, Markov Games, Mobile Robot. 

I. INTRODUCTION 
N this paper we concentrate on the quality of the policy 
learned by the controller in a Reinforcement Learning (RL) 

[8] framework. In particular, we propose algorithms that are 
‘safe’ meaning that they guarantee the controller at least 
minmax payoff and ‘consistent’ meaning that the learned 
policy should do at least as well as playing the best response 
to the empirical average of the play if the opponent’s play is 
given by independent draws from a fixed distribution. The 
second algorithm, proposed in this paper, strives for not just 
‘consistency’ but ‘universal consistency’ meaning that the 
controller should get at least the payoff of playing a best 
response to the opponent’s empirical distribution whether or 
not the environment is in fact i.i.d., i.e., consistency against all 
environments.  

Judicious use of experiential information is a crucial 
factor in the successful design of any RL based controller. 
Markov games (MG) [1] are a generalization of the Markov 
Decision Process (MDP) [8] setup that allows us to visualize 
the controller optimization as a game between the controller 
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and the disturber (disturbances). This paper considers 
controller optimization problem in presence of additive 
exogenous disturbances and parametric uncertainties of the 
controlled system.  

In our view, MG framework is more appropriate than the 
MDP setup for designing controllers for noisy nonlinear 
systems as it allows an explicit representation of the noise. 
In H∞ theory-based formulation, controller design is viewed 
as a differential game between the controller and the 
disturbance. Optimal control law is obtained as a solution of 
the Hamilton-Jacobi-Isaacs (HJI) equation, which is 
computationally inefficient and may be infeasible as well [3]. 
Theory of zero-sum stochastic games has also been used in the 
context of worst-case optimization of queuing networks by 
Altman and Hordijk [9].  

Another model that fits the controller design problem is the 
fictitious play (FP) [6], wherein the players do not try to 
influence the future play of their opponent or the opponent has 
‘naïve’ or ‘unsophisticated’ behavior. Standard FP is 
consistent but not safe. A simple modification of the FP 
approach called as the cautious fictitious play (CFP) [11] 
generates a behavior that is both safe as well as universally 
consistent. Key idea underlying the proposed algorithms is 
that during the initial phase of the RL based controller design, 
control strategy should be heavily weighted towards a ‘safe’ 
or the minmax strategy and in later stages, when the 
experiential information is good enough, the strategy should 
incorporate a solution element obtained either via the FP as 
done in the first proposed algorithm or the CFP as in the 
second proposed algorithm.  

II. MARKOV GAMES AND SOLUTION APPROACHES 
A Markov Game is represented by the tuple 

1...., , ,NN C T1.....ΝΩ,Α< >  where Ω is the set of states, N is the 
number of agents, A1…N   is the collection of action sets for the 
agents 1…N, Ci is the cost function for the agent i, i.e., 

1 2: ........i NC A A AΩ × × × × →ℜ , T is the state transition 
function, 1 2: ........ ( )NT A A A PΩ Ω× × × × →  and 

1 2( , , ,......., , ')NT s a a a s  = probability of moving from state s 
to s′ when each agent takes an action ( i ia A∈ ) at the state s. 

A. Minimax-Q 
 We can define Q(s, a, o) value for tuple , ,s a o< >  as the 
expected cost for taking action a when the opponent takes 
action o at state s and continuing optimally thereafter: i.e., 

    )'()',,,(),,(),,(
'

sVsoasToascoasQ
s
∑+= α                         (1) 
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where ( , , , ')T s a o s = Probability of transition from state s to 
's and ( , , )c s a o = one step cost incurred by the agent, when 

the first player or the agent takes action a A∈  and the second 
player or the opponent takes o O∈  at state s. 

Minimax-Q algorithm is similar to Q learning, except that 
the term min ( ', )

b A
Q s b

∈
is replaced by the value of the game 

played between the two players at state 's , i.e., 
 

( )
( ') min max ( ', , )

a
aP A o O a A

V s Q s a o
π

π
∈ ∈

∈

= ∑ , aπ = Probability 

distribution over agent’s action set. 
Q values are updated as: 
  ( , , ) ( , , ) [ ( , , ) ( ') ( , , )]Q s a o Q s a o c s a o V s Q s a oη α← + + −    (2) 

where η = learning-rate parameter and ( ')V s =Value of the 
game played between the agent and the opponent at state 's .A 
completely specified version of minimax-Q can be found in 
[1].  

Minimax control strategy is safe; unfortunately minimax 
play does not have the minimal learning property of 
‘consistency’ [11]. 
 

B. Stochastic Fictitious Play (FP) 
Model of FP suggests that the players choose their actions 

in each period to maximize that period’s expected payoff 
given their prediction or assessment of the distribution of the 
opponent’s strategy in that period. In a zero-sum setting the 
empirical distribution generated by FP must converge to Nash 
equilibrium [10]. In stochastic FP, the solution is in the form 
of a mixed policy, i.e., a probability distribution over crisp 
action set and has the advantage that small changes in the 
experiential data does not lead to abrupt changes in the agent’s 
policy and such a procedure is ‘consistent’. Suppose at time t 
the state is s and the opponent takes action o O∈ . Let ( , )k s o  
be the times tuple ,s o< > has been visited, then update 

( , )k s o with: 

             1
1 if

( , ) ( , )
0 if

t
t t

t

o o
k s o k s o

o o+
=⎧

← + ⎨ ≠⎩
                       (3)               

Probability over opponent’s action set:  
            1

1
1

'

( , )
( , )

( , ')
t

t
t

o O

k s o
p s o

k s o
+

+
+

∈

=
∑

                                  (4)                                 

Optimal policy of agent:  
*

( ) '
arg min ( , , ') ( , ')a t t a

P Aa o O
U s a o p s o

π
π π

∈ ∈
= ∑  where ( , , )tU s a o  

is the reward or utility accrued to the agent on taking a A∈  
when opponent takes o O∈  at time t. FP is well known not to 
be safe [11]. 

C. Cautious Fictitious Play (CFP) 
Cautious fictitious play [11] is a variation of fictitious play 

in which the probability of each action of the agent is an 
exponential function of that action’s utility against the 
historical frequency of the opponent’s play. Regardless of the 
opponent’s strategy the utility received by an agent using this 

rule is nearly the best that could be achieved against the 
historical frequency of opponent’s play. The CFP approach is 
‘universally consistent’ in the sense that it ensures that the 
player’s realized average payoff is not much less than the 
payoff from playing best response to the empirical distribution 
of opponent’s strategy, uniformly over all environments. 

In CFP, the agent repeatedly chooses a probability 
distribution : ( ) ( )a a s P Aπ π → and observes the outcome. The 
k-exponential fictitious play with respect to the utility rule 

( )aU h is given by  exp( ( ))( )[ ]
exp( ( ))

a
a

a b
b

b

w kU hh a
w kU h

π ≡
∑

           (5)           

and the utility is updated as  
( 1)

( ) 1 1 1( , ) ( ) ( 1)
( 1)[ ] ( 1)[ ]

a
Ta

Ta
T

a a

U h a a
U h a a

u a y T U h
T h a h aπ π

⎧ − ≠⎪⎪= =⎨ ⎡ ⎤
+ − −⎪ ⎢ ⎥− −⎪ ⎣ ⎦⎩

  (6)  

where h= history of the action-outcome sequence ,i.e., 
1 1 2 2( , , , ,........., , )t ta y a y a y , ,a bw w = fixed weights and k is a 

constant , 1k > . For a detailed description of the CFP 
approach the reader is referred to [11]. 
 

D. Proposed Hybrid Markov Game Algorithms 
1. First Hybrid Markov Game Algorithm (HMG-1) 
For the FP part of the algorithm, we use the same opponent 

modeling approach as in FP but best response strategy is 
calculated based on Q value and not on reward as done in 
standard FP, i.e., agent’s optimal policy is calculated as: 

*
( ) '

arg min ( , , ') ( , ')a t t a
P Aa o O

Q s a o p s o
π

π π
∈ ∈

= ∑ . A matrix game is 

defined at a current state s  by the game matrix 

, ( )a oC s consisting of ( , , )tQ s a o values, e.g., for 3, 3A O= = , 

the resulting game matrix , ( )a oC s at state s is: 

 
π  

1o  2o  3o  

1aπ  1a  Q11 Q12 Q13 

2aπ  2a  Q21 Q22 Q23 

3aπ  3a  Q31 Q32 Q33 

  
where ( , , )i j t i jQ Q s a o=  and ,A O  stand for cardinality of 

sets A and O respectively. 
The agent’s optimal policy : ( ) ( )a a s P Aπ π → is found as an 

annealed mix of the solutions of the matrix game defined by 
, ( )a oC s , obtained using FP and Minimax-Q. The algorithm 

incorporates a state-action pair visits dependent parameter 
(0,1]β ∈  that controls the amount of hybridization of the 

minmax-Q and FP solutions. Initially β is high for all un-
visited state-action pairs which makes the policy ‘safe’ and in 
later stages with more visits at a particular state-action pair a 
high β value achieves a ‘safe’ and ‘consistent’ policy, 
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i.e., 1 00 1
( , )( , ) ,( , )

t
t

k s os o nn k s oβ +
+

= =+
a fixed number   (7)                                                                                                                    

eff min max FP* (1 )*a a aπ β π β π−← + − and
min max FP* (1 )*effQ Q Qβ β−← + −                                  (8)    

                             
We generate action 'a A∈  at the next state 's  according to a 
ε-soft policy corresponding to eff

aπ  and update Q value using 
the standard Q-learning [8] update: 
 
 1( , , ) ( , , ) [ ( , , ) ( , , )]eff

t t tQ s a o Q s a o c s a o Q Q s a oη α+ ← + + −      (9) 
 
where η is the learning rate parameter, α is the discount factor 
and ( , , )c s a o  is the cost of transition on taking action a at s. 
Fig. 1 gives a pseudo-code for the proposed algorithm: 
 
   -Initialize: for , ,s a A o OΩ∀ ∈ ∈ ∈  
        ( , , ) : 0, ( , ) : 0, ( , ) : 0Q s a o freq s o s oβ= = =  
   -Set Trial termination conditions, Number of Experiments 
   -Set , ,explorα η , 0n , Sample Time 
Start Trial 
 1-Choose action a as per ε-soft policy corresponding to   
    eff

aπ while opponent takes o O∈  

   -Observe transition ( , , ) 'c s a os s⎯⎯⎯⎯→  
   -Update agent’s belief of opponent’s action using  
     equation 7 
   -Update β, explor 
   -Use Linear Programming to get FP

aπ , FPQ and min max
aπ

− , 

    min maxQ −  
   -Update Q values as per equation 9   
   -Continue trial from step1 
Until Trial termination condition     

 

Fig. 1 Pseudo code:  HMG-1 algorithm 

  II. Second Hybrid Markov Game Algorithm (HMG-2) 

     CFP Part 

The CFP approach as given in [11] and represented by 
equations 5 and 6 cannot be straightaway applied in a Markov 
game (MG) setup, as the utility ( )aU h does not explicitly 
contain opponent’s action. In order to employ CFP for solving 
MG’s, we introduce modifications in the CFP approach, 
which are motivated by ideas from the standard fictitious play 
approach [6]. The CFP part of our algorithm differs from [11] 
in (i) we use an opponent modeling approach based on 
standard simultaneous move FP, i.e., use the marginal 
frequency distribution data of opponent’s moves derived from 
experiential information (ii) instead of using the utility update 
of equation 6, we use the RL based Q- learning update and 

(iii) we apply this modified version of CFP for solving 
Markov game formulation of the control problem. 
 

We calculate probability over opponent’s action set, 
1( , )tp s o+  using equation 7. Let 1 2[ , ,...., ]nA a a a= be the 

action set for the agent or the first player. At any time t we 
calculate 

'
( ) ( , , ') ( , ') for 1,...,mix i t i t

o O
V a Q s a o p s o i n

∈
= =∑  and 

find the agent’s policy corresponding to CFP as 
exp( ( ))( )

exp( ( ))
CFP mix i
a i

mix i
a Ai

V aa
V a

π

∈

←
∑

                                     (10) 

 
Then we use probability distribution specified by CFP

aπ to get 
CFPa . 

Target Q value is found as  
 

'
( , , ') ( , ')CFP CFP

t t
o O

Q Q s a o p s o
∈

← ∑                                 (11) 

     Min-max Part 

    The game specified by the matrix , ( )a oC s is solved using 

the standard Linear Programming technique [5] to generate  
 

min max min max,a Qπ − −  as  
  min max

( ) ' '
min max ( , ', ') ( ')t a

P A o Oa a A
Q Q s a o a

π
π−

∈ ∈ ∈
= ∑               (12)   

   min max
( ) ' '

arg min max ( , ', ') ( ')a t a
P A o Oa a A

Q s a o a
π

π π−

∈ ∈ ∈
= ∑          (13) 

The agent’s optimal policy : ( ) ( )eff eff
a a s P Aπ π → is found as 

an annealed mix of the solutions obtained using CFP and 
minimax-Q. This algorithm also incorporates a state-action 
pair visits dependent parameter (0,1]β ∈  that controls the 
amount of hybridization of the minimax-Q and CFP solutions.  
 
    eff min max CFP* (1 )*a a aπ β π β π−← + −                              (14) 

    min max CFP* (1 )*effQ Q Qβ β−← + −                               (15) 

We generate action 1ta A+ ∈  at the next state according to a ε-

soft policy corresponding to eff
aπ  and update Q value using 

the standard Q-learning [8] update of equation 9. Fig. 2 gives 
a pseudo-code for the proposed algorithm: 
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-Initialize: for , ,s a A o OΩ∀ ∈ ∈ ∈  
        ( , , ) : 0, ( , ) : 0, ( , ) : 0Q s a o freq s o s oβ= = =  
   -Set Trial termination conditions, Number of Experiments 
   -Set , ,explorα η , 0n , sample time 
Loop: 
 
 1-Choose action a as per ε-soft policy corresponding to  
    eff

aπ while opponent takes o O∈  

   -Observe transition ( , , ) 'c s a os s⎯⎯⎯⎯→  
 
 -Update agent’s belief of opponent’s action using equation 7 
   -Update β, explor 
   -Use equations 10 and 11 to get  CFP

aπ ,  CFPQ  

   -Use equations 12 and 13 to get  min max
aπ

− ,  min maxQ −  

   -Use equations 14 and 15 to get  eff
aπ ,  effQ  

   -Update Q values as per equation 9   
   -Continue trial from step1 
Until Trial termination condition     
 

Fig. 2 Pseudo code: HMG-2 algorithm 

III. APPLICATION 

Inverted Pendulum Swing-up 
The details of the simulation model used for pendulum 

swing-up task can be found in [7]. We adopt a lookup table 
(LUT) approach by dividing state-space into discrete non-
overlapping regions, as in the scheme of BOXES by Michie 
and Chambers [4]. Each trial is started from a position close to 
the origin of the system. During the trial plant parameters, i.e., 
mass and length of the pendulum were varied by [-20 20] % 
from nominal values while additive exogenous disturbances in 
[-10 10] Newton or 20% of the force magnitude continued to 
affect the controlled system. The performance of the controller 
in handling both these simultaneous disturbances was 
evaluated and compared against Q learning. Results are 
averaged over 100 experiments.  
 

We take one step costs as: 
04 if 12

1 cos( ) otherwise
c

θ
θ

⎧ >⎪= ⎨
−⎪⎩

 

 
Each experiment consists of a series of trials until either a 

trial resulting in pendulum remaining balanced for about 
42,000 simulated steps corresponding to 14 minutes of real 
time or a maximum of 180 trials. Results are averaged over 
100 experiments. 
 

Controller Comparison: Performance 
Table I summarizes trials needed to balance the pendulum 

for 42,000 simulated steps: 
 

 

TABLE I 
CONTROLLER COMPARISON: CONSISTENCY OF PERFORMANCE 

Controller Average 
 

Maximum Minimum Standard 
Deviation 

HMG-1 51.04 114 32 21.21 
HMG-2 77.23 180 35 34.27 

Q 138.24 180 38 54.71 
 

As can be seen from Table I, the average, maximum and 
minimum number of trials required to balance the pendulum is 
lower in case of both Hybrid Markov Game-1 and Hybrid 
Markov Game-2 controllers than the corresponding Q 
controller.  Out of all the controllers HMG-1’s performance is 
the best.  Fig. 3 displays a typical trajectory of the pole angle 
from a successful HMG-1 trial, for the first 300 balancing 
steps. It is to be noted that the pole angle’s maximum 
deviation from the vertical is less than 0.09 radians or 05θ =  
even though the failure condition is 012θ > . 
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Fig. 3   Pole angle trajectory 

 
    Controller Comparison: Consistency 

Fig. 4 shows a comparative evaluation of the HMG-1 
controller against Q controller, in terms of number of trials 
needed to balance the pendulum in each experiment, for 25 
experiments.  For Q controller, a number of experiments had 
to be stopped at 180 trials (without balance), clearly indicating 
the inability of the Q controller in handling the noise and 
parameter variations while none of the experiment in HMG-1 
exceeded 114 trials. From Fig. 4 and a comparison of standard 
deviation values from Table I we see that the HMG-1 
controller is far more consistent in performance than the Q 
controller. 
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Fig. 4   Consistency comparisons of HMG-1 

and Q Controller 
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Further, as can be seen from Fig. 5 and a comparison of 
standard deviation values from Table I, HMG-2 controller 
achieved a significantly better consistency than the Q 
controller. 
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Fig.  5 Consistency comparisons of HMG-2 

and Q Controller 
 

Here again HMG-1 controller outperformed the HMG-2 
controller. The inferior performance of the HMG-2 controller 
is probably due to the fact that HMG-2 has been designed 
explicitly to optimize in non-stationary environments or for 
situations wherein we have an adaptive opponent. In presence 
of time-varying noise or with adaptive opponent, we expect 
HMG-2 to outperform the HMG-1 algorithm. 

In terms of computational demand Q controller has the least 
computation per iteration while in HMG-1 we need to solve 
two linear programs per iteration and one for HMG-2. The 
higher computational effort required for HMG-1 and HMG-2 
in comparison to Q controller is a very small price to pay 
when we consider the significant increase in the performance 
and consistency of the designed controllers. Further, the 
computational effort requirement in HMG-1 and HMG-2 can 
be reduced by approximations to the solution of the Linear 
Programs or iterative methods as suggested in [1]. 

IV. CONCLUSIONS AND FUTURE WORK 
The paper presents two novel hybrid Markov game-

theoretic algorithms for optimizing controllers that are ‘safe-
consistent’ and ‘safe-universally consistent’. The algorithms 
advocates safe play when the environment or opponent is 
relatively unknown and a mixed strategy incorporating 
elements from the fictitious play or cautious fictitious play, 
when the transition information leads to a fair idea of 
opponent’s strategy. It exploits the capability of the fictitious 
play and cautious fictitious play to produce a payoff higher 
than the min-max and a more consistent behavior. Simulation 
results of applying the approach on a pendulum swing-up task 
and its comparison to Q learning shows that the approaches 
produces a safe yet consistent controller. The results show that 
a Markov game formulation of the control problem gives 
better results than the Q learning solution. Further, Markov 
game setup allows us to use efficient approaches like FP and 
CFP, from the game theory literature, for controller 
optimization. An important area for future research could be a 
hybrid game theoretic formulation for the control problem 
with a time varying model for the disturbances. We hope that 

such a formulation would address the problem to the fullest 
extent and may give better results as it fits the game-theoretic 
framework to a greater extent. These algorithms can be 
extended to optimize the behavior of an agent in multiplayer 
environments where several adaptive agents compete against 
each other.  
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