International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:12, No:1, 2018

Hybrid Approach for Software Defect Prediction
Using Machine Learning with Optimization
Technique

C. Manjula, Lilly Florence

Abstract—Software technology is developing rapidly which leads
to the growth of various industries. Now-a-days, software-based
applications have been adopted widely for business purposes. For any
software industry, development of reliable software is becoming a
challenging task because a faulty software module may be harmful for
the growth of industry and business. Hence there is a need to develop
techniques which can be used for early prediction of software defects.
Due to complexities in manual prediction, automated software defect
prediction techniques have been introduced. These techniques are
based on the pattern learning from the previous software versions and
finding the defects in the current version. These techniques have
attracted researchers due to their significant impact on industrial
growth by identifying the bugs in software. Based on this, several
researches have been carried out but achieving desirable defect
prediction performance is still a challenging task. To address this issue,
here we present a machine learning based hybrid technique for
software defect prediction. First of all, Genetic Algorithm (GA) is
presented where an improved fitness function is used for better
optimization of features in data sets. Later, these features are processed
through Decision Tree (DT) classification model. Finally, an
experimental study is presented where results from the proposed GA-
DT based hybrid approach is compared with those from the DT
classification technique. The results show that the proposed hybrid
approach achieves better classification accuracy.

Keywords—Decision tree, genetic algorithm, machine learning,
software defect prediction.

1. INTRODUCTION

ECENTLY, technology is growing rapidly resulting in

improvement of product quality in industrial applications.
This technological growth has also been noticed in software-
based applications. The use of software-based applications is
ever increasing in daily routine and business life. Industrial
growth depends on the quality of software hence developing a
high-quality software is demanded to achieve the desired goals
of industrial growth [1]. A minor defect in the software may
lead to development of degraded module resulting in loss to the
company. However, software testing sections evaluate the
quality of software using manual testing. Manual testing
becomes complex and require more human effort for software
testing purpose. To overcome this issue, automated software
testing is required which can be used for software defect

Manjula.C. is Associate Professor, MCA Department, PES Institute of
Technology Bangalore South Campus, Karnataka, India (e-mail:
manjulaprasad@pes.edu)

Lilly Florence is Professor, MCA Department, Adiyamman College of
Engineering, Tamil Nadu, India.

prediction prior to complete development of software module.

Software defect prediction is a process to identify the bug in
current software code with the help of machine learning or
regression techniques [2]. According to this technique, previous
software release information features are extracted and used to
identify the bugs in newer version. With the help of this process,
faulty section only will be evaluated rather than processing the
entire code resulting in good quality software development with
less human effect and cost. Hence, software defect prediction is
widely adopted in various studies to overcome the software
defect issues [3]. Conventional studies are mainly utilized
following aspects of software defect prediction as code metrics
computation, relationship between software defects and impact
of software process on the software defectiveness [4]. However,
several studies have been presented by using both process
metrics and code matrices. Some studies concluded that code
matrices are more significant and useful for defect prediction
when compared with the code metrics performance [4], [5].

Other than this process, machine learning and data-mining
techniques also have been utilized for predicting bugs in the
software module [6]. In this field of machine learning process,
classification is considered as most important stage which
includes the identification of software bugs in terms of fault or
no-fault categories by learning the previous instances. Several
classification models are present for bug classification which
are based on statistical classification [7], tree-based classifier
[8], [9], neural-network [10] and analogy-based classification
[11] schemes. Recently, Felix et al. [12] presented a hybrid
approach for software defect prediction by introducing
predictor variables which includes defect density, defect
velocity and correlation of each predictor variable. Similarly,
based on machine learning, Cheng et al. [13] presented semi-
supervised learning scheme for software defect prediction.
Authors discussed that generally software defect data are not
labeled properly, and class-imbalance problem also exists
which may degrade the performance of bug prediction. This
issue is addressed by developing optimized classification
scheme.

Software defect prediction for huge software systems is a
challenging task. Lee et al. [14] developed a new approach
based on the development pattern analysis. Huge amount of

32

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:12, No:1, 2018

work has been carried out in this field of software defect
prediction using machine learning and data-mining techniques
but due to rapidly growing technology, probability of bugs also
increasing hence there is a need to develop an automated system
for early prediction of software bugs.

I1.ISSUES AND CHALLENGES

Considerable amount of research has been reported [2], [4],
[12] on early prediction of software defect but still several
issues present in this field. This section presents brief
information about issues and challenges in the software defect
prediction (SDP) field.

A. Attribute and Fault Relationship

Due to improper attribute selection, it becomes a challenging
task for researchers to identify the module whether it is faulty
or non-faulty. Moreover, implementation of metrics as code
metrics, requirement metrics and design metrics becomes a
confusing task for proper analysis.

B. Standard Parameters for Performance Measurement

In this area, selection of performance measurement
parameters is inconsistent hence there are no standard criteria
for comparing the performance of defect prediction models.

C. Issues with Cross-Project Defect Prediction

Generally, in machine learning techniques, the learning
process is carried out by using locally available data and it is
also very similar to the testing dataset. For real-time application
scenario of SDP, the testing data can be obtained from other
projects with the same programming language. In this stage,
companies face problem due to possible inconsistency in the
testing data when compared with the training dataset. This issue
is addressed using cross-project SDP model where training and
testing both are done using different databases. However, this
technique suffers from lack of accuracy.

D.Lack of General Framework

This is a very vast field of research and researchers have
introduced various techniques which are carried out using
different databases and software [7]. Hence, for each technique
or SDP data, the working process may differ. For a robust
application, there is no general framework available which can
be used for any SDP data.

E. Class-Imbalance Problem

Performance of SDP model depends on the distribution of
data class and training. Class distribution is known as the
labeling of the class available training dataset. If the number of
assigned class and available class does not match, then this
problem is known as class-imbalance problem which is
responsible for training error leading towards performance
degradation.

From the discussion presented in this section it is clear that
still there are various issues which need to be resolved to
improve the classification performance for software defect
prediction. To overcome this issue, we present a hybrid
approach for SDP where optimal feature selection and DT

classification schemes are incorporated. The rest of the article
is organized as follows: Section III provides description of
proposed model, Section IV provides detailed experimental
study and Section V gives concluding remarks regarding
proposed technique.

III. PROPOSED MODEL

Previous section presents a brief introduction about SDP,
existing techniques and challenges for developing a robust SDP
model. This section focuses on the proposed strategy. The
complete process is divided into two phases: (a) feature
selection (b) DT classification. Overall system architecture is
depicted in Fig. 1.

] | [Feature } _| Decision tree | __j Fitness function |

[
Input | | Pre- | . | .
[. ! i Construction | computation |
.di“ilhilifi ‘ i processing ‘ | selection | | T | P !
Database
Training
Generate next |

generation

| Database L | Finaldecision | |

Performance | I
tree classifier

| measurement _‘ | testing |
Fig. 1 Overall System Architecture
A. GA for Feature Selection

Here we present, GA modeling approach which is used as a
selection and combination scheme. This technique tends to
perform optimal feature selection by applying certain
computations for the given problem. Initially, problem is
evaluated, and a best solution is obtained from this stage to
build the next stage. This process is repeated for several
iterations until the desired solution is obtained. In the literature
[6] it is shown that GA has a significant influence but when
applied to complex problem and huge dataset it suffers from
premature convergence problem of local optima and requires
more time for computation. In order to overcome this issue, we
present a new architecture for GA where chromosome and
fitness function are modified to achieve the improved
optimization performance.

1) Chromosome Design

Chromosome design is an important task in GA hence first
of all, we preset GA chromosome modeling using Gaussian
kernel function.

BLo| B h:," g.l' 1,; E'E:I' B el e 1,:"
AN N y
' Ny '
Binary code of Binary code of Binary code of

parameter C parameter y feature subset

Fig. 2 Chromosome Design Structure
According to this process, C} ~C;¢ denotes the binary code

for the parameter T which is known as tuning parameter.
Similarly, ¢} ~C:V denotes the binary code of y known as

33

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:12, No:1, 2018

Gaussian kernel parameter, ny denotes the total number bits
used to represent the parameter T, n,, denotes the total number
of bits required for y. With the help of the binary code, genotype
can be expressed as:

min d)
p= p + W(maxp - mmp) (1)

wherep denotes the phenotype, max, and min, denote the
maximum and minimum parameters of the genotype model.
With the help of this model, we can obtain the minimum and
maximum limit of the function which helps to decide the local
optimal minima for better convergence.

2) Fitness Function Computation

Fitness function is an important part of GA which is used for
identifying the best fit population from the generated solution.
This solution is further processed for classification analysis.
Better fitness value will lead to the better classification
performance. The fitness function can be computed as:

F = Wpf + Wyv + W, X Accuracy 2)

> F Ly

—(1) andv=1- —(E"ll V‘), W,
ny

classification accuracy weight, Wy denotes the weight of
feature score and f is score of selected feature subset , W,
denotes weight of feature set and V is feature set vector.

where f =1 — denotes

B. GA Implementation

With the help of (1) and (2), we try to improve the
performance of GA. There are various stages present in the GA
which are as follows:

(1) Input Dataset. First of all, we provide all input data
obtained from the SDP repository. These databases are
further divided into training and testing for performance
analysis.

(2) Data pre-processing: In next stage, we apply data pre-
processing which is used for discarding the huge variations
in the input dataset resulting in organizing the dataset in a
range. According to this process, each feature value is
linearly scaled as:

r—min

"= max — min 3)
rdenotes the original value and r' denotes the scaled pre-
processed output value.

(3) Population Initialization: Initially a random population is
generated based on the input features which are further
used for best feature selection in terms of population.

(4) Genetic Operations: Once the population is generated and
the process is initiated then we apply genetic operations
such as selection, mutation, crossover for generating next
solutions.

(5) Evaluate the Parameters: After generation of parameters,
each parameter is evaluated and if achieves the best fit
criteria then it is considered as next population.

(6) Termination: Once each process is completed and desired
criteria are achieved or maximum number of iterations are
completed then the GA process is terminated and the final
output is considered as most optimal feature sub-set from
the given input.

C. DT Classification Model

Previous section discussed about GA process for best feature
selection. In next phase, we study about classification and
prediction of software defects using DT classifier model.

DT classification is a technique which performs recursive
partition on the given input sub-space based on its attribute
values. In this process, data are divided into various nodes and
these nodes are further divided into two or more sub-spaces
known as leaf based on attribute value. Here each leaf is
assigned to one class and instances are identified by traversing
the constructed tree root to the leaf. In this work, we used ID3
based DT classification scheme due to its simple nature which
follows to-down computation along with the greedy search
algorithm. According to this process, any attribute which is
having best split, is assigned as current node. This process is
repeated until one of the following conditions is achieved: Each
attribute is considered in the current path and current node has
all target values. A pseudo code is also presented in Fig. 3. Here
S denotes a training set, input features are denoted by F, target
feature denoted by ¢ and splitiing criterion is denoted SC.

Input: DT classifier (S, F, SC, ¢)

Output: constructed decision tree

Step 1: formulate a tree T with single root node.

Step 2: if further splits are not possible then

Step 3: consider T as leaf and label ¢

Step 4: else

Step 5: Vf; € F find f which has the best split criterion
SC(f,S)

Step 6: label this f with t

Step 7: for each value v; o f

Step 8: construct each sub-tree

Step 9: connect each label with edge

Step 10 end

Fig. 3 Tree construction using DT

Input: training set, samples and attributes

Output: weight vector as classified output for each instance
Step 1: Set initial weight to W[1.K] = 0.

Step2: fori = 1: N

Step 3: select random set from the attributes

Step 4: compute nearest matching hit

Step 5: compute nearest miss from the attribute set.

Step 6: for: 1: total attributes

Step 7: W[A] — LARH), | dARM)

N N
Step 8: end
Step 9: return W

Fig. 4 Weight vector

As discussed before, splitting criteria can be obtained by
computing information gain which can be defined as:

[Sa=vl

G(S,A) = E(S) — 5

vev (A)

E(Sa=») (4)

34

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:12, No:1, 2018

where E (S) denotes the entropy index for the given dataset.
In next phase, we compute the difference based on the
considered input attribute instances. This can be expressed as:

0 I[A] = I,[A]

d(A L, L) =
41, 1) {1 otherwise

(&)

Finally, weight vector of each attribute can be computed as
given in Fig. 4. This complete process is used for SDP which
provides an output vector for given input set in terms of
defective or non-defective instance.

IV. EXPERIMENTAL STUDY

The proposed hybrid GA-DT approach is tested for open
source software defect dataset. Proposed approach is
implemented using MATLAB tool for PROMISE dataset [15].

A. Database Description

A brief description of dataset information is presented in
Table 1.

given in (7) and (8):
Sensitivity = — %)
ensitivity = m
and
. _ TN
Specificity = FPFTN ®)

C.Experimental Study of Test Case 1 for PC3

This sub-section deals with the experimental analysis of test
case 1 where optimization scheme is not included for SDP.
Performance of this approach is obtained as presented in Table
I1I.

TABLE III
PERFORMANCE MEASUREMENT FOR PC3 WITHOUT OPTIMIZATION
Parameter Name Accuracy (%0 Sensitivity Specificity
Obtained value 89.26 0.235 0.967

D.Experimental Study of Test Case 2 for PC4

In this section, PC4 dataset is considered for experimental
study where total 1458 records are present in the module.

TABLEI Performance of this experiment is given in Table IV.
DATASET DETAILS
Dataset details TABLE IV
Dataset - : 9 PERFORMANCE MEASUREMENT FOR PC4 WITHOUT OPTIMIZATION
Name | anguage Details Modules 'NOn-Defective/ %
guag Defective defect Parameter Name Accuracy (%) Sensitivity Specificity
PC3 C Flight 1563 1403/160 10.23 Obtained value 88.64 0.426 0.949
software
PC4 C sﬂtlv%z;e 1458 1280/178 12.20 E. Experimental Study of Test Case 3 for KC3
KC3] Satellite data o Finally, we present experimental study without optimization
ava . . .
processing 415/43 9.38 for KC3 database which contains less number of modules as

Table I shows basic information about the input dataset
including total percentage of defect present in the database. We
have conducted two experiments on these datasets. First
experiment is carried out with the help of DT classification
where other external optimization schemes are not incorporated
whereas second experiment is a combination of GA and DT
classifier. Finally, we present a comparative study between
these two experiments in terms of classification accuracy
performance and other statistical parameters.

B. Performance Measurements

This sub-section provides brief details about performance
measurement parameters used in this work. In this study, first
of all we analyze classification confusion matrix. This matrix is
represented in Table II.

TABLE I
CONFUSION MATRIX STRUCTURE

Defective predicted Defect free predicted

Observe defective True Positive

Defect free

False negative

False positive True negative

Based on the parameters as given in Table II, accuracy also
can be computed as:

TP+TN

TP+TN+FP+FN ©)

Accuracy =

Similarly, sensitivity and specificity also can be computed as

458 with 9.38% defective attributes. Performance obtained is
given in Table V.

TABLE V
PERFORMANCE MEASUREMENT FOR KC3WITHOUT OPTIMIZATION
Parameter Name Accuracy (%) Sensitivity Specificity
Obtained value 85.31 0.167 0.916

F. Proposed Experimental Study of Test Case 4 for PC3

Here we present, experimental study using DT classification
where GA is also incorporated. Table IV shows performance
for PC3 database. Similarly, we have conducted experiments
for each database given in Table I and evaluated their
performance. Tables VI, VII and VIII show performance
analysis of PC3, PC4 and KC3 dataset using proposed
approach.

TABLE VI
PERFORMANCE MEASUREMENT FOR PC3 WITH OPTIMIZATION
Parameter Name Accuracy (%0 Sensitivity Specificity
Obtained value 91.68 0.45 0.97
TABLE VII
PERFORMANCE MEASUREMENT FOR PC4WITH OPTIMIZATION
Parameter Name Accuracy (%) Sensitivity Specificity
Obtained value 92.09 0.593 0.963
TABLE VIII
PERFORMANCE MEASUREMENT FOR KC3WITH OPTIMIZATION
Parameter Name Accuracy (%) Sensitivity Specificity

35

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:12, No:1, 2018

Obtained value 93.36 0.623 0.976

m Decision tree W Proposed dlassifier
94

92
20
a8
34
82
80
PC3 PC4 EC3

Fig. 5 Classification Accuracy Performance

Classification Accuracy
o
&

Fig. 5 shows classification accuracy performance
comparison for considered data base. Statistical performance
comparison is depicted in Fig. 6 where specificity and
sensitivity parameters are computed and compared.

m Decision tree Proposedclassifier @ Decision tree ™ Proposed classifier
12

1
. |]
PC3 PC4 KC3

Fig. 6 Specificity and Sensitivity Performance

=
.

Specificty and Sensitivity
=
o

=
[¥]

Complete study shows a significant improvement in
classification performance which can be beneficial for SDP
applications.

V.CONCLUSION

This work mainly focused on the SDP analysis using
machine learning techniques. Several techniques have been
developed to achieve the objective of early defect prediction in
software applications but due to some certain limitations,
classification accuracy of bug prediction still remains a
challenging task. To overcome this issue, we present a
combined scheme of feature optimization and classification
using GA with DT classification. An extensive experimental
study is presented for PROMISE SDP dataset repository.
Experimental study shows that proposed approach achieves
better performance when compared with existing models.

REFERENCES

[1] Grbac, TihanaGalinac, Per Runeson, and DarkoHuljeni¢. "A quantitative
analysis of the unit verification perspective on fault distributions in
complex software systems: an operational replication." Software quality
journal 24, no. 4 (2016): 967-995.

[2] P.Bishnuand V. Bhattacherjee, “Software fault prediction using quad tree
based k-means clustering algorithm,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 6, pp. 1146-1150, 2012.

[3] Malhotra, Ruchika. "A systematic review of machine learning techniques
for software fault prediction." Applied Soft Computing 27 (2015): 504-
518.

[4] Tantithamthavorn, Chakkrit, Shane Mclntosh, Ahmed E. Hassan, and

Kenichi Matsumoto. "An empirical comparison of model validation
techniques for defect prediction models." IEEE Transactions on Software
Engineering 43, no. 1 (2017): 1-18.

[5] Nam, Jaechang, Wei Fu, Sunghun Kim, Tim Menzies, and Lin Tan.
"Heterogeneous defect prediction." IEEE Transactions on Software
Engineering (2017).

[6] Maua, Goran, and TihanaGalinacGrbac. "Co-evolutionary multi-
population genetic programming for classification in software defect
prediction." Applied Soft Computing 55, no. C (2017): 331-351.

1 Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J. and Folleco, A., 2014. An
empirical study of the classification performance of learners on
imbalanced and noisy software quality data. Information Sciences, 259,
pp.571-595.

[8] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust Prediction of Fault-
Proneness by Random Forests,” Proc. 15th Int’l Symp.Software
Reliability Eng., 2004

[9]1 Rathore, S.S. and Kumar, S., 2017. A decision tree logic based
recommendation system to select software fault prediction techniques.
Computing, 99(3), pp.255-285.

[10] Arar, O.F. and Ayan, K., 2015. Software defect prediction using cost-
sensitive neural network. Applied Soft Computing, 33, pp.263-277.

[11] Idri, A., AzzahraAmazal, F. and Abran, A.,2015. Analogy-based software
development effort estimation: A systematic mapping and review.
Information and Software Technology, 58, pp.206-230.

[12] E. A. Felix and S. P. Lee, "Integrated Approach to Software Defect
Prediction," in IEEE Access, vol. 5, pp. 21524-21547, 2017.

[13] M. Cheng, G. Wu, M. Yuan and H. Wan, "Semi-supervised Software
Defect Prediction Using Task-Driven Dictionary Learning," in Chinese
Journal of Electronics, vol. 25, no. 6, pp. 1089-1096, 11 2016.

[14] T. Lee, J. Nam, D. Han, S. Kim and H. Peter In, "Developer Micro
Interaction Metrics for Software Defect Prediction," in IEEE Transactions
on Software Engineering, vol. 42, no. 11, pp. 1015-1035, Nov. 1 2016.

[15] Software Defect Dataset, Promise Repository,
http://promise.site.uottawa.ca/SERepository/datasets-
page.html.accessedaround14/11/2017.

=i

Manjula.C. isfrom Bangalore, Karnataka India, has
completed Bachelor of Science, Masterof Computer
Applications and MPhil in Computer Science. Having 17
years of Teaching experience and 5 years of Industry
experience. Currently working as an Associate Professor at
PES Institute of Technology Bangalore South Campus,
Bangalore, Karnataka, India. Has 5 publications in National/
International Journals. Has organized more than 10workshops and seminars.

M. Lilly Florence is from Hosur, Tamil Nadu has completed
her Bachelor’s Degree in mathematics and Master degree
MCA, M.Tech.(IT)and Doctorate in Computer Science.She has
17 years of teaching experience. She is good in teaching all
Programming Languages. Prof. Lilly Florence has published 20
research papers in National and International Journals, also she
has published 24 Papers in various National and International
Conferences. She is an author of three text books namely, Operating Systems,
Computer Graphics and Multimedia and Computer Architecture and
Organization. Prof. Lilly has organized more than 20 workshops, seminars for
various groups of audience. She has visited more than 20 colleges as a
Technical Resource Person. She has received grants from DRDO, DST, ISRO,
etc to organize FDP and seminars. She is acting as a Computer Society of India
Student Branch Counselor for Adhiyamaan College of Engineering .in
Research, she is a recognized supervisor of Periyar University and Bharathiyar
University. She has produced one Ph.D Scholar and currently she is guiding 6
Ph.D scholars. Dr. Lilly has undertaken 2 research projects funded by
Department of Science and Technology for Rs. 23.00 lakhs. Prof. Lilly is a life
member of Computer Society of India and ISTE. Also, she is a BOS member
of MCA board.

36

