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Hybrid Algorithm for Hammerstein System
Identification Using Genetic Algorithm

and Particle Swarm Optimization
Tomohiro Hachino, Kenji Shimoda, and Hitoshi Takata

Abstract—This paper presents a method of model selection and
identification of Hammerstein systems by hybridization of the genetic
algorithm (GA) and particle swarm optimization (PSO). An unknown
nonlinear static part to be estimated is approximately represented
by an automatic choosing function (ACF) model. The weighting
parameters of the ACF and the system parameters of the linear
dynamic part are estimated by the linear least-squares method. On
the other hand, the adjusting parameters of the ACF model structure
are properly selected by the hybrid algorithm of the GA and PSO,
where the Akaike information criterion is utilized as the evaluation
value function. Simulation results are shown to demonstrate the
effectiveness of the proposed hybrid algorithm.

Keywords—Hammerstein system, identification, automatic choos-
ing function model, genetic algorithm, particle swarm optimization.

I. INTRODUCTION

W ITH the advance of technology, the importance of non-
linear modeling in control engineering has been grow-

ing. Since most practical systems have inherently nonlinear
characteristics such as saturation and dead-zone, the develop-
ment of accurate nonlinear system identification algorithm is a
key problem for precise analysis, prediction or control design.
One of approaches for nonlinear system identification is use
of the block-oriented models. The Hammerstein model is one
of the block-oriented models and has been utilized to express
nonlinear systems in many applications such as predistorters
in wireless communication systems [1] and dc/dc converters
[2]. The model consists of a nonlinear static part followed
by a linear dynamic part. It has many advantages for control
design or stability analysis owing to the simple model structure
[3]. Several identification algorithms have been investigated
for the Hammerstein model by using correlation theory [4],
neural networks [5], orthogonal functions [6], polynomials [7],
piecewise linear model [8], automatic choosing function (ACF)
model [9], and so on.

In this paper a hybrid algorithm for model selection and
identification of discrete-time Hammerstein systems is pro-
posed by using the genetic algorithm (GA) [10] and particle
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swarm optimization (PAO) [11]. The unknown nonlinear static
part to be estimated is represented by an ACF model. The
weighting parameters of the ACF and the system parameters
of the linear dynamic part are estimated by the linear least-
squares (LS) method. The adjusting parameters of the ACF
model structure, i.e., the number and widths of the subdomains
and the shape of the ACF, are properly determined by the
hybrid algorithm of the GA and PSO. The GA is a probabilistic
search procedure based on the mechanics of natural selection
and natural genetics [10]. It is well known that although
the GA has a high potential for global optimization, its
convergence is quite slow. On the other hand, PSO is a
swarm intelligence optimization technique which was inspired
by the social behavior of a flock of birds or a shoal of
fish, and has been empirically shown to be very efficient
for optimization [11]–[14]. Some theoretical researches such
as stability analysis and parameter selection have been also
reported for PSO [15], [16]. Similarly to the GA, PSO searches
from not a single point but a population of points and only
uses information about the objective function, not derivatives
or other auxiliary knowledge. PSO is simpler than the GA,
because the algorithm of PSO consists of only the basic
arithmetic operations and does not require complicated coding
and genetic operations such as crossovers and mutations. PSO
has quite fast convergence property, but it is inferior to the
GA in global optimization. Therefore, we combine the GA
with PSO to optimize the adjusting parameters of the ACF
model structure. At first the GA are utilized to serve for
global optimization, then PSO is applied to work for local
optimization, where the Akaike information criterion (AIC)
[17] is used for the objective function (fitness value function).

The outline of this paper is as follows: In section II the
problem is formulated. In section III the identification method
is proposed in the case of fixed ACF model structure. In sec-
tion IV the optimization method for the adjusting parameters
of the ACF model structure is considered by hybridization of
the GA and PSO. In section V simulation results are shown to
examine the effectiveness of the proposed hybrid algorithm.
Finally conclusions are given in section VI.

II. STATEMENT OF THE PROBLEM

Consider a discrete-time nonlinear system described by the
Hammerstein model shown in Fig. 1:
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Fig. 1. Hammerstein model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(q−1)y(k) = B(q−1)x(k − 1) + A(q−1)e(k)
x(k) = f(u(k))
A(q−1) = 1 + a1q

−1 + · · · + anq−n

B(q−1) = b0 + b1q
−1 + · · · + brq

−r

(1)

where u(k) and y(k) are input and output signals, respectively.
x(k) is an intermediate signal that cannot be measured. e(k)
is the measurement noise. q−1 denotes the backward shift
operator. n and r are the known degrees of polynomials
A(q−1) and B(q−1), respectively. f(·) is an unknown nonlin-
ear function. The problem is to identify the system parameters
{ai} and {bj} of the linear dynamic part and the nonlinear
static function f(·) from input and output measurements.

III. IDENTIFICATION

In this section the identification algorithm in the case of
fixed ACF model structure is presented. In the next section
the adjusting parameters of the ACF model structure will be
determined by the hybrid approach.

In order to represent the nonlinear function f(·), the sigmoid
type ACF [18] is introduced. Let a domain being a data region
of u(k) be D = [umin, umax]. The domain D is divided into
some subdomains of D = ∪M

i=1Di where Di = [αi, βi], α1 =
umin, βM = umax, αk = βk−1 (k = 2, 3, · · · , M). Then the
ACF is defined by

Ii(u(k)) = 1 − 1
1 + exp(H(u(k) − αi))

− 1
1 + exp(−H(u(k) − βi))

(2)

where H is positive real value. Ii(u(k)) is almost unity only
on a subdomain Di = [αi, βi] and nearly equals to zero on
D−Di, so it chooses Di automatically. The ACFs are shown
in Fig. 2 in the case of H = 6, 20 and 200.

Assume that f(u(k)) is well approximated linearly on each
subdomain Di:

f(u(k)) � ci + diu(k) on Di. (3)

Then f(u(k)) is represented by using the ACF on the whole
domain D as

f(u(k)) =
M∑
i=1

(ci + diu(k))Ii(u(k)) + ε(k)

on D,

(4)

Fig. 2. Automatic choosing function (ACF)

where ε(k) is an approximation error. The schematic diagram
of the ACF model is depicted in Fig. 3.

Substituting (4) into (1) yields

A(q−1)y(k) =
M∑
i=1

ciB(q−1)Ii(u(k − 1))

+
M∑
i=1

diB(q−1)u(k − 1)Ii(u(k − 1)) + v(k)

(5)

or in vector form,

y(k) = ϕT(k)θ + v(k) (6)

where v(k) = A(q−1)e(k) + B(q−1)ε(k − 1) is the equation
error, and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = [θT
a , θT

c1
, θT

c2
, · · · , θT

cM
, θT

d1
, θT

d2
, · · · , θT

dM
]T

θa = [a1, a2, · · · , an]T

θci = [θci(1), θci(2), · · · , θci(r + 1)]T

= [b0ci, b1ci, · · · , brci]T

θdi = [θdi(1), θdi(2), · · · , θdi(r + 1)]T

= [b0di, b1di, · · · , brdi]T

(7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(k) = [ϕT
a (k), ϕT

c1
(k), ϕT

c2
(k), · · · , ϕT

cM
(k),

ϕT
d1

(k), · · · , ϕT
dM

(k)]T

ϕa(k) = [−y(k − 1),−y(k − 2), · · · ,−y(k − n)]T

ϕci(k) = [Ii(u(k − 1)), Ii(u(k − 2)),

· · · , Ii(u(k − r − 1))]T

ϕdi(k) = [u(k − 1)Ii(u(k − 1)), u(k − 2)Ii(u(k − 2)),

· · · , u(k − r − 1)Ii(u(k − r − 1))]T

(i = 1, 2, · · · , M).

Thus, the unknown parameter vector θ is easily evaluated
by applying the linear LS method to (6):

θ̂ =

[
Ns+N∑

k=Ns+1

ϕ(k)ϕT (k)

]−1 [
Ns+N∑

k=Ns+1

ϕ(k)y(k)

]
(8)

where N is the number of input and output data.
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Fig. 3. ACF model

The parameters of the linear dynamic part are estimated by

[â1, · · · , ân, b̂0, · · · , b̂r]T

=
[
I(n+r+1)×(n+r+1) : 0

]
θ̂,

(9)

setting ĉ1 = 1 without loss of generality. Namely the parame-
ters of the linear dynamic part can be obtained by taking the
first n + r + 1 elements of θ̂.

Next, the parameters for the nonlinear static part are ob-
tained by using the linear LS technique again as

ĉi =
r+1∑
j=1

θ̂c1(j)θ̂ci(j)/
r+1∑
j=1

θ̂ 2
c1(j)

(i = 2, 3, · · · , M)

d̂i =
r+1∑
j=1

θ̂c1(j)θ̂di(j)/
r+1∑
j=1

θ̂ 2
c1(j)

(i = 1, 2, · · · , M).

(10)

Thus the nonlinear static function is composed of the ĉ i and
d̂i in (10) as

f̂(u(k)) =
M∑
i=1

(ĉi + d̂iu(k))Ii(u(k)). (11)

IV. HYBRID ALGORITHM OF GA AND PSO FOR MODEL

SELECTION

The accuracy of the above identification algorithm greatly
depends on the adjusting parameters of the ACF model struc-
ture, i.e., the number M , the widths {αi} of the subdomains
and the parameter H of the ACF. Therefore X = [M, {α i}, H ]
should be properly determined. In this section the hybrid
algorithm of the GA and PSO is proposed to determine X . The
proposed hybrid algorithm has two stages. At the first stage,
the GA is utilized until the prespecified generation to optimize
X . Then at the second stage, PSO is applied to determine X ,
where the final population of the model candidates obtained by
the GA is used as the initial population of particle positions.

The proposed algorithm is described as follows:

Step 1-1: Initialization for GA
Generate an initial population of Q individuals for X

randomly.
Set the generation number g to 0.

Step 1-2: Decoding
Decode Q strings into real values X g

i (i = 1, 2, · · · , Q).
Step 1-3: Judgement of switch from GA to PSO

If the generation number g is greater than the prespecified
gmax, then go to Step 2-1 of the stage 2 (PSO).
Step 1-4: Construction of ACF model

Construct Q candidates of the ACF model using X g
i (i =

1, 2, · · · , Q).
Step 1-5: Identification by the LS method

Identify θ̂i and f̂i(u(k)) (i = 1, 2, · · · , Q) from (8)∼(11),
using each candidate of the ACF model.
Step 1-6: Fitness value calculation

Calculate the evaluation values (AIC):

Ji(X
g
i ) = N log

{
1
N

Ns+N∑
k=Ns+1

(y(k) − ŷi(k))2
}

+ 2Pi

(i = 1, 2, · · · , Q)
(12)

and the fitness values Fi(X
g
i ) = exp(−Ji(X

g
i )/300) using

Xg
i . Pi = n + Mi(r + 1) is the number of the parameters

in the identification model (6). ŷi(k) is the output of the ith
candidate of the estimated model.
Step 1-7: Reproduction

Reproduce each of individual strings with the probability
of Fi/

∑Q
j=1 Fj . Practically, the linear fitness scaling [10] is

utilized to avoid undesirable premature convergence.
Step 1-8: Crossover

Pick up two strings randomly and decide whether or not to
cross them over according to the crossover probability P c.
Exchange strings at a crossing position if the crossover is
required. The crossing position is chosen randomly.
Step 1-9: Mutation

Alter a bit of string (0 or 1) according to the mutation
probability Pm.
Step 1-10: Repetition for GA

Set the generation number to g = g +1 and go to Step 1-2.

Step 2-1: Initialization for PSO
Set an initial population of Q particles with positions X 0

i

and velocities V 0
i (i = 1, 2, · · · , Q). The positions X0

i are
constructed by the final population of Q individuals in the
GA. The velocities V 0

i are set to be random values.
Set the iteration counter l to 0.

Step 2-2: Construction of ACF model
Construct Q candidates of the ACF model using X l

i (i =
1, 2, · · · , Q).
Step 2-3: Identification by the LS method

Identify θ̂i and f̂i(u(k)) (i = 1, 2, · · · , Q) from (8)∼(11),
using each candidate of the ACF model.
Step 2-4: Evaluation value calculation

Calculate the evaluation values (AIC):
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Fig. 4. Update of particles

Ji(X l
i) = N log

{
1
N

Ns+N∑
k=Ns+1

(y(k) − ŷi(k))2
}

+ 2Pi

(i = 1, 2, · · · , Q).
(13)

Step 2-5: Update of the best positions pbest and gbest

Update pbestl
i, which is the personal best position, and

gbestl, which is the global best position among all particles
as follows:

If l = 0 then

pbestl
i = X l

i

gbestl = X l
ibest

ibest = arg min
i

J(X l
i)

(14)

otherwise

pbestl
i =

{
X l

i ( J(X l
i) < J(pbestl−1

i ) )

pbestl−1
i ( otherwise )

gbestl = pbestl
ibest

ibest = arg min
i

J(pbestl
i).

(15)
Step 2-6: Update of positions and velocities

Update the particle positions and velocities using (16):

⎧⎪⎨
⎪⎩

V l+1
i = w · V l

i + c1 · rand1() · (pbestl
i − X l

i)
+c2 · rand2() · (gbestl − X l

i)

X l+1
i = X l

i + V l+1
i

(16)
where w is an inertia factor, c1 and c2 are constants repre-
senting acceleration coefficients, and rand1() and rand2() are
uniformly distributed random numbers with amplitude in the
range [0, 1]. Figure 4 shows the update of particle positions.
Step 2-7: Repetition for PSO

Set the iteration counter to l = l + 1 and go to Step 2-2
until the termination criterion is satisfied.

Finally, at the termination of this algorithm when l = lmax,
the suboptimal adjusting parameter vector X̂ of the ACF
model structure is determined by the best position gbest lmax .
Thus, the final estimated model is constructed from X̂ and
the corresponding θ̂ and f̂(u(k)).

For clarity, the flow chart of the proposed hybrid method is
shown in Fig. 5.

Fig. 5. Flow chart of the proposed hybrid method

V. NUMERICAL SIMULATIONS

Consider a system described by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(q−1)y(k) = B(q−1)x(k − 1) + A(q−1)e(k)
x(k) = f(u(k))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2.0 (−3.0 ≤ u(k) < −1.8)
u(k)/0.6 + 1.0 (−1.8 ≤ u(k) < −0.6)
0.0 (−0.6 ≤ u(k) < 0.6)
u(k)/0.6 − 1.0 (0.6 ≤ u(k) < 1.8)
2.0 (1.8 ≤ u(k) ≤ 3.0)

A(q−1) = 1 + 0.8q−1 + 0.6q−2

B(q−1) = 0.4 + 0.2q−1
.

(17)

This system has saturation and dead-zone nonlinearity. e(k)
is white Gaussian noise with distribution N(0, 0.0015), where
the noise-to-signal ratio is 5%. The number of input and output
data is N = 300. The design parameters for the GA and PSO
are chosen as follows:

GA parameters:
1) population size: Q = 50
2) search range of {αi}: [αmin, αmax] = [−3.0, 3.0]
3) search range of H : [hmin, hmax] = [1.0, 200.0]
4) crossover probability: Pc = 0.8
5) mutation probability: Pm = 0.03
6) maximum generation number: gmax = 80

PSO parameters:
1) particle size: Q = 50
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TABLE I
SYSTEM PARAMETERS OF THE LINEAR DYNAMIC PART

true values estimates

a1 0.8 0.779
a2 0.6 0.593
b1 0.2 0.188

TABLE II
EVALUATION VALUES (AIC)

Proposed hybrid GA-based PSO-based

best –1.900e+3 –1.861e+3 –1.886e+3
mean –1.852e+3 –1.829e+3 –1.848e+3
worst –1.831e+3 –1.794e+3 –1.752e+3

TABLE III
MEANS OF THE OUTPUT ERRORS FOR THE TEST DATA

Proposed hybrid GA-based PSO-based

0.0209 0.0223 0.0220

Fig. 6. True and estimated nonlinear functions

2) inertia factor: w = 0.7
3) acceleration coefficients: c1 = c2 = 0.8
4) maximum iteration number: lmax = 120

Estimates of the system parameters of the linear dynamic
part are shown in Table I. In this table, the estimate of b0 is
omitted because the final estimated model is normalized by
b̂0. Clearly estimates by the proposed hybrid method is very
close to the true parameters. The estimated nonlinear static
function f̂(u(k)) is shown in Fig. 6. We can confirm that
f̂(u(k)) matches the true nonlinear function f(u(k)) well on
the given data region. Figure 7 shows the true output y(k), the
output of the estimated model ŷ(k) and |y(k) − ŷ(k)|, where
the outputs were generated by the test inputs. It is clear that
ŷ(k) is very close to y(k).

For comparison, identification experiments by two other
methods are carried out. One is the GA-based method in which
the ACF model structure is determined by using only GA,
and the other is the PSO-based method in which the ACF
model structure is determined by using only PSO. Monte-

Fig. 7. True output, output by the estimated model, and difference between
them

Carlo simulations of 20 experiments are implemented for the
proposed hybrid method, the GA-based method and the PSO-
based method. Table II shows the best, mean and worst evalua-
tion values (AIC) of the 20 experiments for the three methods.
The means of the output errors

∑Ns+N
k=Ns+1 |y(k)− ŷ(k)|/N for

the 20 experiments using the test data are shown in Table III.
The performance of the proposed hybrid method is superior
to those of other two methods.

VI. CONCLUSIONS

In this paper a method of model selection and identification
of discrete-time Hammerstein systems by hybridization of the
GA and PSO has been proposed. The nonlinear static part
is approximately represented by the ACF model. Then the
weighting parameters of the ACF and the system parameters
of the linear dynamic part are estimated by the linear LS
method. The adjusting parameters of the ACF model struc-
ture, i.e., the number and widths of the subdomains and the
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shape of the ACF, are appropriately determined by the hybrid
algorithm of the GA and PSO. Simulation results show that
the identification by this method is easy in computation and
can give accurate estimated models even in the presence of
the measurement noises. Moreover the performance of the
proposed hybrid algorithm is superior to those of the GA-
based method and PSO-based method.
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