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Abstract—Parametric models have been quite popular for A general model for such a data set is :
studying human growth, particularly in relation toiological Vij = h(tij) ‘e, j=12,.,m, i=12,..,n (D
parameters such as peak size velocity and agealtgiee velocity.
Longitudinal data are generally considered to Wal vior fittinga . . , .
parametric model to individual-specific data, amnl $tudying the Whereh is the growth function ane;’s are additive random
distribution of these biological parameters in anan population. errors. Apart from the functidn one is typically interested in
However, cross-sectional data are easier to olkein longitudinal estimating its derivative (referred to as the “aitlg function)
data. In this paper, we present a method of comyitongitudinal gnd various biological parameters, such as the tgoai
and cross-sectional data for the purpose of estim#te distribution inflection of the velocity function (referred to #ise age at
of the biological parameters. We demonstrate, tingimulations in . . "
the special case ofthePreece Baines model, homatst based on takeoff and the age at peak height Ve|OCIFy), tbb@'t'e_s’ at
longitudinal data can be improved upon by harnessthe these ages (referred to as takeoff velocity anck gesght
information contained in cross-sectional data.Wstthe extent of velocity, respectively) and the limiting value lofor large age
improvement for different mixes of the two typesdata, and finally (referred to as final height). One may also seedstimate the
iIIus@ra‘te the use of the method through data ctdkt by the Indian age-specific quantiles of the height variable, \widepends on
Statistical Institute. the value of the functiorh at that age, as well as the
Keywords—Preece-Baines growth model, MCMC metho d’dis'Fribu_tion of the error. When covarigtes are en¢sall these
Mixed effect model estimation problems become regression pr_oplems_.
If the number of measurements per individual igéamone
I. INTRODUCTION can use nonparametric smoothing or regression [16],with
2ge as the explanatory variable, to estimate timetifu.
Staniswalis and Lee [20] provided a nonparametrethod
that can even handle covariates. However, it iseratinusual
to find a longitudinal data set with a large numbémheight
measurements per individual, let alone height daith

ROWTH curves arise naturally in a wide variety o

applied areas, including biology, psychology, ecuoits
and sociology. In a broad sense, a ‘growth curepresents
the way a physical or conceptual variable grows divee. In
the context of human growth, the physical variaida be the
height (stature) of a person, or some other bodyedsion.
Ideally, these variables may be measured at diffeyeints of
time for many individuals, leading to a longitudimtata set.
The time, expense and effort associated with |owlgial
studies may be substantial. As a result, therealm® cross- =12,..,n (2)
sectional studies, where one individual is measordg once. . . )

An individual growth curve is generally a smootmdtion where the functiomhas a known fpnct!onal form, with an
that represents the central tendency in the sizagesgraph of Unknown vector parameter;controlling its shape. Potthoff
a particular individual. Longitudinal growth dateeaoften of and Roy [17]considered a model/dhat is possibly nonlinear
the form (ti1, yir), (ti2Via)s r (tins Yin)» i = 1,2, ..., m, where (e.q., ponnomlz_Jll) in tr_]e age var_lablt_e, but is &éinen the
nis the number of individuals, is the number of para_met_erri._Smce this model lies in the 'framework of
observations for théth individual, 1 < i < n,andy;;is the multivariate linear models, Pothoff and Roy's (1p&brk

) . . was followed up by many other researchers. Howewlen
observgd size varlgble at .agf.; r.egar.ded without loss of there are only a handful of observations per intigl, a
generality as the ‘height’ variable in this paper. parsimonious model can be fitted to individual gtiovdata
only if the model is allowed to be nonlinear in {h@rameters.
Simplest examples of such models include the expaie
growth model and the logistic growth model, whileorm

S Mirzaci and D. S . it the AopliedtiSieal Unit. Ini complex models with larger number of parametersehago
it &G D Seropia s ih e opliecitin on' 195 been considered [9], [12]. One of the most pops been
sedigheh_r@isical.ac.in and sdebasis@isical.ac.in model | of Preece and Baines [18], given by

parametric models of the form:

yij = h(tl}, Ti) + Ei]’, ] = 1,2, e Ny, i

covariates. Consequently, there has been emphasis o
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2(hmax B he)
h(t; So, 51,0, hmass ho) = hmax = oy —seay (3

function h for any specific individual. In particular,
generally a smoother function. Zemel and Johns2@j fiave
reported issues of interpretability and model vgfidhat can

wheres,ands; are parameters controlling the rates of growthrise, when one attempts to fit the Preece Bairadein(3) to

at different stages,,,.is the final height, andyis the height

at a threshold ag@. One can use nonlinear regression [2] tspline models that are linear in the parameters], [13

fit any of these models to individual growth curvAsange of
nonparametric and parametric methods for longitalddata
can be found in [6], [22].

One can also treat the vector parameteappearing in the

cross sectional data. Similar problems arise in ¢hse of

particularly while determining the population distition of
biological parameters.

On the other hand, cross sectional data are génenach
more abundant than longitudinal data. Thus, onétrigek to

model (2) as a random vector, which has a proltgbilicombine the strengths of the two types of data,sfuving

distribution over the population. This amounts sswaming a
random effects model. Estimation of this model gare rise
to estimation of the population distribution of iears
biological parameters that are functionstef e.g., the final
height, the takeoff and peak height velocities athe
corresponding ages, and so on. Work in this argarbevith
the Pothoff-Roy model [19] and has continued ewetes[3],
(7], [8], [13], [14].

Because of the above mentioned difficulties of inta
longitudinal data, some studies are designed tk tdferent
individuals over different age ranges. The différage ranges
used in the study may have only partial overlaps Tiay, the
duration of the study can be shorter. Huggins anesth[13]
considered analysis of this type of data.

However,
happen to be entirely cross-sectional. With theat,done

longitudinal data problems.

In this paper,
population distribution of the biological parametdrom a
combination of longitudinal and cross-sectional adathe
work is motivated by an anthropometric study condddy
the Indian Statistical Institute under the leadigrsiof
Professor S.R. Das during the 1950's and 196@s) fihe
Sarshuna-Barisha (S-B) region of Kolkata. The d=at of
male subjects obtained from this study
individuals, many of whom were tracked over thed gzriod
for different durations. The variables include agtafure and a
few other anthropometric characteristics. The numbg
observations per individual ranges from 1 to 2%, tfe age
interval 0.5 to 21. Lack of samples in the 19-orrenand 10-

many large scale studies on human growtii-less age ranges come in the way of fitting asaeable

parametric model in most of the cases. Excludingtlar 5

seeks to obtain age-specific height quantiles fbe t cases due to convergence problems, only 36 casdelard to

population, which can be used as reference for eoimg the
growth of an individual subject. The trajectoridsaospecific
guantile of height over different ages are sometimeferred
to as centile growth curves or reference centilartsh A

combination of these charts for different quantitessed as a

reference for the growth trajectory of growing dnén. The
shapes of these curves can be very different ft@mrshape of
an individual growth curve.

The estimation of centile growth curves has tradgily
relied on normal distribution theory. Typically, antiles for
an age are computed from the mean and the staddsiation
estimated from cross-sectional data for that agel the
guantiles for different ages are smoothed to obtantile
growth curve. In this context, the LMS method[5kHzecome
a classical work on growth chart construction.Hé thormal
distribution assumption holds,
computed from the mean and standard deviation reafjnie

even for short data. In large scale studies, sadch@one used

to develop the National Center of Health Statis(RECHS)
growth chart [11],quantiles are computed from epity
observed fractions. More recently, semiparametaaotjle
regression models have been used for this purdgedo that
conditional quantiles can
distributional assumption.
Even if one assumes a model such as (2) andrébdigin

for 7;'s, the observed data can be seen as samples frem t

convolution of the distributions of;;’'s and 7;'s. The
dependence of the location parameter of this Higion on
age can have a very different form than the shdpéhe

then extreme questil

be amenable to fitting a reasonable parametric m@te the
other hand, there is arelatively healthy countab&ltnumber
of observations, which may be tapped for
estimation.

Il. ESTIMATING POPULATION DISTRIBUTION OF PARAMETERS

Consider the random effects model defined by (2 dre
additional assumptions:

(@ Tty .,
distributionf, and

(b)ey, €5, ..., £, are samples from a distributign

For fully cross-sectional data; =1 for i = 1,2,...,n Here,
we permit a part of the data to be cross-sectidralassume a

functional form of f subject to an unspecified vector

paramete®, and a functional form ¢f subject to an

unspecified scale parameter The problem of estimating the

population distribution of biological parameters then
reduced to the problem of estimatigSince the distribution
of any function oft; can be derived fromyf(z;; @), this
distribution can always be estimated by substitytanced is
estimated.

The Ilkel|hood fore ando is

]_[f(n, e)]_[ (y g

be estimated without any

(ty 7 )) )

S|ncerl, Ty, ..
nuisance parameters. Maximizing the likelihood inhe t
presence of the nuisance parameters is usuallgrreifficult.

it is

we present a method of estimating th

reflects 298

improved

T, are samples from a common population

,T, are unobserved, these can be treated as

781



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:6, No:7, 2012

A standard approach to this problem is to maxintize
likelihood (4) with respect t6 , o andty, 7, ..., T,, . The other
approach is to integrate the likelihood with red$ptr the

nuisance parameters, i.e., to maximize the intedrat
Iikelihood
h(t;;;T
f f(rl,e)l_[ (y” @ ‘)> 7 (5)

The EM algorithm and Gibb's sampling [15] provide

computational methods for solving such problemserEso,
the nonlinear nature of the functiohcomplicates the
optimization problem that needs to be solved ah aséep of an
iterative procedure.

If f is treated as prior density foy then the corresponding

posterior is

gi(zilyin, - Vin; 0,0 ) o
f(rl.ml_[ o (Lt ”"‘)).

If the number of individuals is large, the averagehese
posterior distributions should resemble the cordstribution
of thet;’s, even if the prior distribution is not the saasethat
distribution. Instead of using a prior density, ean use the
longitudinal part of the data set to estimate for the
corresponding individuals, use these estimgtedo estimate

(6)

0, and substitute the latter jfto get an empirical version of

the prior density. The use of an empirically detered density
in place of the prior is in the spirit of the enipi Bayes
approach [4]. We can then iterate over this erntiaeess, by
treating the average posterior distribution at igaar step
as the prior distribution at the next step, urii tprior’ and
the average of the posteriors come sufficientlgelo

The Markov Chain Monte Carlo technique is a conesni
tool for implementing this method. The crux of fheblem is
to avoid computing the proportionality constant(6§, even
though the samples need to be drawn from an averfitiee
posterior densities (and not the posterior derssitiemselves).
In order to make this possible, the average ofpbsterior
densities is viewed as a mixture distribution, &attthe
samples from the targeted density can be obtaingd
judiciously pooling samples from the posterior dées of the
individuals.

The steps to be used, adapted from the Metrop@tihigs
algorithm [1], are as follows.

» Estimatet; for each individuali correspondingto the

defined by (6) with@and oreplaced by#® and &,
respectively, as follows. Generdtsamples from a
proposal distribution, say, 3, ..., Ty. Foj =1,2,.., M,
compute

0, 5)

gi(To|3’i1: = Yings 0%, 5)

where, is the mean of the distributiofi for

0 =0®. Ifr;; >1 accept the sample;; else,

accept it W|th probability;;. Let M; be the number

of selected samples.

 Draw N samples from the average posterior asfollows.
Let

_ gi(T;|3’i1- o Yings
=

niI(Ml- > 0)
p. =,
CoY mI(M; > 0)
fori = 1,2,...,nandn,, m,, ..., m,, be multinomial
with parametersN,p,,p,, ...,pn. Then, foi =
1,2,...,n the desired sample would consistmf

samples selected with replacement from e
samples generated from the posterior densits,of
as mentioned in Step Il
+ Define the updated estim@é*Das thatobtained from
the sample of sizd generated in Step Ill.

Steps Il to IV are iterated until the estimates @&f
fromsuccessive steps come sufficiently close. Téyaufation
distribution of any function ofr; can be obtained fronf
evaluated at the converged valu@.of

Ill. SIMULATION RESULTS

For the purpose of simulation, we assume that the
densityp of the measurement errors is normal with mean 0 and
variancec?. As for the growth functiorh,we work with the
Preece-Baines model (3) having five parameterstitsake
of identifiability, it is assumed that, < s,.It can be shown,
by analyzing the derivative of the growth functidghat the
ages at takeoff;,, and peak height velocity,,,, are defined
in terms of the model parameters as

2 (51— So) — \/(51 — 50)? — 48150
tio = ] 0,
o s — s, og( 25, +
b 2 (51— sg) — \/(51 —50)% — 4s5:5,
tony = 1 ]
PR T s — s, 0g< 25, +

A necessary condition for the existence of thesedistinct
ages is that

s
L3422
So

@

longitudinal part of the data, through nonlinear least
squares [2]. Estimaté® by using these estimates as Other biological parameters of interest can be esged as

observed data, and denote the estimator@y. Also

the final height,h,,.,, the takeoff velocityy'(t,,) and the

estimates from the pooled data, and denote the estimat@eak height velocityz,’(tph,,).

by é. Set the index of iteratién= 0

The conditions for the simulation study are

+  For each individual (for whichn; can be 1 orgreater than mostlydetermined by the characteristics of the Siga

1), generate samples from the posterior densityr;pf

mentioned in Section 1. Any computational method tfee
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model parameters may be affected by the differedérs of
theirmagnitude and the various constraints. Itofei from a
preliminary analysis of the S-B data that an untaised set
of parameters of somewhat comparable magnitude is

(3+2v2)sg
a, =1lo (—350 )a =log| —2
1B \T s, T B s )
S1
0
a3 = 1_01 Ay = log(hmax - hB)J as = log(hB)

The distribution of these transformed parameteb$ained
from the nonlinear least squares fit of the longjital part of
the S-B data, appeared to be normal, with a ramkriance-
covariance matrix. Accordingly, the first two pripal
components, with empirically determined coeffic&entvere
used for the simulations. Thus, the random paramsied

here is a vectawith two components, such that the
parametersa;, ..., azare linear functions of these, and the

model parameters, s;, 0, hpq, andhgare nonlinear functions
thereof. Independent normal distributions for theot
components ofare assumed.

As for estimation of parameters of the distributufin, we
assume that the distribution is bivariate normal] astimate

its parameters through the sample mean and the lsamp

variance-covariance matrix. The parameteiis estimated
from the longitudinal part of the data by averagmgr the
error sum of squares, after the paramelers been estimated
through nonlinear regression, separately for eadividual.
The proposal distribution is considered to be thearate
normal distributions, with mean and dispersion iragiven
by the current mean and dispersion matrix of thepmnents
of t.

While evaluating the proposed method for a mixture

oflongitudinal and cross-sectional data, the imgoart
guestions are as follows. (a)ls there any valuedtiaddto the

estimate from the cross-sectional part of the déxXWould

the performance be substantially better if the ©sEctional
part of the data are replaced by equivalent amaafmt
longitudinal data?

2517-9934
No:7, 2012

Even where there is an exception (e.g., in the cagmak
height velocity), the mean squared error follows tirder.

In Figure 1, histograms of biological parametershefthree
data sets are compared with their respectively tneans. In
Figure 2, standard errors are compared likewisee Th
estimated values seem to be mostly in line withttie®retical
values.

TABLE |
BIAS AND STANDARD ERROR FOR BIOLOGICAL PARAMETERS
Data type 1 Data type 2 Data type 3
Biological Bias Bias Bias
parameter (Std err) (Std err) (Std err)
Age at takeoff 0.09 0.15 0.230
(year) (0.38) (0.65) (0.7)
Takeoff velocity -0.12 -0.099 -0.11
(cm/year) (0.09) (0.31) (0.37)
Age at 0.24 0.27 0.27
PHV (year) (0.19) (0.49) (0.52)
PHV -0.56 -0.15 -0.31
(cmlyear) (0.33) (0.69) 11
Final height 0.93 0.91 1.07
(cm) (1.35) (1.99) (2.18)
TABLE 1l
BIAS AND STANDARD ERROR FORMATHEMATICAL PARAMETERS
Data type 1 Data type 2 Data type 3
Mathematical Bias Bias Bias
parameter (Std err) (Std err) (Std err)
So —0.002 —0.002 —0.002
(cmlyear) (0.006) (0.013) (0.012)
S; -0.07 -0.03 0.019
(cm/year) (0.07) (0.13) (0.16)
0 0.29 0.3 0.36
(year) (0.17) (0.46) (0.4)
Romaz 0.93 0.91 1.07
(cm) (1.35) (1.99) (2.18)
hgy 1.07 0.76 0.98
(cm) (0.94) (1.95) (2.37)

IV. DATA ANALYSIS

In order to answer these questions, we repeatedlyTyming to the Sarshuna-Barisha (boys) data, wee not

(100times) generate three types of data. Thetfjz of data
consists of 50 individuals each with 10 data pofhisight at
ages 4-21).The second type comprises 10 individeatsh
with 10 data points and 400 individuals with onlyeodata
point (i.e., cross-sectional data). The third tygedata is a
subset of the second one, where only the longialdiart of
the data is included.

By wusing the above method, we can find
estimateddistribution of individual specific biologl
parameters and compare them with the true meastandard
deviation. Table | gives a comparison of the biasl ¢he
standard deviation of the biological parametersreged from
the three types of data. Table 2 gives a similangarison for
the parameters of the mathematical model. As egrpeche
bias and the standard deviation for the second bfpdata
(mixture of 20% longitudinal and 80% cross-sectlodata)
generally lies in between those of the other twesy

thatthere are 36 cases with 10 to 18 data pointsdrrange?7
to 18 years, where estimation of the model paramssibject
to the constraint (7) is possible. For the remar262 cases,
there are many with only with a few observatiorgdiiding 16
cases with only one observation. This makes itirsinds to
estimate the population distribution of individysdsific

thdiological parameters, using conventional methods.

Application of the method proposed in this paperegi
riseto the summary of mean and standard error @bdical
andmathematical parameters, reported in Table 3 Fo
comparison,the summary from the longitudinal péthe data
are alsoreported alongside. The standard deviat&hmsv
substantialimprovement when the additional 262 came
included inthe analysis.
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OATATYPE 1 DATATYPE 2 DATA TYPE & TABLE I”

MEAN AND STANDARD ERROR OFESTIMATED BIOLOGICAL AND

MATHEMATICAL PARAMETERS, USING FULL DATA AND A PART OF DATA
Whole data set Part of data set
Mathematical Mean Mean
; L ; = parameter (Std err) (Std err)
g 8 0o or 0 § 08 % on 12 n 8§ 8 0 1 R $
Age attakeaft Age 2t takeaft Age attakect So 0.0926 0.10
(cm/year) (0.0027) (0.012)
S1 1.089 117
(cm/year) (0.029) (0.19)
(7 14.72 14.73
L L ]
W 40 50 BD w4 s s0 w4 s o8 (year) (0.040) (0.15)
Takecff velocity Takeoff velocity Takeoff velocity hmaz 16630 1665
(cm) (0.125) (0.46)
hg 154.36 154.22
(cm) (0.323) (1.34)
— Biological Mean Mean
W ow omom I W m om parameter (Std err) (Std err)
Thelte BERIEDR el Age at takeoff 10.20 10.49
(year) (0.12) (0.55)
Takeoff velocity 4.02 411
(cm/year) (0.052) (0.18)
\ NI e UL Age at 14.3 14.33
[ A TSR I R R R T IR S TR PHV (year) (0.042) (0.18)
Age at peak height velocity Age at peak heig it vekcity Age at peak height welocity
PHV 7.9 8.04
(cm/year) (0.07) (0.29)
Final height 166.30 166.5
,,_” J (cm) (0.125) (0.46)
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