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Abstract—Parametric models have been quite popular for 

studying human growth, particularly in relation to biological 
parameters such as peak size velocity and age at peak size velocity. 
Longitudinal data are generally considered to be vital for fittinga 
parametric model to individual-specific data, and for studying the 
distribution of these biological parameters in a human population. 
However, cross-sectional data are easier to obtain than longitudinal 
data. In this paper, we present a method of combining longitudinal 
and cross-sectional data for the purpose of estimating the distribution 
of the biological parameters. We demonstrate, through simulations in 
the special case ofthePreece Baines model, how estimates based on 
longitudinal data can be improved upon by harnessing the 
information contained in cross-sectional data.We study the extent of 
improvement for different mixes of the two types of data, and finally 
illustrate the use of the method through data collected by the Indian 
Statistical Institute. 
 

Keywords—Preece-Baines growth model, MCMC method, 
Mixed effect model 

I. INTRODUCTION 

ROWTH curves arise naturally in a wide variety of 
applied areas, including biology, psychology, economics 

and sociology. In a broad sense, a ‘growth curve’ represents 
the way a physical or conceptual variable grows over time. In 
the context of human growth, the physical variable can be the 
height (stature) of a person, or some other body dimension. 
Ideally, these variables may be measured at different points of 
time for many individuals, leading to a longitudinal data set. 
The time, expense and effort associated with longitudinal 
studies may be substantial. As a result, there are also cross-
sectional studies, where one individual is measured only once. 

An individual growth curve is generally a smooth function 
that represents the central tendency in the size vs. age graph of 
a particular individual. Longitudinal growth data are often of 
the form ����, ����, ���	,��	
, … , ����, ����, 
 � 1,2, … , �, where � is the number of individuals,��  is the number of 
observations for the 
�� individual, 1 � 
 � �,and ��� is the 
observed size variable at age ��� regarded without loss of 
generality as the ‘height’ variable in this paper.  
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A general model for such a data set is : ��� � �����
 � ���,     � � 1,2, … , �� ,    
 � 1,2, … , �,          �1�  

where � is the growth function and ���’s are additive random 
errors. Apart from the function�, one is typically interested in 
estimating its derivative (referred to as the ‘velocity’ function) 
and various biological parameters, such as the points of 
inflection of the velocity function (referred to as the age at 
takeoff and the age at peak height velocity), the velocities at 
these ages (referred to as takeoff velocity and peak height 
velocity, respectively) and the limiting value of h for large age 
(referred to as final height). One may also seek to estimate the 
age-specific quantiles of the height variable, which depends on 
the value of the function h at that age, as well as the 
distribution of the error. When covariates are present, all these 
estimation problems become regression problems. 

If the number of measurements per individual is large, one 
can use nonparametric smoothing or regression [10], [16] with 
age as the explanatory variable, to estimate the function�. 
Staniswalis and Lee [20] provided a nonparametric method 
that can even handle covariates. However, it is rather unusual 
to find a longitudinal data set with a large number of height 
measurements per individual, let alone height data with 
covariates. Consequently, there has been emphasis on 
parametric models of the form: 

 ��� � �����; ��
 � ���,     � � 1,2, … , �� ,    
� 1,2, … , �                                                      �2� 
 

where the function �has a known functional form, with an 
unknown vector parameter ��controlling its shape. Potthoff 
and Roy [17]considered a model of �that is possibly nonlinear 
(e.g., polynomial) in the age variable, but is linear in the 
parameter ��. Since this model lies in the framework of 
multivariate linear models, Pothoff and Roy's (1964) work 
was followed up by many other researchers. However, when 
there are only a handful of observations per individual, a 
parsimonious model can be fitted to individual growth data 
only if the model is allowed to be nonlinear in the parameters. 
Simplest examples of such models include the exponential 
growth model and the logistic growth model, while more 
complex models with larger number of parameters have also 
been considered [9], [12]. One of the most popular has been 
model I of Preece and Baines [18], given by 
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���; ��, ��, �, �� ! , �"� � �� ! # 2��� ! # �"�$%&�'("� � $%)�'("�     �3� 

 
where��and �� are parameters controlling the rates of growth 
at different stages, �� ! is the final height, and �"is the height 
at a threshold age �. One can use nonlinear regression [2] to 
fit any of these models to individual growth curves. A range of 
nonparametric and parametric methods for longitudinal data 
can be found in [6], [22]. 

One can also treat the vector parameter �� appearing in the 
model (2) as a random vector, which has a probability 
distribution over the population. This amounts to assuming a 
random effects model. Estimation of this model can give rise 
to estimation of the population distribution of various 
biological parameters that are functions of ��, e.g., the final 
height, the takeoff and peak height velocities and the 
corresponding ages, and so on. Work in this area began with 
the Pothoff-Roy model [19] and has continued ever since [3], 
[7], [8], [13], [14]. 

Because of the above mentioned difficulties of obtaining 
longitudinal data, some studies are designed to track different 
individuals over different age ranges. The different age ranges 
used in the study may have only partial overlap. This way, the 
duration of the study can be shorter. Huggins and Loesch[13] 
considered analysis of this type of data. 

However, many large scale studies on human growth 
happen to be entirely cross-sectional. With these data, one 
seeks to obtain age-specific height quantiles for the 
population, which can be used as reference for comparing the 
growth of an individual subject. The trajectories of a specific 
quantile of height over different ages are sometimes referred 
to as centile growth curves or reference centile charts. A 
combination of these charts for different quantiles is used as a 
reference for the growth trajectory of growing children. The 
shapes of these curves can be very different from the shape of 
an individual growth curve. 

The estimation of centile growth curves has traditionally 
relied on normal distribution theory. Typically, quantiles for 
an age are computed from the mean and the standard deviation 
estimated from cross-sectional data for that age, and the 
quantiles for different ages are smoothed to obtain centile 
growth curve. In this context, the LMS method[5] has become 
a classical work on growth chart construction. If the normal 
distribution assumption holds, then extreme quantiles 
computed from the mean and standard deviation may be fine 
even for short data. In large scale studies, such as the one used 
to develop the National Center of Health Statistics (NCHS) 
growth chart [11],quantiles are computed from empirically 
observed fractions. More recently, semiparametricquantile 
regression models have been used for this purpose [21], so that 
conditional quantiles can be estimated without any 
distributional assumption. 

Even if one assumes a model such as (2)  and a distribution 
for ��’s, the observed data can be seen as samples from the 
convolution of the distributions of ���’s and ��’s. The 
dependence of the location parameter of this distribution on 
age can have a very different form than the shape of the 

function � for any specific individual. In particular, it is 
generally a smoother function. Zemel and Johnston [23] have 
reported issues of interpretability and model validity that can 
arise, when one attempts to fit the Preece Baines model (3) to 
cross sectional data. Similar problems arise in the case of 
spline models that are linear in the parameters [13], 
particularly while determining the population distribution of 
biological parameters. 

On the other hand, cross sectional data are generally much 
more abundant than longitudinal data. Thus, one might seek to 
combine the strengths of the two types of data, for solving 
longitudinal data problems. 

In this paper, we present a method of estimating the 
population distribution of the biological parameters from a 
combination of longitudinal and cross-sectional data. The 
work is motivated by an anthropometric study conducted by 
the Indian Statistical Institute under the leadership of 
Professor S.R. Das during the 1950's and 1960's, from the 
Sarshuna-Barisha (S-B) region of Kolkata. The data set of 
male subjects obtained from this study reflects 298 
individuals, many of whom were tracked over the said period 
for different durations. The variables include age, stature and a 
few other anthropometric characteristics. The number of 
observations per individual ranges from 1 to 21, for the age 
interval 0.5 to 21. Lack of samples in the 19-or-more and 10-
or-less age ranges come in the way of fitting a reasonable 
parametric model in most of the cases. Excluding another 5 
cases due to convergence problems, only 36 cases are found to 
be amenable to fitting a reasonable parametric model. On the 
other hand, there is arelatively healthy count of total number 
of observations, which may be tapped for improved 
estimation. 

II. ESTIMATING POPULATION DISTRIBUTION OF PARAMETERS 

Consider the random effects model defined by (2) and the 
additional assumptions: 
(a) ��, �	, … , �� are samples from a common population 
distribution +, and 
(b)��, �	, … , �� are samples from a distribution ,. 
For fully cross-sectional data, �� � 1 for 
 � 1,2, … , � Here, 
we permit a part of the data to be cross-sectional.We assume a 
functional form of + subject to an unspecified vector 
parameter-, and a functional form of, subject to an 
unspecified scale parameter .. The problem of estimating the 
population distribution of biological parameters is then 
reduced to the problem of estimating -. Since the distribution 
of any function of �� can be derived from +���; -�, this 
distribution can always be estimated by substitution, once - is 
estimated. 

The likelihood for - and . is 

/ +���; -� / 1.
�0

�1�  , 2��� # �����; ���. 3.                             �4��
�1�  

Since ��, �	, … , ��  are unobserved, these can be treated as 
nuisance parameters. Maximizing the likelihood in the 
presence of the nuisance parameters is usually rather difficult.  
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A standard approach to this problem is to maximize the 
likelihood (4) with respect to - , . and ��, �	, … , �� . The other 
approach is to integrate the likelihood with respect to the 
nuisance parameters, i.e., to maximize the integrated 
likelihood 

/ 6 +���; -� / 1.
�0

�1�  , 2��� # �����; ���. 3  7��                         �5�   �
�1�  

 
The EM algorithm and Gibb's sampling [15] provide 

computational methods for solving such problems. Even so, 
the nonlinear nature of the function hcomplicates the 
optimization problem that needs to be solved at each step of an 
iterative procedure. 

If + is treated as prior density for �� then the corresponding 
posterior is 

 9����:���, … , ���0; -, .
       ;                                              
                              +���; -� / 1.

�0
�1�  , 2��� # �����; ��
. 3.             �6� 

 
If the number of individuals is large, the average of these 

posterior distributions should resemble the correct distribution 
of the ��’s, even if the prior distribution is not the same as that 
distribution. Instead of using a prior density, we can use the 
longitudinal part of the data set to estimate �� for the 
corresponding individuals, use these estimated�� ’s to estimate -, and substitute the latter in +to get an empirical version of 
the prior density. The use of an empirically determined density 
in place of the prior is in the spirit of the empirical Bayes 
approach [4]. We can then iterate over this entire process, by 
treating the average posterior distribution at a particular step 
as the prior distribution at the next step, until the ‘prior’ and 
the average of the posteriors come sufficiently close. 

The Markov Chain Monte Carlo technique is a convenient 
tool for implementing this method. The crux of the problem is 
to avoid computing the proportionality constant of (6), even 
though the samples need to be drawn from an average of the 
posterior densities (and not the posterior densities themselves). 
In order to make this possible, the average of the posterior 
densities is viewed as a mixture distribution, so that the 
samples from the targeted density can be obtained by 
judiciously pooling samples from the posterior densities of the 
individuals. 

The steps to be used, adapted from the Metropolis-Hastings 
algorithm [1], are as follows. 

 
• Estimate �� for each individual 
 correspondingto the 

longitudinal part of the data, through nonlinear least 
squares [2]. Estimate - by using these estimates as 
observed data, and denote the estimator by -���. Also 
estimate . from the pooled data, and denote the estimator 
by .=. Set the index of iteration> � 0. 

• For each individual 
 (for which ��  can be 1 orgreater than 
1), generate samples from the posterior density of ��, 

defined by (6) with -and .replaced by -�@� and .=, 
respectively, as follows. GenerateAsamples from a 
proposal distribution, say��B , �	B , … , �CB . For� � 1,2, … , A, 
compute 

D�� � 9����B|���, … , ���0 ; -�@�, .=
9����|���, … , ���0 ; -�@�, .=
 

where�� is the mean of the distribution + for - � -�@�. IfD�� F 1 accept the sample ��B; else, 
accept it with probability D��. Let A� be the number 
of selected samples. 

• Draw G samples from the average posterior asfollows. 
Let 

H� � ��I�A� F 0�∑ ��I�A� F 0
C�1�  ,          
for
 � 1,2, … , � andK�, K	, … , K� be multinomial 
with parameters G, H�, H	, … , H�. Then, for
 �1,2, … , � the desired sample would consist of K� 
samples selected with replacement from the A� 
samples generated from the posterior density of ��, 
as mentioned in Step II. 

• Define the updated estimate-�@L��as thatobtained from 
the sample of size G generated in Step III.  

Steps II to IV are iterated until the estimates of - 
fromsuccessive steps come sufficiently close. The population 
distribution of any function of �� can be obtained from + 
evaluated at the converged value of-. 

III.  SIMULATION RESULTS 

For the purpose of simulation, we assume that the 
density, of the measurement errors is normal with mean 0 and 
variance .	. As for the growth function �,we work with the 
Preece-Baines model (3) having five parameters. For the sake 
of identifiability, it is assumed that �� M ��.It can be shown, 
by analyzing the derivative of the growth function, that the 
ages at takeoff, �'N and peak height velocity,�OPQ, are defined 
in terms of the model parameters as 
 

�'N �  2�� # �� log U��� #  ��� # V��� # ���	 # 4����2�� W �  �, 
 

�OPQ � 2�� #  �� log U��� # ��� # V��� # ���	 # 4����2�� W �  � 

 
A necessary condition for the existence of these two distinct 

ages is that ���� F 3 � 2√2                                       �7� 

 
Other biological parameters of interest can be expressed as 

the final height, �� !, the takeoff velocity,�Z��'N� and the 
peak height velocity,�Z��OPQ
. 

The conditions for the simulation study are 
mostlydetermined by the characteristics of the S-B data 
mentioned in Section 1. Any computational method for the 
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model parameters may be affected by the different orders of 
theirmagnitude and the various constraints. It follows from a 
preliminary analysis of the S-B data that an unconstrained set 
of parameters of somewhat comparable magnitude is 

 

[� � log \ 3��1 # 3��] , [	 � log ^ �_L	√	�%&%)1 # �_L	√	�%&%)
`,      

[_ � �10 ,               [a � log��� ! # �"�,            [b � log��"�. 
 

The distribution of these transformed parameters, obtained 
from the nonlinear least squares fit of the longitudinal part of 
the S-B data, appeared to be normal, with a rank 2 variance-
covariance matrix. Accordingly, the first two principal 
components, with empirically determined coefficients, were 
used for the simulations. Thus, the random parameter used 
here is a vector�with two components, such that the 
parameters [�, … , [bare linear functions of these, and the 
model parameters ��, ��, �, �� ! and �"are nonlinear functions 
thereof. Independent normal distributions for the two 
components of �are assumed. 

As for estimation of parameters of the distribution of�, we 
assume that the distribution is bivariate normal, and estimate 
its parameters through the sample mean and the sample 
variance-covariance matrix. The parameter .	is estimated 
from the longitudinal part of the data by averaging over the 
error sum of squares, after the parameter �has been estimated 
through nonlinear regression, separately for each individual. 
The proposal distribution is considered to be the bivariate 
normal distributions, with mean and dispersion matrix given 
by the current mean and dispersion matrix of the components 
of �. 

While evaluating the proposed method for a mixture 
oflongitudinal and cross-sectional data, the important 
questions are as follows. (a)Is there any value addition to the 
estimate from the cross-sectional part of the data? (b) Would 
the performance be substantially better if the cross-sectional 
part of the data are replaced by equivalent amount of 
longitudinal data? 

In order to answer these questions, we repeatedly 
(100times) generate three types of data. The first type of data 
consists of 50 individuals each with 10 data points (height at 
ages 4-21).The second type comprises 10 individuals each 
with 10 data points and 400 individuals with only one data 
point (i.e., cross-sectional data). The third type of data is a 
subset of the second one, where only the longitudinal part of 
the data is included. 

By using the above method, we can find the 
estimateddistribution of individual specific biological 
parameters and compare them with the true mean and standard 
deviation. Table I gives a comparison of the bias and the 
standard deviation of the biological parameters estimated from 
the three types of data. Table 2 gives a similar comparison for 
the parameters of the mathematical model. As expected, the 
bias and the standard deviation for the second type of data 
(mixture of 20% longitudinal and 80% cross-sectional data) 
generally lies in between those of the other two types.  

Even where there is an exception (e.g., in the case of peak 
height velocity), the mean squared error follows this order. 

In Figure 1, histograms of biological parameters of the three 
data sets are compared with their respectively true means. In 
Figure 2, standard errors are compared likewise. The 
estimated values seem to be mostly in line with the theoretical 
values. 

 
TABLE I 

BIAS AND STANDARD ERROR FOR BIOLOGICAL PARAMETERS 
 Data type 1 Data type 2 Data type 3 

Biological 
parameter 

Bias 
(Std err) 

Bias 
(Std err) 

Bias 
(Std err) 

Age at takeoff 
(year) 

0.09 
(0.38) 

0.15 
(0.65) 

0.230 
(0.7) 

Takeoff velocity 
(cm/year) 

-0.12 
(0.09) 

-0.099 
(0.31) 

-0.11 
(0.37) 

Age at 
PHV (year) 

0.24 
(0.19) 

0.27 
(0.49) 

0.27 
(0.52) 

PHV 
(cm/year) 

-0.56 
(0.33) 

-0.15 
(0.69) 

-0.31 
1.1 

Final height 
(cm) 

0.93 
(1.35) 

0.91 
(1.99) 

1.07 
(2.18) 

 
TABLE II 

BIAS AND STANDARD ERROR FOR MATHEMATICAL PARAMETERS 
 Data type 1 Data type 2 Data type 3 

Mathematical 
parameter 

Bias 
(Std err) 

Bias 
(Std err) 

Bias 
(Std err) �� 

(cm/year) 
–0.002 
(0.006) 

–0.002 
(0.013) 

–0.002 
(0.012) �� 

(cm/year) 
-0.07 
(0.07) 

-0.03 
(0.13) 

0.019 
(0.16) � 

(year) 
0.29 

(0.17) 
0.3 

(0.46) 
0.36 
(0.4) �� c 

(cm) 
0.93 

(1.35) 
0.91 

(1.99) 
1.07 

(2.18) �" 
(cm) 

1.07 
(0.94) 

0.76 
(1.95) 

0.98 
(2.37) 

IV. DATA ANALYSIS 

Turning to the Sarshuna-Barisha (boys) data, we note 
thatthere are 36 cases with 10 to 18 data points in the range7 
to 18 years, where estimation of the model parameterssubject 
to the constraint (7) is possible. For the remaining 262 cases, 
there are many with only with a few observations,including 16 
cases with only one observation. This makes itimpossible to 
estimate the population distribution of individualspecific 
biological parameters, using conventional methods. 

Application of the method proposed in this paper gives 
riseto the summary of mean and standard error of biological 
andmathematical parameters, reported in Table 3. For 
comparison,the summary from the longitudinal part of the data 
are alsoreported alongside. The standard deviations show 
substantialimprovement when the additional 262 cases are 
included inthe analysis. 
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Fig. 1 Histogram of estimated biological parameters compared with 

true mean, for three types of simulated data 
 

 
Fig. 2 Histogram of standard errors of estimated biologicalparameters 

compared with true standard deviation, for types ofsimulated data 
 
 

TABLE III   
MEAN AND STANDARD ERROR OF ESTIMATED BIOLOGICAL AND 

MATHEMATICAL PARAMETERS, USING FULL DATA AND A PART OF DATA  
 Whole data set Part of data set 

Mathematical 
parameter 

Mean 
(Std err) 

Mean 
(Std err) �� 

(cm/year) 
0.0926 

(0.0027) 
0.10 

(0.012) �� 
(cm/year) 

1.089 
(0.029) 

1.17 
(0.14) � 

(year) 
14.72 

(0.040) 
14.73 
(0.15) �� c 

(cm) 
166.30 
(0.125) 

166.5 
(0.46) �" 

(cm) 
154.36 
(0.323) 

154.22 
(1.34) 

Biological 
parameter 

Mean 
(Std err) 

Mean 
(Std err) 

Age at takeoff 
(year) 

10.20 
(0.12) 

10.49 
(0.55) 

Takeoff velocity 
(cm/year) 

4.02 
(0.052) 

4.11 
(0.18) 

Age at 
PHV (year) 

14.3 
(0.042) 

14.33 
(0.18) 

PHV 
(cm/year) 

7.9 
(0.07) 

8.04 
(0.24) 

Final height 
(cm) 

166.30 
(0.125) 

166.5 
(0.46) 
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