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Human Action Recognition Using Variational
Bayesian HMM with Dirichlet Process Mixture of
Gaussian Wishart Emission Model

Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract— In this paper, we present the human action recognition
method using the variational Bayesian HMM with the Dirichlet
process mixture (DPM) of the Gaussian-Wishart emission model
(GWEM). First, we define the Bayesian HMM based on the Dirichlet
process, which allows an infinite number of Gaussian-Wishart
components to support continuous emission observations. Second, we
have considered an efficient variational Bayesian inference method
that can be applied to drive the posterior distribution of hidden
variables and model parameters for the proposed model based on
training data. And then we have derived the predictive distribution that
may be used to classify new action. Third, the paper proposes a
process of extracting appropriate spatial-temporal feature vectors that
can be used to recognize a wide range of human behaviors from input
video image. Finally, we have conducted experiments that can
evaluate the performance of the proposed method. The experimental
results show that the method presented is more efficient with human
action recognition than existing methods.

Keywords—Human action recognition, Bayesian HMM, Dirichlet
process mixture model, Gaussian-Wishart emission model,
Variational Bayesian inference, Prior distribution and approximate
posterior distribution, KTH dataset

[. INTRODUCTION

IDDEN Markov Models (HMMs) are widely used in a

variety of fields for modeling time series data, with
applications including speech recognition, natural language
processing, protein sequence modeling and genetic alignment,
general data compression, information retrieval, motion video
analysis and object tracking, and financial time series
prediction [1]. The core theory of HMMs was developed
principally by Baum and Colleagues, with initial applications to
elementary speech processing, integrating with linguistic
models, and making use of insertion and deletion states for
variable length sequences [2]. The popularity of HMMs soared
in the following decade giving rise to a variety of elaborations,
as reviewed in Juang and Rabiner [3]. Moreover, the realization
that HMMs can be expressed as Bayesian networks [4] has
given rise to more complex and interesting models, for
example, factorial HMMs [5], tree-structured HMMs [6], and
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switching state-space models [7]. Beal [8] presents a unified
variational Bayesian framework in his PhD dissertation which
approximates true posterior distributions in models with latent
variables using a lower bound on the marginal likelihood. On
the other hand, several papers applying the HMM model with
human action recognition have been published in recent years.
Yin and Meng [9] present a novel hierarchical probability latent
model to recognize human activities from a sequence of visual
data. Their model consists of four layers from bottom-up:
spatial-temporal visual features layer, atomic pattern layer,
latent topic layer, and behavior pattern layer. Then, they
applied the proposed model to represent the behavior patterns
and latent topics as distributions over atomic patterns. Tian et al.
[10] propose a Hierarchical Filtered Motion (HFM) method to
recognize actions in crowded videos by using Motion History
Image (MHI) as basic representation of motion due to its
robustness and efficiency. Uddin et al. [11] present a novel
approach for human activity recognition using the joint angles
from a 3D model of the human body. They estimated body joint
angles from time-series activity images acquired with a single
stereo camera. The estimated joint-angle features are then
mapped into code-words to generate discrete symbols for the
HMM of each activity. Gaikward and Narawade [12] present
novel HMM-based approach that uses threshold and voting to
automatically and effectively segment and recognize complex
activities. They also survey two hybrids of Neural Network and
HMM, ie. HMM-NN and NN-HMM, and compare their
performance with that of the traditional HMM. Piyathilaka and
Kodagoda [13] presented a human activity detection model that
uses only 3-D skeleton features generated from an RGB-D
sensor. To infer human activities, they implemented a Gaussian
Mixture Model based HMM to capture the multimodal nature
of the 3D positions of each skeleton joint. They tested their
model in a publicly available dataset that consists of twelve
different daily activities performed by four different people.
The main contribution of this study can be considered the
following two facts. The first contribution will propose the
DPM of GWEM that can be suitable to model a continuous
feature vector. The second contribution will be the utilization of
the variational Bayesian estimation method to derive the
posterior distributions of the parameters vector and latent
variables needed to define our model. In Section II, we have
used the DPM theory to autonomously determine the number of
components of the Gaussian mixture model. In Section III, we
have considered an efficient variational Bayesian inference
method to drive the posterior distributions of the parameters
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vector and latent variables in the proposed model, and then we
have derived the predictive distribution that may be used to
classify new observation. Section IV proposes the overall
process of extracting feature vectors from given video images
that is one of the most difficult problems in human behavior
classification. As well, various experiments have been
conducted to evaluate the performance of the proposed method.
Section IV, outlines the conclusion of the paper.

II. VARIATIONAL BAYESIAN HMM wiTH DPM oF GWEM

A.Bayesian HMM

An HMM models a sequence of p -valued discrete
observations (symbols) y,; ={y,, -, ¥; } by assuming that the
observation Y, at time t was produced by a k -valued discrete
hidden state s, , and that the sequence of hidden states
S, =1{8,,-~",8;} was generated by a first-order Markov

process. That is to say the complete-data likelihood of a
sequence of length T is given by:

p(s]:T >Yir )=p(s)p(y, |5 )H P(s, S ) P(Y: |s) M

where p(s,) is the prior probability of the first hidden state,
p(s, | S,_,) denotes the probability of transition from state s, | to
state s,and p(Y, |S,) are the emission probabilities for each of
p symbols at each state. In this simple HMM, all the

parameters are assumed stationary, and we assume a fixed
finite number of hidden states and number of discrete symbol
observations. Hence, the probability of the observations y,;

results from summing over all possible hidden state sequences,

P(Y,r) :Z P(S;7,¥.r) (2)

SiT

Moreover, the set of parameters for the initial state prior 7,
transition probabilities A , and emission probabilities B are
represented by the parameter © :

0 ={rn,A,B}

w={n;}:m; = p(s, = j): (kx1) initial hidden state prior;

A={a;}:a; =p(s,=j'[s., =]):(kxk) state transition

B= {bjm}:bjm = p(yt =m | st = J) (k>< p)
emission matrix. Here, the Bayesian approach to learning treats
the model parameters as unknown quantities and, prior to
observation of the data, assigns a set of beliefs over these
quantities in the form of prior distributions. In the light of the
data, Bayes’ rule can be used to infer the posterior distribution
over the parameters.

matrix; symbol

P©)P(y,r |©)
[p@©)p(y,s ©)dO

PO[Y,)= 3)

In this way, the parameters of the model are treated as hidden
variables and are integrated to form the marginal likelihood:

P(yir) = [ PO)P(y,; |©)dO (4)

A natural choice for parameter priors over 7, the row of A
, and the row of B are Dirichlet distributions.

P(®) = p(m)p(A)p(B)
p(m) = Dir({m,, -+, m } [u™))

P(A) =[] Dir({aj;, -2y} [u™) )

j=1

p(B) = HDir({bjl’”"bjp} ‘ u(B)))

Here, for each matrix A and B, the same single hyper-parameter
vector u and u®is used for every row. The use of these
hyper parameters is motivated because the hidden states are
identical to a prior. The form of the Dirichlet prior, using p(ax)

as an example, is:

ru™) ﬁnﬁ‘ﬁ"’*‘ u® >0, vj  (6)
J ’ J >

p(A) = ————
HHF(UE")) j=1

k . .
where u” :ijluﬁ") is the strength of the prior, and the

positivity constraint on the hyper-parameters is required for the
prior to be proper.

B. Bayesian HMM with DPM of GWEM

So far, it has considered that the observation vector is the
discrete case. From now, we will consider the case of
continuous observation vectors. As well, suppose that the
probability distribution of the observed vectors can be
expressed in a mixture of an infinite number of Gaussian
distribution. Therefore, in order to implement a continuous
observation and infinite number of Gaussian problem, we have
to consider the use of Dirichlet process theory and the Gaussian
mixture model. Here, we first review Drichlet process model. A
Dirichlet process (DP) DP(e, H) with concentration parameter

a and base distribution H , is a distribution over probability
distributions. Formally, let Q be the probability space
underlying the distribution. Then, we say that G ~ DP(a, H) if,

for any finite partition A,---, A, of Q, the distribution of G's

probability mass on this partition is given by

(G(A), --,G(A)) ~ Dirichlet(aH (A), --,aH(A,)) .
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Here, we can see the role of the concentration parameter « .
That is, larger values of & encourage G to more closely follow
the base distribution H , whereas smaller values allow for more
deviation.

A more informative definition of the Dirichlet process is the
stick-breaking construction, which defined G ~ DP(e,H) in

terms of stick-breaking weights {u,},_, and stick-breaking

pieces {c,};_, . Specifically, the stick-breaking representation
of G ~ DP(a,H) can be defined as follows:

k-1
Uy NBeta(l,a), Ck(ula"'suk)=ukH(1_ul)5k=15"'7OO7 (7)
1=1

0, ~H. G(y)= Y68, (v) ®)
k=1

The above equation shows the very important fact that the
DP is discrete. The support of G consists of a countably
infinite set of atoms, drawn independently from H . This makes
the Dirichlet process a natural choice for the distribution over
hidden states in many popular models.

Second, the DPM model is used as a nonparametric prior in a
hierarchical Bayesian specification:

GNDP(aaH)7®kNG7 yan(yn‘®k) (9)

Data generated from this model can be partitioned according
to the distinct values of the parameter. Taking this view, the DP
mixture model has a natural interpretation as a flexible mixture
model in which the number of components is random and
grows when new data is observed. In the DPM model, the
vector ¢ =(C,,C,,--) comprises the infinite vector of mixing

proportions and (©,,0,,--) are the atoms representing the
mixture components. Let y=(y,,"--,y;) be the set of
observations modeled by a DPM model. Then, each one of the
observations y, is assumed to be drawn from its own
probability density function p(y, |®,) parameterized by the
parameter set ©, . Let z, be an assignment variable of the
mixture component with which the data point y, is associated.

The data set can be described as arising from the following
process:
k-1
Draw U, ~ Beta(l, ) ; Compute C, = UKH(I_UI)
1=1
Draw O, ~H
For the t -th data point:

Draw z, = (2,,2,,) ~ Mult(c(u)) ,
Draw Y, ~ P(¥, |®z':k)

Third, for many application domains, the data associated
with each hidden state may have a complex, multimodal
distribution. We want to model this data with such emission
distributions in HMM non-parametrically, using an infinite DP

mixture of Normal-Wishart distributions. The study augments
the HMM state s, with a term Zz, indexing the mixture

component of the s emission density. For each HMM state s,
, we assume that there is a unique stick-breaking construction

m-1
Cim = uij(l —uy), m=1,---,c0defining the mixture weights
11

th . . .
of the m” emission density so that p(z, =m|s, = j)=c;,. We
also assume the m™ emission density as Gaussian distribution

N(p,,A;) with mean vector p,and precision matrix A,. In

the Bayesian HMM with DPM, we have to consider a set of the
appropriate prior distributions over model parameters. We first
choose conjugate-exponential priors for the mean vector p,

and precision matrix A, . Hence, we impose a joint

Gaussian-Wishart distribution over the means and precisions of
the Gaussian emission likelihoods in the model as:

p(®m :(um’Am)) ~ NW("’m’Am “l'O’TO’WO’UO) (10)
%o

©
O—>0->-30

y
©
y

03>0->-

\\SC> O—=>»=0

Fig. 1 Bayesian HMM with DPM of GW emission model

The Bayesian HMM with DPM of GWEM considered is
formally described in Fig. 1. Therefore, the joint probability
density function for observation vector y,;, all hidden

variables and parameters Q= {s,z,m, A,B,C(u),p, A} can be

rewritten as:

P(Yir-Zi758:7, T, A, C(u), 1, A)
= P(Yir 27,87 | T A, C(u), p, A) p(m) p(A) (11)
x p(C(u)) p(n| A)p(A),

where the individual factors are:
P(Y,1,Z7,8,7 | T, A,C(u),p, A)

=p(s, Im] ] pGs I5..A) (12)

t

]
x[ Pz [s.Ca)p(y, In, A, )
t=1
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p(m) ~ Dir({x,,--,m } [u?)), p(s,) ~ Multi(m),
p(aj) ~ Dir({ajla"'aajK} | u(jA)), p(A) = H p(aj) >
j=1

P(s, | S.i-A) ~ Multia )5, =1, K,
m-1

u,, ~ Beta(l,@), ¢, :Uij(l—Uj.),m=1,“',w,
=1

¢, (w)=(c;,,C;p.r), P(Cw) =[] pe; () ,
j=1
p(Zt | St) ~ Multi(cs[ (u)),

p(yt [ A) = H N ("Zm\sl ’A;UI“|5[ )Z‘m >
m=1
p(ll ‘ A) = H N(um | pom’(TOmAm)_l)
m=1

p(A) = TW(A, [ Wy 0p)-

m=1

III. VARIATIONAL BAYESIAN INFERENCE

A.Variational Bayesian EM algorithm

The variational Bayesian inference problem of HMM with
DPM of GWEM is to derive a family of variational posterior
distributions over hidden variables and model parameters
which can approximate the true posterior distributions with
infinite number of mixture components. But, under this infinite
dimensional setting, Bayesian inference is not apparently
tractable. For this reason, we employ a common strategy in
DPM literature, formulated on the basis of a truncated stick-
breaking representation of the DP. That is, we fix a value M
and we let the variational posterior over the u, have the

property q(u;, =1)=1. In other words, we set c,, (u) equal to

zero for m > M . Note that, under this setting, the model is a
full Dirichlet process and is not truncated, but only the
variational distribution is truncated to allow for a tractable
inference procedure. Hence, the truncation level M is a
variational parameter which can be freely set, and not part of
the prior model specification.

Let Q={s,z,w, A,C,pn, A} be the set of all hidden variables
and unknown parameters of the Bayesian HMM with DPM of
the Gaussian-Wishart model over which a prior distribution has
been imposed, and ¥ = {l,,,, 7om» WomsUom 1ney be the set of the
hyper-parameters of the imposed priors. Variational Bayesian
inference consists in the introduction of an arbitrary
(variational) distribution ((Q) to approximate the actual

posterior p(Q2|y,;,¥), which is computationally intractable.
Under this assumption, the log marginal likelihood log p(y,;)

of the model can be written as:

log p(y,s) = F(@)+KL(Qq| p). (13)

with

F(q,‘P):J.q(Q)ln[mg(’—s);%de (14)

and

KL(q|| p) = —jq(fz)ln[

p(QlyI:T;T)de (15)

q(€2)

Here, KL(q|| p) stands for the Kullback-Leibler (KL)
divergence between the approximate variational posterior (€2)
and the actual posterior p(Q2|y,;,¥) . Since KL divergence is
nonnegative, F(q,¥) forms a strict lower bound of the log

marginal likelihood log p(y, ) defined as:

p(yl:T’Q;\P)
1 )2 F@)=[q@)In| =122 1O 16
og P(y,7) > F(a)= [ a )n[ o) ) (16)

Hence, by maximizing this lower bound F(q,¥) (variational
free energy) so that it becomes as tight as possible, not only do
we minimize the KL divergence between the true and
variational posterior, but also implicitly integrate out the
unknowns Q.

For the approximate posterior distribution ¢(Q) , we
consider two assumptions. First, we assume that we consider
the conjugate prior distributions of all hidden variables and
parameters in our model. Second, a set of parameters
{m,A,C(u),p, A} and hidden variables {s,z} are mutually
independent. Then, the approximate variational distribution of
all hidden variables and parameters can be represented as;

q(€2) = q(s,z)q(m)q(A)q(C(u))q(p, A)
=qes)] Jacs Is-)] Jaz [spam] Ja@;,) (17)
t=2 t=1 j=1

<[ TTTatem) I TTTat; m A ).

j=1 m=l1 j=1 m=1

Here, using the calculus of variation principle, we can obtain
the approximate posterior distributions of all hidden variables
and parameters by minimizing the KL divergence or
maximizing the free energy with the coordinate ascent
algorithm. Then, the resulting variational posterior distributions
can be given using the following two steps iteratively.

1) The Variational Bayesian M (VBM)-Step
The VBM step is obtained by taking functional derivatives of
F (g, ¥) with respect to each of these distributions and equating

them to zero, to yield the following approximate posterior
distributions:

q(n):Dir({nn"'ank} | {Wl(n)5""wl(<n)}))’

Wi =ui” +q(s, = )),

(18)
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q(a;) =Dir({a;, ay} {WR - Wi’ H),

(A) (A) < i i (19)
Wi = Uy +zq(st =J'1s =1
t=2
(C]m) Beta(wﬁzp sz)
W, =14 Yq(z =m]s, = )). (20)
t=1

T
Wﬂl:n)z —a+Zq(ZI >m|st = J)
=

Similar, regarding the posterior distributions over parameters
of the Gaussian-Wishart, we have that

q(ujmaAjm):NW("jmaAjm‘ W
T

$im =2 0z, =m[S = ]), )y =Ty + s

t=1

jm> JT”7 Jm’

-

Zq(z‘ =m|s = j)Yt
< t=1

_ _ TOmuOm + ‘):jmyjm
yjm - -

Eim o Tin T

Ujm :U(Jm+§jm’
u : = = T
=> 0@ =m|s = Dy, -V)¥ -V
t=1

TOméjm — — T
W =W +A +————(m_-y. )(m_-Vy. ).
jm om jm TOm + gjm ( jm me )( jm y]m)
2) The Variational Bayesian E (VBE)-Step
Taking derivatives of F(q,V) with respect to the variational

posterior over the hidden variables yields:

a(s, =k) = exp(u/(wﬁ”)) =40 wﬁ-'”)j, (22)
j=1
acs, = J'l St =j)= CXP(VI(W(A)) ‘//(ZW(A) j» (23)
4z, =mls, = )= @P ¥, R A (24)
where
Cjy (w) = exp(E(Inc,, (w)))
= exp (p (Wi )~ (Wi, +wi,)) (25)

m-1
xexp( [y wi)- u/<wj.“3+w5:';>]],

and

D (Y, e Ay ) =exp(E(In p(y, [0, A )

= exp(—%log27r+% E(n[A;, D (26)
1
“SE(0 ) A —ujm>)],

E((yt _"jm)TAjm(yt _"jm))
d (27
:f"'ujm()’t _mjm)T ij(Yt —my,

m

E(n|A,, )= zy/( "”2 )+dln2+1n\W . (©28)

where /(o) denotes the digamma function.

B. Predictive Distribution

In the Bayesian scheme, the predictive probability of a test
sequence y' =y,;., given a set of training cases denoted by
Y={Yiur ., is obtained by averaging the predictions of the

HMM with DPM of GW model with respect to the posterior
distributions over its parameters ® = {r, A,B,C(u),p, A} :

Py 1Y) =I PO|y)p(Y'|©)dO 29

Unfortunately, for the very same reasons that the marginal
likelihood of observations given by

P =] 2 Pirszr.¥,r [O)PO)AO  (30)

(817527 )

is in tractable, so is the predictive probability. Hence, we have
to consider another method for approximating the predictive
probability. One such method is to approximate the true
posterior distribution with the variational posterior distribution
resulting from the variational Bayesian optimization:

p(Y'|y) ~ [a(®)p(y'|©)d© 31

The variational posterior is a product of individual posterior
of required parameters, which is in the same form as the prior,
and so we are not able to doing anything anymore because we
know that this integral is intractable. However, we can define
the forward factor ¢, (S/,2;) to be the posterior over the hidden

variables (S/,2/) given the testing sequence up to and including

time t and the trained parameters © :
a(8,2)) = P(S,2{ | ¥1:0) (32)

and form the forward recursion from t=1,---,T":
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a(shzys—
1 (5t & ARG
X z p(st'il’ Zt’—l | y{;[,1;®) p(sl’ | s{,l)
(5{4,1{7')
x p(z; | s)P(y; (s(,2);0) (33)
1 o o
) )

xp(z )Py 1(8/,2);0))

where in the first time step p(s; | s,_,)is replaced with the prior
p(s; | ), and for t =1we require the convention ¢, (S;,2;) =1
. Here, ¢(Yy/;®) is a normalization constant, a function of Y,

given by,

c(¥:0) = p(y, | ¥i.1:0) (34

Note that as a by-product of computing these normalization
constants, we can compute the probability of the sequence:

Action Video Sequence

P(Yir;:0) = p(y;;©)p(Y; | ¥/;0)---p(Yr | Yir 13 ©)

. oyt Ly (35)
= H POY( | Yie13©) = Hg(yt;G))
t=1 t=1

Moreover, obtaining these normalization constants using a
forward pass is simply equivalent to integrating out the hidden
states one after the other in the forward ordering, as can be seen
by writing the incomplete-data likelihood in the following way:

P(Yir;®) = z P(Sir» 207, Y175 0)

SiT 4T

=3 > p(s)p(z 8 p(y; |8).2/:0)

sz s
T
x[ (st Isi)pE [8)p(y; |8/,250) (36)
t=2
=2 p(s)P(Z [8)P(y; |8!,2/;0)

s/.7]

= p(sp)P(zy 1) P(YY |57, 27:0).

szt
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Fig. 2 Overall architecture of the proposed recognition system

IV. HUMAN ACTION RECOGNITION
A.KTH Dataset

In order to evaluate the performance of the proposed method,
we use the KTH human action dataset. This dataset contains 25
people performing six action classes, namely: walking, running,
jogging, hand waving, boxing, and hand clapping. Each video
sequence contains one actor performing an action. In order to
train the proposed model, we use the KTH human action
dataset. This training dataset contained with a total of 384 video
sets, in which 16 people repeatedly performed six action classes
four times. And to test the performance of our model, the
researchers have also used a test dataset consisting of 216 video
sequences consisting of nine people repeatedly performing six
different human behaviors four times.

B. Procedure for Human Action Recognition
Fig. 2 shows the overall architecture of the proposed

recognition system for human actions. First, we extract the
interest points in parallel, such as Hessian detectors from each
frame image of the input video, and then we have configured
the (3x3) square cells by using the extracted interest points to
the rectangular. Second, we calculate two kinds of descriptors
such as Histograms of Oriented Gradient (HOG) and
Histogram of Optical Flow (HOF) in each of the points
contained in this square, and then we construct feature
histogram by concatenating 4 bins HOG and 5 bins HOF [14].
Third, we have clustered all of these feature histograms to 900
clusters using the K-means algorithm, and computed the mean
vector and covariance matrix for each cluster. Fourth, we seek
the cluster center with the minimum distance between the input
feature vector and 900 clusters centers, and then we assigned a
cluster mean vector number corresponding with the nearest
cluster center into a feature vector. Fifth, by applying such a
method with all frame images, it was possible to obtain a
sequence of feature vectors corresponding to the input video.
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Sixth, the classification probabilities were calculated
corresponding to all human actions using a sequence of feature
vector.

C.Recognition Results

From the results in Table I, it can be noted that six human
behaviors can be mainly divided into two categories with
similar behaviors. The first category of similar actions includes
boxing, hand-clapping, and hand-waving, and the second
category of similar behavior includes jogging, running, and
walking. The results show that handclapping action is
misclassified into boxing and hand-waving, and the jogging
action misclassified into running and walking. However, it was
noted that the correct classification rate of the proposed method
appears to be 92.5 % on average. Finally, our model for
obtaining this result is to be the number of state five, and the
number of Gaussian mixture model components eight.

TABLEI
CLASSIFICATION RATE FOR PROPOSED METHOD
Classificat . Hand Hand . . .

ion rate Boxing clapping  waving Jogging Running Walking
Boxing 1.0 0 0 0 0 0

Hand- = 5 0.58 0.1 0 0 0
clapping

Hand- 0 0 1.0 0 0 0
waving
Jogging 0 0 0 0.69 025 0.06
Running 0 0 0 0.11 0.89 0
Walking 0 0 0 0 0 1.0

V.CONCLUSION

This paper shows that the VBHMM with DM of GWEM can
be a useful tool for human action classification. First, the results
have shown that a time series data of continuous feature vectors
extracted from a human action video can be modeled by HMM
with DPM of GWEM. Using the variational Bayesian inference
approach, the researchers derived the approximate posterior
distributions of all latent variables and parameters indicating a
membership of class on the basis of the learning data. Second,
we have derived the predictive distribution of the latent
function corresponding to the new input vector by using both
the existing training data and the new input vector. Next, we
calculate the likelihood function for each class by using the
predictive distribution corresponding to the new sample.
Lastly, the study classifies the input video into the class which
its likelihood function is maximized. The experimental results
show that our method performs very well on public video
datasets, such as the KTH dataset, more than others.
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