International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

HTMLS Online Learning Application with Offline
Web, Location Based, Animated Web, Multithread,
and Real-Time Features

Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng

Abstract—Web applications are an integral part of modem life.
They are mostly based upon the HyperText Markup Language
(HTML). While HTML meets the basic needs, there are some
shortcomings. For example, applications can cease to work once user
goes offline, real-time updates may be lagging, and user interface can
freeze on computationally intensive tasks. The latest language
specification HTMLS attempts to rectify the situation with new tools
and protocols. This paper studies the new Web Storage, Geolocation,
Web Worker, Canvas, and Web Socket APIs, and presents
applications to test their features and efficiencies.

Keywords—HTMLS5, Web Worker, Canvas, Web Socket.

[. INTRODUCTION

TML, HyperText Markup Language, is the main markup

language for creating web pages and other information
that can be displayed in a web browser. HTML 1.0 debuted as
a hybrid of Standard Generalized Mark-up Language (SGML),
and enabled documents to link other documents. HTML 2.0
was the first official set of standards by which all browsers
were measured [1]. It featured supports for math and scientific
documents, and for style sheets with the STYLE tag and
CLASS attribute [2]. HTML 3.0 draft included new and
improved functionality for HTML, but was quickly abandoned
due to the size of the overhaul and multitude of proprietary
browser-specific tags [3]. The World Wide Web Consortium
(W3C) soon standardized HTML 3.2, which included features
such as tables, applets, text flow around images, subscripts,
superscripts, and so on [4]. The Language quickly evolved to
HTML 4.0 to support international languages, Cascading Style
Sheets (CSS), form extensions, scripting, and much more [5].
Shortly after, the final version of classic HTML, HTML 4.01
was published which contained minor revisions and
corrections [6].

In early 2000 W3C issued the specifications of Extensible
Hypertext Markup Language (XHTML) 1.0. XHTML has
most of the same syntax conventions as HTML, but enforces
stricter rules. However, many XHTML’s planned benefits
(e.g. interoperability with Extensible Markup Language tools,
efficient page processing for automated programs, portability

Sheetal R. Jadhwani and Daisy Sang are with the Computer Science
Department, California State Pollytechnic University, Pomona, CA 91768
USA.

Chang-Shyh Peng is with Computer Science Department, California
Lutheran University, Thousand Oaks, CA 91360 USA (phone: 805-493-3819,
e-mail: peng@callutheran.edu).

with mobile platforms, language extensibility, etc.) never
came to light [7]. Accordingly, XHTML 2.0 was defined in
hope to meet the expectation. From a theoretical point of view,
XHTML was cleaner and more intelligible. But from a
practical point of view, it imposed new coding styles without
adding much new functionality [8]. Development of XHTML
2.0 quickly lost steam. The Web Hypertext Application
Technology Working Group (WHATWG) and the W3C then
jointly designed the new specification HTMLS [9].

HTMLS inherited many earlier features, but also added
plenty new elements, attributes and abilities [10], [11]. The
core HTMLS is the official W3C’s contribution. It includes
many new tags and features such as semantic elements and
form widgets, which provide clear, concise, and controlled
markup to HTML applications. Features furnished by
WHATWG are mostly specifications where JavaScript is
required to manipulate the contents of a document, respond to
user interaction, and support rich web applications. There are
also next-generation features such as CSS3, web workers,
geolocation, and canvas [12].

HTMLS5 specifications are massive and challenging. While
there are a few online demonstrations of the new APIs, they
don't stipulate the detailed theoretical foundation. This paper
implements a HTMLS5 Online Learning Application with
Offline Web, Location Based, Animated Web, Multithread,
and Real-Time Features (HOLA) to demonstrate the key
foundations and features. Paper is divided into sections for the
five main features: Offline Web Applications, Location Based
Applications, Animated Web Applications, Multithreaded
Web Applications, and Real-time Web Applications. These
sections cover the foundation principles and implementation
issues. Paper is finished with conclusion.

II. OFFLINE WEB APPLICATIONS

HTTP is stateless. Neither the client nor the server keeps
track of earlier communications or transactions. Cookie can be
implemented to ease the job of user identification entries and
web page customization. Cookies are small, often encrypted,
text files located in browser directories. Cookies store
information such as name, address, online buying patterns,
login details, etc. The server to provide corresponding
dynamic interaction and advertisement can use such
information. Cookies can automatically fill online forms.
Cookies can also be used on the statistics of client activities.
Cookies do come with concerns. Each visit to a web site
leaves some client information behind, e.g. client's computer

452

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

name and IP address, the brand of browser, the operating
system, the URL, and so on. The security implication can be
problematic. For instance, an eavesdropper together with a
packet sniffer could intercept the cookies and obtain
unrestricted access to the supposedly secure sites [13], [14].
These issues are carefully addressed in the HTMLS Offline
Web Applications, which provides virtual connection to
website of interest when users are offline. The Offline Web
Applications enable users to work with the resources that
don’t require network connectivity, e.g. HTML, image, CSS,
JavaScript, media files, etc. The two major components in
HTMLS Oftline Web Applications are Application Caching
and Web Storage.

Web Storage stores named key/value pairs locally within
the client web browser. The data has a size limit of SMB per
domain or subdomain, and is persistent even after navigating
away from the web site, closing the browser tab, or exiting the
browser. The data is however never transmitted to the remote
web server. Such implementation provides the flexibility of
offline computation, the option to sync data back to the server
while online, better performances, and a more streamlined
development environment. The data storage is divided into
session storage and local storage [15]. Session storage is for

the duration of a single page session. Reloading or restoring
the page will not clear the storage, while opening a new page
creates a new session. Page navigation within the same
domain also maintains the session storage. Session storage is
for any pages from the same website opened in the same
window. For security purposes, session storage does not cross
the domains. Local storage is on the other hand tied to one
origin and persists across all sessions on the entire origin, but
cross-origin does draw the line at the subdomain level.
Application Cache institutes full offline browsing capability
by implementing a server-side manifest file, which is a list of
URLs referencing all needed resources such as HTML, CSS,
JavaScript, images, etc. The web browser that implements
HTMLS5 Offline Applications will read the manifest file,
download the resources, cache locally, keep the local copies
up to date, and sync with the server when online again [16].
Cache manifest file has three sections: explicit section, online
whitelist section, and fallback section. The explicit section
lists resources that will be downloaded and cached locally.
The online whitelist section denotes resources that are not
supposed to be available offline and thus cannot be
downloaded. The fallback section defines substitutions for
online resources that could not or were not cached as planned.

Weekly Shopping List

|,'_'ﬂ'} =

Fig. 1 Sticky Notes Weekly Shopping List Screenshot

Based upon the HTMLS5Sticky [19], HOLA presents the
Sticky Notes Application. Sticky Notes Demo allows users to
create and manage a list of up to 50 sticky notes for weekly
shopping needs. Each sticky notes comes with a randomly
assigned color. Saved sticky notes are available till deletion.
Sticky notes can be accessed and interacted with either online
or offline. Fig. 1 is a sample screenshot.

HOLA's Sticky Notes Application implements both Web

Storage and Application Cache, and uses the JavaScript library
Modernizr [18]. As shown below, it stores all sticky notes data
in browser local storage with the web storage setltem()
method.

if (Modernizr.localstorage) {
localStorage.setltem(index, index);
localStorage.setltem(index + '|pos’,

453

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

parselnt($(stickynote).offset().left, 10) + I +
parselnt($(stickynote).offset().top, 10));

localStorage.setltem(index + 'text', $(stickynote).find('textarea.note-
title').val() + "' + $(stickynote).find('textarea.note-content').val());
localStorage.setltem(nindex + 'settings', bgcolor);

}

Web storage getltem method is invoked when sticky notes
data is retrieved.

if (localStorage.getltem(index + 'stickynote')){
note_index = index;
// get color
temp_array =
'|settings").split("]");
bgcolor = temp_array[0];

// get position info

temp_array = localStorage.getltem(i + 'stickynote' + '|pos").split('|");
pleft = temp_array[0];

ptop = temp_array[1];

// get text info

temp_array = localStorage.getltem(i + 'stickynote' + '[text').split('[');

}

localStorage.getltem(i ~ + 'stickynote' +

To remove selected sticky notes, the removeltem() method
is executed with corresponding indices.

if (Modernizr.localstorage) {
var identifier = html5sticky.getldentifier($(el));
localStorage.removeltem(identifier);
localStorage.removeltem(identifier + '[pos');
localStorage.removeltem(identifier + '|text);

localStorage.removeltem(identifier + 'settings');
v
s

and, following is the cache manifest file.

OfflineAppDemo.html
index.html

about.html

stickyDemo.html
Style/htmlSstickynotes.css
Style/Demo.css

Style/design.psd

Style/main.css

Style/menu.css

Style/styles.css
http://fonts.googleapis.com/css?family=Architects+Daughter
http://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js
Script/html5sticky.js
Script/jquery1.6.2.js
Script/modernizr.custom.23610.js
Images/add.png

Images/bg.png

Images/close.png
Images/hideButton.png
Images/navigation.jpg
Images/navigationmenu.jpg
Images/pushpin.png
Images/remove.png
Images/restore.png
Images/save.png
Images/showButton.png

Testing verifies that HOLA Sticky Notes Application

successfully stores and maintains data locally, updates and
checks current data in different browser tabs, and provides
consistent and persistent offline functionality and real-time
online synchronizations.

III. LOCATION BASED APPLICATIONS

Geolocation is the determination of the geographic position.
Various techniques have been deployed since the early ages,
including magnetic compass, chronometers, radio
triangulations, Doppler, GSM/CDMA, Wi-Fi, Bluetooth,
Internet Protocol (IP) Address, and Global Positioning System
(GPS) [19]. To meet the growing needs of location-aware
tasks, HTMLS5 institutes the optional Geolocation APIL
Geolocation is an opt-in service. The primary function is
getCurrentPosition, which returns a timestamp and coords,
where timestamp is the date and time when the location was
calculated and the coords has the latitude and longitude of
user's location [20].

Near Me? in HOLA demonstrates HTML's Geolocation
API by looking up user's current location and nearby places of
interest. It uses Google Maps JavaScript API [21] to load the
Google map. There are four types of maps. Roadmap displays
the normal 2D map. Satellite map displays photographic map.
Hybrid map shows a mixture of photographic map and overlay
of other relevant information. Terrain map displays elevation
and water features. After loading the map, Modernizr is used
to detect whether the browser supports Geolocation. If not,
users are notified accordingly. Otherwise, current location is
queried with the navigator.geolocation.getCurrentPosition
function call which returns a LatLng object denoting the
latitude and longitude of the current location. Reverse
Geocoding is then used to convert the LatLng object to a
common readable address. Following is the sample code for
Reverse Geocoding.

html5geolocation.getCurrentAddress = function(position){
geocoder = new google.maps.Geocoder();
geocoder.geocode({'latLng': position}, function(results, status){
if (status == google.maps.GeocoderStatus.OK) {
if (results[1])
address = results[0].formatted address; }
else {
alert("Geocoder failed due to: " + status);
address ="";

H
}

Near Me? continues with Google Map Places API to search
for nearby places of interests within a specified radius. Several
parameters are required for the search, including an API key
for quota management, latitude/longitude, radius, etc. The
Places API returns an array of up to 20 establishment results
per query. Each entry of the results array contains details of a
point of interest, such as an ID which uniquely identifies the
place even across separate searches, geometric information,
business name, price level, user review rating, reference for
optional retrieval of additional information, types, vicinity,
etc. [22]. Map marker overlays are generated and depicted on

454

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:3, 2016

the map accordingly. It's shown that HOLA's Near Me? loads ~ Near Me? that is centered in Los Angeles. Fig. 3 depicts a

the map correctly, plots current location, and displays the sample search result.

nearby establishments accurately. Fig. 2 is a screenshot of

Near Me?
S \

M.'m"enﬂ m ndrm

‘State Fark " dildale . I
L (= v
* eBakersfield 4
Banrooe o ,D San Lus Sty 3 ;
Chispa A Calente]
e Talt Tehashapi 5
G . A
= ipema i
N) ' .
Pomf £a Beach =tants Matia @ M“m'vwr\-‘'mmI Y
Srate Park 15 \ i : " w
Dot () o
Lampoe —
© | - =
N Mantecalo 2
o - =
1+ snl:rr?o.i 4 santa Paua Nm\‘:h \falley ;m‘. @ o)
Barbara vmu_sﬂ%..uqa B e Twertyrne
Ounard SoUINValley m"' Yueca Valey PIME
? qe!!s e ®
- (he 5o hittier =
1 Chanel 3lanids ‘s.rLET’:-)I? Angele & e Faim
= Natinal Farke e]
Lol Hemet x \\&
San Pedra 7 a1 “" Palm Deserts L'E&nnu.___._'
umhnﬁ.m lad - i clrna © =
= Beacl

2 Balion Sea State |
¥ fircrearon trra .

Soiny Bono Sallon A [l

Oceanside! ﬂ Ses Matoralt () &
Wil R .
Carl! Escondido : el Frgerial Kat

n:nm Farrona Bimiry Wi et

Sneenyan. | fieverly B ik T
Q ReSBIVaIt: Glen Park b | /, \a
% Beverly Glen Hallywicd 3
st g Yieights Finnhlindre Los Fellz 2[4
: 5 Tiousdale H“""‘ £
o b %‘ £ fataen Mollgwood g 2T Exhy
% q’ﬂ&g Frankis Canyoq 3 . I g £ hartall 4
% 3 Hesever | & “’E T ek [
3 3 ; Gr:,nlnm Fountain Ave g ; ! ;QF
o l !
% ‘ wg.,,,,,raﬁ Wesl Sanca Modics Blud i mmﬁ Belhue }
* i
Chevron Station Los Angeles ihriam = fore “?r::m Silver Lk
0 Station ng i = =] il ver Lake
10984 Le Conte Avenue, Los Angeles f s E Mekose fve % Melraze @
West T ~ T Laurel and
Park E K B Gas Mart i’ i

1009 Crenshaw Boulevard, Los
Anggles

Pk Lok

- Wilshite Bl

z
Holywood o
. n Pacific
o Beredly B Park
Beverly Hila. | en vy Wini gy L4
g
K
E
H

4 Wity weths W >
i wens ;¥
7 ; E E s Wilchir v Wilshie Bl - Wishen Bl W
Y Miratde 2 Seoul -
s U) g “’"‘!"‘Ft Fi th 51 i International :A‘ﬁ-:m,m
k. WPico Bivd g ;] :’k
:fp Century City % & Queen Anne f 5
& fiecreation
G)] o 1 Mante by, ﬂ ‘; .E; v i £ g
% ny‘“s Fillgrest 2 E e » 5 WhcoBl E
% o @ oannycin i Ll 5
Sawelle S Claude Ll § § veeesid 2
WestLos Peoper Senar ¥ £ oy @
Angeles % Citizen Conler Mascat pak W Wachinglon Bled W Wnshington Slvd

mermrummmw e

g Rasa PP w
Whdara B Jefersan "
o %] 1
L g g o § 7
ﬁﬁ 2 Wegs i = Denker
\ H #Hion By H i # Recreation
XM‘* 2 Rodea fid - Canter
"Q;: A A ? Callseum St %0 S Exposition Bl r

Fig. 3 Near Me? Sample Search Result

455

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

IV. ANIMATED WEB APPLICATIONS

Graphics rendering is nowadays an integral part of many
web applications. Bitmap rendering and scalable vector
graphics are two main camps [23]. Bitmap rendering is the
technique behind many popular formats such as bmp, png, and
jpeg. With the help of advanced tools such as Adobe
Photoshop and Image Editor, designers are able to generate
professional and sophisticated web imagery. Scalable Vector
Graphics (SVG) takes a completely different approach. SVG
is an XML based vector image format for two-dimensional
graphics that has native support for interactivity and
animation. Vector drawing first creates paths by connecting
dots with straight lines, curved lines, rectangles, polygons,
ellipses, and so on. Enclosed areas are then filled with various
colors and shades. In general, paths are calculated and plotted
on a unit scale, such as pixel. The entire graphic can be
rendered to the resolution of the user's content. The image
quality can remain intact regardless of the resolution. Vector
drawings are thus considered scalable as they can potentially
scale to any resolution without the loss of imagery quality.

Despite the nice features of bitmap rendering and SVG,
both have drawbacks. Bitmap image is static. Though can be
implemented with animated gif, animation is a string of
predefined static images and generally does not accommodate
user interaction. Besides, bitmap rendering is suitable for pre-
defined resolutions only. Change of resolution can result in
image pixilation, and user experience quickly deteriorates. As
for SVG, its performance can degrade drastically in
computationally intensive drawings of complex shapes. The
Canvas API of HTMLS can bridge the gap [24].

HTMLS5 Canvas API is an immediate mode fire-and-forget
bitmap graphics technique. Canvas is all about drawing and
manipulating pixels. It completely redraws the bitmap screen
on every frame. Once the graphics is completely rendered,
there is no memory of what was drawn. The basic HTML5
Canvas API includes a 2D context that allows a programmer
to draw various shapes, render text, and display images
directly onto a defined area of the browser window. It includes
methods to apply colors, rotations, gradient fills, alpha
transparencies, pixel manipulations, and various types of lines,
curves, boxes, and fills. Canvas API has a few context
methods and attributes: fillStyle gets the colors for fills and
strokes, strokeStyle sets the colors for fills and strokes,
fillRect fills a rectangle with the current fillStyle, strokeRect
outlines a rectangle with the current strokeStyle, clearRect
clears the canvas context at the specified rectangle, beginPath
resets the current path on the canvas context, closePath marks
the current subpath closed, lineWidth gets or sets the width of
paths, stroke traces the current path with the color defined by
strokeStyle and a thickness defined by lineWidth, fill fills the
current path with the fillStyle, moveTo creates a new subpath,
lineTo adds a line to the current subpath, rect creates a new
subpath in the shape of a rectangle and closes that subpath,
quadraticCurveTo draws a quadratic curve, bezierCurveTo
draws a cubic Bezier curve, arcTo draws an arc with the given
control points and radius, arc draws an arc, lineCap gets or

sets the style of the end of lines, lineJoin gets or sets the style
of corners, save saves the current state, and restore recalls the
current state of the canvas.

HTML Canvas API does not make SVG obsolete. In fact, as
shown in Fig. 4, they can complement each other [25]. Many
2D games adopt the cross over model. Canvas is used where
intensive dynamic graphics and animations are needed, and
SVG is applied when rich user interaction is expected.

Real Time
High Volume

Data 2D Casual
Presentation Gaming

—

Static
Images

=

r
High The - High Fidelity
Performance . Interactive Documents
(filters, ray Graphically Chartsand for Viewing
tracers) RichWeb Graphs and Printing

Fig. 4 Spectrum of Canvas to SVG

HOLA's Revolving Earch uses HTML5 Canvas API to
animate the partial solar system. Sun is drawn as the center of
the Solar system. Earth follows an orbit to rotate and revolve
about itself and the Sun respectively. An Earth sprite, shown
in Fig. 5, is used for Earth's incremental motion along the

orbit.

Fig. 5 Earth Sprite

Following is the code to draw revolving earth using sprite
image on the canvas.

html5SolarCanvas.drawRevolvingEarth = function() {
context = html5SolarCanvas.getCanvasContext();
context.clearRect(0,0,canvas.width,canvas.height);
shadowTimer = 0;
html5SolarCanvas.drawSun();
html5SolarCanvas.drawArc();
if(flag){
context.save();
context.translate(canvas.width/2 -10,canvas.height/2 -10);
if(reverse){
xunits = Math.cos(-angle) * 60 ;
yunits = Math.sin(-angle) * 60 ;
telse{
xunits = Math.cos(angle) * 60 ;
yunits = Math.sin(angle) * 60 ;}
context.drawlmage(img,sourceX, sourceY, 23,imgHeight, xunits,
yunits, imgWidth, imgHeight);
context.translate(-canvas.width/2 - 10,-canvas.height/2 - 10);
context.restore();
if(i< 5){
sourceX +=23;
angle += anglelncrement;
it}
else{
sourceX = 0;
angle += anglelncrement;

i1y}

456

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

Earth Revolution also contains a control panel, including
play, stop, pause, forward, and reverse. Play, stop, and pause
are self explanatory. Forward increases the speed of rotation
and revolution. Reverse also increases the rotation and
revolution speed but in the reverse direction. Following is the
code for reverse.

html5SolarCanvas.reverseAnimation = function(){
anglelncrement = 0.1;

reverse = true;

flag = true;
$(‘#btnRvs").find(".flaglmg").attr('src',"Images/reverse _off.png");
$(‘#btnPlay').find('.flaglmg").attr('src',"Images/play _off.png");
$(‘#btnFwd').find('.flaglmg").attr('src',"Images/forward.png");
$(‘#btnStop').find(".flaglmg").attr('src',"Images/stop.png");
$(‘#btnPause').find('.flagimg").attr('src',"Images/pause.png");
clearInterval(original Timer);

clearInterval(newTimer);

newTimer = setlnterval(html5SolarCanvas.drawRevolvingEarth,
100);

3

Fig. 6 depicts a screenshot. Earth Revolution clearly shows
the effectiveness in rendering the initial graphics as well as the
animation at various speeds.

Earth Revolution

Fig. 6 Earth Revolving Screenshot

V.MULTITHREADED WEB APPLICATIONS

JavaScript has been a key tool to introducing and enhancing
interactivity in web browsing. As shown in Fig. 7 [26], all
scripts required by the application are first loaded and readied
for user interaction. Upon validation, the Document Object
Model is processed and updated. JavaScript is designed to
handle one task at a time, and is thus classified single-
threaded. Single-threaded computation is straightforward, and
works great for light tasks. However, if the task is
computationally intensive, performance can degrade
significantly. User will be interrupted, browser can be frozen
till completion of task, events are stacked up in the pipeline,
and the “Application not responding” error message may be
thrown at the user.

HTMLS5 Web Workers, depicted in Fig. 8 [26], is designed
to amend JavaScript Single Threading's limitation. Web
Workers are in effect parallel threads of execution. Web
Workers is in a self-contained execution environment, and
communicates with the main thread only through
asynchronous message passing. Web Worker's specification

includes Worker Object and WorkerGlobalScope [27]. Worker
Object is created with the Worker constructor, and can receive
message via postMessage. The postMessage method clones
the message in current browsers. Messages from a Worker can
be received by listening for message events on the Worker
object. The global object for that corresponding execution
environment is a WorkerGlobalScope object.

HOLA's Web Worker to Rescue! is an application that
demonstrates the capabilities of Web Worker API by
performing multi-threaded tasks. Using the HTML5 Canvas
[28], Web Worker to Rescue! first draws 250 objects of user
specified shapes on the canvas. It then move the shapes
indefinitely along a vector. A vector has two parameters:
direction and speed. Direction is defined in radians, and speed
is the movement in pixels per drawing. Web Worker to
Rescue!'s main thread is responsible for drawing the objects
on the canvas. Dedicated threads calculate and store selected
objects' properties, and forward them to the main thread.
Following is the main code.

html5CanvasWorker.createBouncingShapes = function(canvasWidth,
canvasHeight, numBalls, radius, speed, shape){
for(vari = 0; i<numBalls; i++){
tempX = (Math.floor(Math.random()* canvasWidth);
tempY = (Math.floor(Math.random()* canvasHeight);
tempAngle = Math.floor(Math.random() * 360);
tempRadians = tempAngle * Math.P1/180;
tempXunits = Math.cos(tempRadians) * speed;
temp Yunits = Math.sin(tempRadians) * speed;
tempShape = {
x: tempX,
y: tempY,
radius: radius,
speed : speed,
angle :tempAngle,
xunits: tempXunits,
yunits :tempYunits};
shapes.push(tempShape); }
return shapes;

}

Upon reaching the boarder of the canvas, objects bounce
back in reversing the direction according to the law of
reflection. Following is the calculation for bouncing triangles.

for (vari = 0; i<numBalls; i++){

triangle = triangles[i];

triangle.x += triangle.xunits;

triangle.y += triangle.yunits;
context.strokeStyle = "white";

if(color == O)context.fillStyle = "#52D017'
elsecontext.fillStyle = color;
context.beginPath();

triangle.x1 = triangle.x - radius;
triangle.y 1= triangle.y;

triangle.x2= triangle.x + radius;
triangle.y2= triangle.y;

triangle.x3= triangle.x;

triangle.y3= triangle.y - radius;
context.moveTo(triangle.x1,triangle.y1);
context.lineTo(triangle.x2,triangle.y?2);
context.lineTo(triangle.x3,triangle.y3);

457

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

context.lineTo(triangle.x1,triangle.y1);

context.stroke();

context.closePath();

context.fill();

if(triangle.x+ radius >canvas.width || triangle.x+radius< 0)
triangle.angle = 180 - triangle.angle;

elseif(triangle.y+radius>canvas.height || triangle.y+radius<0)
triangle.angle = 360 - triangle.angle;

html5CanvasWebWorker.updateTriangle(triangle);

}
‘lavascrlpT There's anly one of
Thmad e, but look ot everything
—— T gef done by just handling al
(\Ru’nnin an it uction of this one thirg at fine,
VR P-ildhdlinga‘serdicl‘(#'
his is et ————
Lls':a:hay Aimer justwent of
sne-theided e
JovsSoript \HdridlihgusubfniT ;
sheps Hhruh —
oerything it

h

has to do, one
abter the C

Handling another user dick

other. There's vo g - . fdr a |nts o Tleb aynys
i TN, his works veally well
gfff;]ﬂ,:w ‘.Updanngrhe_[)OM Fenfin s dnc
Faetchinﬁ;m e e wer infeefte sews
Fask and vesponsive.

g l:VdXidnﬂng user inputm‘
Fig. 7 JavaScript Single Thread Execution

Web Worker
Thread /~ yogustezp
the user happy,

l Tve got this onel

‘Ru’nﬂn_ﬂﬁa it function

l

[

Handinga user cick__

A'timer just went ufr ;

This £ime —

mr\,ﬂina ‘Hnndling an onsubmit /
e (rmmed |
M M" Handling enothier user click

|s{,i1lm5 A

tare of the

lnng vunming g ‘Upaafﬁhﬂ DOM
tenpititon.. e

N

Fid when it's done, the werker
Lo even send us The data F's been
werking on and ve tan intorporite
that n cur app.

C Fatctingformcate.__
(; e
l.Va\iduf User inpu

Fig. 8 JavaScript with Web Worker

Web Worker to Rescue! shows that user interface is

responsible while switching the objects amongst various
shapes. Application works flawlessly regardless of the number
of objects and the speed of movement. Fig. 9 shows a
screenshot where objects are chosen to be circles. Fig. 10 is a
screenshot with triangles and Fig. 11 depicts when user is
given a color picker.

Web Worker to rescue!

Fig. 10 Web Worker to Rescue! with Triangles

VI. REAL-TIME WEB APPLICATIONS

Real-time web applications enable users to receive
information as soon as it is available. Examples include online
gaming, social stream updates, business applications, and
web-based monitoring. Most such applications use the
request-response model from the Hypertext Transfer Protocol
(HTTP) suite. Client first sends a HTTP request, and then
waits until the HTTP response is returned. To create more
interactive web applications, polling protocols such as AJAX
and Comet have been developed over the HTTP connections.
With AJAX, browser application performs HTTP requests
based on the XMLHttpRequest API. The XMLHttpRequest
API can handle the HTTP request in the background
asynchronously without blocking the user interface. Yet,
server response still requires a corresponding HTTP request
from the client. Comet, also known as Reverse Ajax,
overcomes this limitation by creating and maintaining long-
lived HTTP connections which enable servers to push data to
clients. While such polling architecture help realize real-time
applications, there are some drawbacks. If the polling
frequency is low, applications can suffer from higher event
latency. If the polling frequency is high, there can be many
redundant requests and empty response and thus poor network
resource utilization. HTMLS defines the Web Socket that
provide an efficient solution.

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

Web Sockets is a new communications protocol and
JavaScript APl that enable two-way interactive
communication between a client browser and a server [29]. It
defines full-duplex channel over a single socket on the Web,
and uses its own protocol instead of that of HTTP. To
establish a Web Socket connection, client and server are
upgraded from the HTTP protocol to the Web Socket protocol
during their initial handshake. Upon successful handshake,

data transfer starts. Client and server can initiate the
transaction independent from each other. A Web Socket object
can dispatch four different events: open, message, error, and
close [30]. Open event is triggered when a connection is
established. Message event takes place when messages are
received. Error event is set off in response to unexpected
failures. Close event is launched when the Web Socket
connection is to be closed.

Web Worker to rescue!

- -

M = |
B LS

Fig. 11 Web Worker to Rescue! with Color Picker

HOLA's Real-Time Voting Application was designed to try
out the Web Socket API and demonstrate its efficiency. This
application polls for the popular smartphone devices. Users
can select from Android, iPhone, Microsoft and Blackberry
device. Real-Time Voting Application uses the node.js
platform [31] and the socket.io interface [32]. The server
object is created as follows where port 8015 is the chosen port.

vario = require('socket.io').listen(8015);
io.sockets.on('connection', function (socket) {
socket.broadcast.emit('user connected');
socket.on('message', function (message) {
console.log("Message from server: "+ message);
io.sockets.emit('message', message);
1
1s

Client can be connect to the server as follows.

html5WebSocketClient.connect = function(){
socket = io.connect("http://localhost:8015");
socket.on("connect", html5SWebSocketClient.onOpen);
socket.on('message’, function (msg) {
console.log("Message recieved on client: "+ msg);
html5WebSocketClient.onMessage(msg);
1)s

3

Upon successful connection, voting counter is updated for
any newly connected clients with the following codes.

var message = {'android': androidCounter, 'iphone":
iphoneCounter, 'windows': windowsCounter,'blackberry":
blackberryCounter};

if (Modernizr.localstorage){
localStorage.setltem("android", androidCounter);
localStorage.setltem("iphone", iphoneCounter);
localStorage.setltem("windows", windowsCounter);
localStorage.setltem("blackberry”, blackberryCounter);

¥

socket.emit("message", JSON.stringify(message));

}

When a client polls for a device, its local counter is updated
and the message is sent to notify and update the server. The
server then broadcast that the update to all connected clients.
Following is the implementation.

var message = { 'android": androidCounter, 'iphone": iphoneCounter,
'windows': windowsCounter,'blackberry": blackberryCounter};
if (Modernizr.localstorage) {
localStorage.setltem("android", androidCounter);
localStorage.setltem("iphone", iphoneCounter);
localStorage.setltem("windows", windowsCounter);
localStorage.setltem("blackberry", blackberryCounter);
H

socket.emit("message", JSSON.stringify(message));

A comparison study was conducted between the HOLA
Real-Time Voting Application's Web Socket and the
corresponding polling implementation. Case A involves 1000

459

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

clients polling every second. Case B has 10000 clients polling
every second. Case C has 100000 clients polling every second.

As shown in Fig. 12, the Web Socket implementation exhibits
a very favorable reduction of overhead in data polling.

FO00,000,000

G00,000,000

_| @ Polling [l
O Web Scckets

500,000,000

400,000, 000

300,000,000 -

Bits per second

200,000,000

100,000,000

, e — [

Use Case A Use Case B Use Case C
@ &.963,000 @ 53,650,000 @ 556,600,000
0B 16000 160,000 O 1500000

Fig. 12 Overhead Comparison Polling vs. Web Socket

VII. CONCLUSION

HTMLS is not just a markup language, it is a platform that
empowers developers on more advanced and efficient web
applications. HOLA's source code is available online [33].
Sticky Notes demonstrates the benefits of Offline Web
Application and Web Storage in offline access and
computation. Near Me? uses the Geolocation API to provide
accurate location-aware information. Revolving Earth
animates a partial solar system with Canvas API. Web Worker
to Rescue! benefits from the Web Worker API in multi-
threading computation. And Web Socket API enables the low-
overhead Rea-Time Voting Application. HTMLS is expected
to further enrich the web development and user interaction, as
well as pave the road to much better use of network resources.

REFERENCES

[1] D. Ragett, J. Lam, 1. Alexander, and M. Kmiec, Raggett on HTML4,
Addison Wesley, 1997.

[2] HTML 2.0 Specifications, https://www.w3.org/MarkUp/html-spec/, last
access 2015.

[3] HTML 3.0 Specifications,
https://www.w3.org/MarkUp/html3/Contents.html, last access 2015.

[4] HTML 3.2 Specifications, https://www.w3.org/TR/REC-html32, last
access 2015.

[5] HTML 4.0 Specifications, https://www.w3.org/TR/1998/REC-html140-
19980424/, last access 2015.

[6] HTML 4.01 Specifications, https://www.w3.org/TR/html4/, last access

2015.

[7] XHTML 1.0 Specifications, https://www.w3.org/TR/xhtml1/, last access
2015.

[8] XHTML 2.0 Specifications, https://www.w3.org/TR/xhtml2/, last access
2015.

[9] Web Hypertext Application Technology = Working Group,

https://whatwg.org/, last access 2015.

[10] M. MacDonald, HTMLS5: The Missing Manual, O'Reilly, 2014.

[11] Gartner Inc., Gartner Recommends a Hybrid Approach for Business-to-
Employee Mobile Apps, Gartner Inc., 2013.

[12] HTMLS Specifications, https://www.w3.org/TR/html5/, last access
2015.

[13] L. Shevchik, HTMLS Web Storage — Cookies Are So 1994!,
http://blog.newrelic.com/2012/09/18/html5-web-storage-cookies-are-so-
1994/, 2012.

[14] W. Peng, and J. Cisna, HTTP cookies — a promising technology, MCB
UP Ltd., 2000.

[15] M. Pilgrim, "The Past, Present & Future of Local Storage for Web
Storage",HTMLS5: Up and Running, O'Reilly, 2010.

[16] M. Pilgrim, "Let’s take this Offline",HTMLS: Up and Running,
O'Reilly, 2010.

[17] S. Ahmed, HTMLS5Sticky - Sticky Notes for the Web!,
http://sarfraznawaz.wordpress.com/2011/10/08/html5sticky-sticky-
notes-for-the-web/, 2011.

[18] HTMLS Modernizr, http://modernizr.com/, last access 2015.

[19] A. Holdener III, HTMLS5 Geolocation, O'Reilly, 2011.

[20] M. Pilgrim, “You are here (And so is everybody else)”, HTMLS5: Up and
Running, O'Reilly, 2010.

[21] Google Developers, Google Maps Javascript API,
https://developers.google.com/maps/documentation/javascript/tutorial,
last access 2015.

[22] Google Developers, Google Places APl Place Types,
https://developers.google.com/places/documentation/supported_types,
last access 2015.

[23] S. Malik, Scalable Vector Graphics and bitmap rendering using Flex,
http://www.ibm.com/developerworks/library/wa-svgbitmap/, last access
2015.

[24] S. Sarris, “Canvas”,HTMLS5 Unleashed, Sams Publishing, 2013.

[25] P. Dengler, How to Choose Between Canvas and SVG for your Site,
http://msdn.microsoft.com/en-us/hh552482, last access 2015.

[26] E. Freeman and E. Robson, “Putting Javascript to work: Web Worker”,
Head First HTMLS5 Programming, O'Reilly, 2011.

[27] D. Flanagan, “HTML5 APIs”, JavaScript: The Definitive Guide,
O'Reilly, 2011.

[28] S. Fulton and J. Fulton, “Math, Physics and Animation”,HTML5
Canvas, O'Reilly, 2011.

[29] P. Lubbers and F. Greco, HTML5 Web Sockets: A Quantum Leap in
Scalability for the Web, https://www.websocket.org/quantum.html, last
access 2015.

[30] V. Wang, F. Salim, and P. Moskovits, The Definitive Guide to HTML5
WebSocket, Apress, 2013.

[31] J. Seidelin, “Going online with Web Sockets”, HTMLS Games Creating

Fun with HTMLS, CSS3, and WebGL, Wiley, 2011.

socket.io, a Javascript library for real-time and bi-directional web

communications, http://socket.io/, last access 2015.

[33] HOLA: an HTMLS Online Learning Application Source Code,
https://goo.gl/hrHhCd, last access 2015.

w3
N

460

