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High Dynamic Range Resampling for Software
Radio

Arthur David Snider, Laiq Azam

Abstract— The classic problem of recovering arbitrary values of
a band-limited signal from its samples has an added complication
in software radio applications; namely, the resampling calculations
inevitably fold aliases of the analog signal back into the original
bandwidth. The phenomenon is quantified by the spur-free dynamic
range. We demonstrate how a novel application of the Remez (Parks-
McClellan) algorithm permits optimal signal recovery and SFDR, far
surpassing state-of-the-art resamplers.

Keywords— Sampling methods, Signal sampling, Digital radio,
Digital-analog conversion.

I. I NTRODUCTION

THE goal of software radio is to replace electronic sig-
nal processing functions with digital signal processing

algorithms. Thus the received analog signal is to be sampled
and replaced by a digital signal as early as possible (that is,
as close to radio frequency as possible). In any assembly of
digital radio hardware the various devices for the subsequent
digital processing may call for disparate sampling rates. For
robustness, then, it is necessary to have an algorithm that
changes the sampling rate of a discrete signal; it “fills in” or
interpolates the values of the original analog signal, between
samples.

A classic theorem from approximation theory, developed
and refined by scientists from Poisson to Shannon[1 − 7],
states that exact interpolation is possible if the analog signal is
sampled at a rate exceeding twice its bandwidth. To be precise,
let x(t) be an analog function with Fourier transformX(ω)
confined to the interval[−ΩBW ,ΩBW ], sampled at intervals
of durationT < π/ΩBW . Then the condition

X(ω) ≡
1
2π

∞∫
−∞

x(t) e−jωt dt = 0 if |ω| > ΩBW

implies that for any timet, expressed in terms of sampling
instants ast = MT + τ (0 ≤ t < T ),

x(t) =
∞∑

n=−∞

x(nT ) sinc(
t

T
− n)

=
∞∑

n=−∞

x([M − n]T ) sinc(τ/T + n)

(1)
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Fig. 1. sinc(t)

The second formula emphasizes that the samples taken more
remotely from the timet (≈ MT ) are weighted less, in the
reconstruction ofx(t) (sincesinc(·) goes to zero at infinity;
see Figure 1).

Because the support of the sinc function is of infinite
extent,exactresampling entails using all of the sampled values
x(nT ) and is a practical impossibility. Commercial resamplers
typically replace thesinc by a finitely supported functionh
such as a truncatedsinc or a linear or bicubic spline (Figure
2), giving the approximate interpolations

x(t) ≈ ξ(t) =
∑

supp h

x(nT ) h(
t

T
− n)

=
∑

supp h

x([M − n]T ) h(
τ

T
+ n)

(2)

If the support ofh has lengthL, (2) gives an approximate
interpolation usingint(L) sampled values.

The figures of merit for an approximate “interpolating
kernel” h are

1) the length of the support of h (the number of multiplies
in (2),

2) the accuracy of the interpolation (2), and
3) the spur-free dynamic range, to be discussed in the

following section.

II. SPUR-FREE DYNAMIC RANGE

The Fourier transform of equation (2) is expressed in term
of the transformsΞ(ω) of ξ(t) andH(ω) of h(t), respectively,
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Fig. 2. Finitely supported resampler kernel

by

Ξ(ω) = T

∞∑
n=−∞

x(nT ) e−jnωT H(ωT ) (3)

The same operation, performed on equation (1), expresses the
Fourier transformX(ω) of x(t) in terms of the transform of
sinc(t), which is the characteristic functionχ±π(ω) of the
interval (−π, π) ( = 1 for |ω| < π, zero otherwise),
divided by2π:

X(ω) =
T

2π

∞∑
n=−∞

x(nT ) e−jnωT χ±π(ωT )

=

(
T

2π

∞∑
n=−∞

x(nT ) e−jnωT

)
χ±π/T (ω)

≡ Xper(ω) χ±π/T (ω)

(4)

whereXper(ω) is theπ/T -periodic extension ofX(ω). Thus
(3, 4) become

Ξ(ω) = Xper(ω) 2πH(ωT )
X(ω) = Xper(ω) χ±π/T (ω)

(5)

In software radio the interpolated functionξ(t) is obvi-
ously not computed at every timet; only the discrete values
called for by the application are needed. But the effect is
formally equivalent to constructing and resamplingξ(t), and
this interpretation is used in the subsequent analysis. Typically
the resampling is done at a constant rate, differing from the
original rate1/T . (Some applications may call for resampling
at theoriginal rate, and some may resampleξ at nonuniform
intervals.) Although the spectral aspect of resampling hasbeen
explained by other authors, for expository reasons we illustrate
it for the simplest bandlimited signal, a (complex) monotone
x(t) = ejΩt. Figure3 displays the Fourier transform,X(ω) =
δ(ω−Ω), of the monotone. It also displays the “oversampling
guardband”, usually expressed as a fraction of the frequency
ΩBW . Figure4 displays the Fourier transform of the sampled
signalx(nT ); the well- known “folding” effect results in the
periodicXper(ω).
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Fig. 3. Fourier Transform of Monotone
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Fig. 4. Fourier Transform of sampled monotone

Figure 5 displays the function2πH(ωT ) derived from
the interpolating kernelh(t). If h is finitely supported, its
transform must have unbounded support. Figure6 then shows
the Fourier transformΞ(ω) of the reconstructed functionξ(t).
Note how the unbounded support ofH(ωT ) has given rise to
“spurs” in the spectrum ofξ(t).

Resamplingξ(t) at a new rate1/T ′ then folds these spurs
into the original signal’s bandwidth, as seen in Figures7 (for
1/T ′ > 1/T ) and 8 (for 1/T ′ < 1/T but still faster than
the critical rateΩBW /π). For the software radio application,
where the bandwidth is divided among different users, this
results in spectral leakage into other subbands and must be
suppressed.

III. QUANTATIVE ERRORMETRICS

The quality of any resampling algorithm, as regards the
software radio application, is measured by the accuracy of
the interpolated signal and the suppression of the spurs that
are aliased into the bandwidth. For the sake of exposition we
quantify the latter first.

Figure6 shows that the transformΞ(ω) of the interpolation
ξ(t) of a monotone can be envisioned as a “comb” of delta
functions modulated (in frequency space!) by the envelope
2πH(ωT ). The highest amplitude that any spur can have is
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Fig. 5. 2πH(ωT ) andχ±π/T
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Fig. 6. Ξ(ω)

thus limited by the maximum of|2πH(ωT )| in the region
where the spur occurs. A little study of Figure4 reveals
that all spurs have frequencies higher than(π/T ) plus the
oversampling guard band(π/T ) − ΩBW . Thus

max spur= max

{∣∣2πH(ωT )
∣∣ : 2π

T
− ΩBW ≤ ω < ∞

}

The spur-freedynamic range is measured by the ratio of
the intensity of the original monotone (one) to the maximum
spur. Thus a specification ofβ dB as the SFDR is satisfied by
demanding:

max
{
|2πH(ωT )| :

2π

T
−ΩBW ≤ ω < ∞

}
≤ 10(−β/20) (6)

Now we turn to assessing theaccuracyof the interpolates.
Observe that the difference between the actual signal value
and the value computed by resampling can be expressed in
terms of the Fourier transforms by:

x(t) − ξ(t) =

∞∫
−∞

{
X(ω) − Ξ(ω)

}
ejωtdω
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Fig. 7. Re-sampled withT ′ < T
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Fig. 8. Re-sampled withT ′ > T

=

∞∫
−∞

Xper(ω) [χ±π/T (ω) − 2πH(ωT )]ejωT dω

Therefore the mean square(L2) energy of the interpolation
error can be measured by Parsevals’ theorem:

error energy= ‖x(t) − ξ(t)‖
2

2
= 2π

∞∫
−∞

{
|Xper(ω)|2

|χ±π/T (ω) − 2πH(ωT )|2
}
dω

This error is estimated by quantifying the difference be-
tweenχ±π/T (ω) and2πH(ωT ). If we assume that the SFDR
is large, thenχ±π/T (ω) and2πH(ωT ) are both negligible for
|ω| > 2π/T − ΩBW , while Xper(ω) = 0 for ΩBW < |ω| <
2π/T − ΩBW ; therefore the error energyN and the signal
energyS are related by
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Fig. 9. 2πH(ωT ) andχ±π/T

N ≈ 2π

ΩBW∫
−ΩBW

|Xper(ω)|2 |χ±π/T (ω) − 2πH(ωT )|2dω

≤ 2π

ΩBW∫
−ΩBW

|Xper(ω)|2dω ·

· max|ω|≤ΩBW
{
∣∣χ±π/T (ω) − 2πH(ωT )

∣∣2}
= S × max|ω|≤ΩBW

{∣∣χ±π/T (ω) − 2πH(ωT )
∣∣2}

(7)

Thus a specification of (minus)α dB as the maximum allow-
able distortion (α = signal to noise energy ratio SNR) can be
satisfied by imposing the (sufficient) condition

max
{∣∣1 − 2πH(ωT )

∣∣2 : |ω| ≤ ΩBW

}
≤ 10−α/20 (8)

IV. SOLUTION

The constraints(6, 8) are suggestive of the classic appli-
cation of the Parks-McClellan coding of Remez’s exchange
algorithm, whereby one seeks a digital filter with specified
passband and stopband amplitudes, separated by a don’t-care
band. See Figure9. However, the situation is different here.
We are looking for acontinuous finitely-supportedfunction
h(t) whose Fourier transformH(ω) has these specifications.

The modus operandiby which we jury-rig the Parks-
McClellan algorithm to solve our problem is to consider
the Riemann sum interpretation of the integral arising in the
Fourier transform: ifh(t) is tabulated with the mesh points
tn = n ∆t and we introduce the abbreviationν = ∆t ω,

H(ω) =
1
2π

∫
h(t)e−jωtdt ≈

1
2π

∑
h(tn)e−jtnω∆t

=
∑

[h(n∆t)
∆t

2π
] e−jn∆tω ≡

∑
ηne−jnν

whereηn = h(n∆t)∆t/2π. The final member of this equation
is a trigonometric polynomial; but its degree is enormous -
namely, the number of discretization points required to tabulate
the kernelh(t).

In theory, at least, one can specify the degree (= [length
of support ofh]÷∆t), interpretν as the “frequency”, spec-
ify [0,ΩBW ∆t] and [2π∆t/T − ΩBW ∆t,∞) respectively,
as the passband and stopband, and toy with the stopband
and passband weights until the specifications(6, 8) are met.
Multiplying the “filter coefficient” ηn by 2π/∆t yields the
value ofh(n∆t).

The Parks-McClellan code is unreliable when it tries to find
approximating polynomials of degree greater than25 or so.
However, it has no problems withtrigonometricpolynomials
of degree500 (!). This phenomenon can ultimately be traced
to the stability of the discrete Fourier transform (a unitary
transformation), which would be a strong competitor to the
best approximating polynomial.

As an example of the efficacy of this procedure, consider an
industry standard for a resampler, the Intersil#216 interpola-
tor, which is designed for operation with50% oversampling.
The support of the interpolating kernelh#216(t) has length6,
and it interpolates32 values per sampling interval. Its signal-
to-noise ratio in the passband is30 dB, and its SFDR is62 dB.

Requesting a6 × 32 = 192-degree trigonometric polyno-
mial from MATLAB’s remez.m m-file with passband/stopband
weights in the ratio 1:290, we computed an interpolating
kernel with the same support as#216 that achieved an inband
accuracy SNR of30 dB and a SFDR of79 dB - an enormous
improvement, achieved simply by altering the stored valuesof
h(t) (!) The interpolating kernelh(t) is shown in Figure2 and
its Fourier transform in Figure10.

We also designed an interpolating kernel of support length
8 achieving30 dB SNR, 100 dB SFDR at50% oversam-
pling, and one of support length18 achieving30 dB SNR,
100 dB SFDR at only20% oversampling. Their transforms
are displayed in Figures11 and12.

V. REMARKS

A. Farrow’s Scheme

The interpolating kernelh(t) is, of course, computed in
tabulated form, and can be stored as a table. In fact, this format
is used in the Intersil#216. Farrow [8] has proposed a very
systematic implementation of the resampling calculationsif
h(t) is stored as a (true) polynomial. We have concatenated the
trigonometric-polynomial Remez algorithm described above
with the Remez best-(true)-polynomial fitter to achieve this.

For an oversampling margin of50%, the degree-28 polyno-
mial approximant to the interpolating kernelh(t) in Fig. 1b
(support length= 6, SNR = 30 dB, SFDR = 79 dB,)
achieves comparable SNR and SFDR levels (30 and77 dB);
lower degree approximants cannot match this SFDR perfor-
mance. For the kernel of support length 8, which achieved
100 dB SFDR, its degree-28 approximant delivers93 dB
SFDR. Finding a polynomial approximant for the kernel of
support length18, which achieved100 dB SFDR at 20%
oversampling, was impossible; a degree-33 approximant de-
livered only 51 dB, and higher degree polynomials were
illconditioned. This highlights the difference between trigono-
metric and true polynomial approximants; the trigonometric
polynomial which comfortably generated this h(t) has degree
576 (!)
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Fig. 10. 6-tap re-sampler:2πH(ωT )
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Fig. 11. 8-tap Re-sampler:2πH(ωT )

Of course, the Farrow scheme sacrifices speed of computa-
tion for reduced memory requirements. A variant of the Farrow
scheme can be constructed to employ piecewise polynomial
interpolating kernels. We constructed an approximant to the
kernel of support length8 (30 dB SNR, 100 dB SFDR)
consisting of8 degree-6 polynomials that delivered30 dB
SNR and94 dB SFDR.

B. Complexity

The storage of tabulated values ofh(t) or of its polynomial
approximants is facilitated by symmetry; both are even func-
tions. Piecewise polynomial approximants do not enjoy this
property. The evaluation of equation(2) requires one multiply
per unit length of the support ofh(t), times the computational
burden of evaluating each value ofh(t) - zero for tabulated
values,d multiplies for piecewise polynomials of degreed
(Horner’s method),[d/2 + 1] multiplies for full polynomials
(half the degree for even polynomials plus one to calculate
t2).

C. Jitter

Jitter is the phenomenon that occurs due to imprecise
stipulation of the interpolation timet (due to discretization,
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Fig. 12. 18-tap re-sampler:2πH(ωT )

rounding, etc.) We estimated this effect by comparing the
SNRs and SFDRs reported for a discretization level of32
points per unit time with those for128 points. The discrepan-
cies only amounted to fractions of dB.

D. Inband Error Metrics

The common industry practice for estimating the accuracy
of the interpolates is the ratio of the signal noise (L2 norm
squared) to the error noise, equation(7). Other norm-estimates
can be similarly derived. Among the possibilities are the
following:

N ≤ 2πmax
∣∣X(ω)

∣∣2
ΩBW∫

−ΩBW

∣∣1 − 2πH(ωT )
∣∣2dω,

≤
∥∥x(t)

∥∥2

1

ΩBW∫
−ΩBW

∣∣1 − 2πH(ωT )
∣∣2dω /2π,

=
∥∥x(t)

∥∥2

1

∥∥sinc(t) − h(t)
∥∥2

2
,

E. Filter interpretations

A filter equation has the formz(t) =
∑

n y(t − n)h(n).
The interpolator equation(2) does not qualify, because of the
variability of the parameterτ in the argument ofh (in the
right hand member of(2)). If τ = constant, however,(2) is a
filter, and it should therefore have sinusoids as eigenfunctions;
it follows that the complex monotoneejΩT is an eigenfunction
and should be reproduced without spurs. This is, in fact,
the case because the signal is then resampled at the same
frequency; all the spurs align in Figure6, for T ′ = T .

Another interpretation of equation(2) that validates it as
a filter equation is seen by subdividing the sample interval
T = P∆t, takingt = n∆t, and defining the discrete signal

xsample(n∆t) = x(
n

P
T ) when

n

P
is an integer,0 otherwise;

for then (2) becomes

ξ(m∆t) =
∑

k

xsamp(k∆t) h(
k − m

P
),
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which has the filter format. All the frequency interpretations
described above can be gleaned from this formulation.

Before we happened upon the notion of attacking the
problem with the Remez algorithm, we expended (a lot of)
effort to design interpolating kernelsh(t) with small supports
by using classical windowing functions to approximate the
“boxcar” transform of the sinc function. We tested iterated
Hamming windows, combination of Helms-Thomas[9, 10] and
Hamming windows, andC∞-mollified boxcars to try to bring
the SFDR down. While we successfully achieved rapid falloff
of H(ω) for large |ω|, the thorny first spur atω ≈ 2π/T −
ΩBW (Figure 5) was impossible to suppress. The equiripple
structure, exhibited in Figure9, of the Fourier transforms of
the interpolating transforms produced by our new procedure
provides the “flat” falloff that is needed. Indeed, it shows that
the new kernels are optimal in the usual sense[11].

VI. CONCLUSION

This novel application of the Remez algorithm handsomely
outperforms all of the interpolators surveyed by the authors
when the SFDR is taken into consideration. It seems likely that
it will prove to be optimal for the resampling task. Codes for
designing these resamplers for arbitrary system specifications
are available from the second author (patent pending).
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