
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1380

�

Abstract—The software evolution control requires a deep
understanding of the changes and their impact on different system
heterogeneous artifacts. And an understanding of descriptive
knowledge of the developed software artifacts is a prerequisite
condition for the success of the evolutionary process.

The implementation of an evolutionary process is to make changes
more or less important to many heterogeneous software artifacts such
as source code, analysis and design models, unit testing, XML
deployment descriptors, user guides, and others. These changes can
be a source of degradation in functional, qualitative or behavioral
terms of modified software. Hence the need for a unified approach
for extraction and representation of different heterogeneous artifacts
in order to ensure a unified and detailed description of heterogeneous
software artifacts, exploitable by several software tools and allowing
to responsible for the evolution of carry out the reasoning change
concerned.

Keywords—Heterogeneous software artifacts, Software evolution
control, Unified approach, Meta Model, Software Architecture.

I. INTRODUCTION

N computerized applications related to all activities areas,
software evolution is the major process that ensures

innovation and continuous improvement methods, techniques
and tools of information processing. This explains why the
dedicated cost is the most important of all IT activities. Be
successful the software evolution by optimizing the effort and
high cost is became a primary goal of software engineering.
The optimization and the success of the evolutionary process
require an understanding and a descriptive unification of the
developed software artifacts, allowing better control of the
underlying activities of the evolution. This knowledge
includes in first the individual description of each artifact and
its interdependence against the rest of the software. The
architectural description adopted of software artifacts and the
partial views graphs of relationships (inheritance,
communications, call, import, etc...) Between artifacts are
parts of the body of knowledge to be made available during
the various situations of reasoning which can stake the process
of evolution.

We consider an application is described by a set of
heterogeneous and distributed software artifacts. The artifacts
can refer each other explicitly (e.g. a hyperlink in an HTML
document) or implicit manner (e.g.: a Java class is referenced
by name in an XML deployment descriptor). All artifacts can

M. Zekkaoui is with the Faculty of Science and Technology, Tangier,
Morocco (phone: +212676013932; e-mail: zekkaoui@gmail.com).

A. Fennan is with the Faculty of Science and Technology, Tangier,
Morocco (e-mail: fennan@fstt.ac.ma).

evolve over time (artifacts can be removed others can be
added). Each artifact may change over time. These changes
can be a source of degradation in functional, qualitative, or
behavioral terms of modified software. Hence the need for a
meta-model of unified representation of heterogeneous
artifacts and an expression formalism of all artifacts. The
formalism of description shall be uniform and will allow the
description of heterogeneous artifacts allowing to the
responsible for development to use a unified description of the
artifacts to lead better software control.

It is important to emphasize that the current traditional
approaches to understanding the evolution of the software
include the use of the history of software systems to analyze
their current situation and predict future changes
complemented by refactoring approaches, or existing reverse
engineering [1]-[4]. These approaches extract the data either
by browsing all artifacts with a listening on developer
construction operations then stored in a database [5], or
through the conversion of all artifacts into XML before
applying consistency rules [6]. This requires the handling and
storage of a large data set of software description. Approaches
traditionally adopted for these empirical studies require costly
data collection (often manual) and complex statistical analysis.
In the case of our approach, allowing us to users (who are
often responsible for evolution) to extract the levels of
artifacts that need and stored in the database to lead better
control of the software (example: Classes, methods, attributes,
beans deployment descriptor).

It is also important to note that these approaches generally
allow that to work on homogeneous artifacts (documents
specific objects e.g.: UML models) [7]-[9], or using pivots
formats (such as XML) to hide the heterogeneity [6], [10]. In
addition, they generally cannot cope with the evolution of
different heterogeneous artifacts.

Under the control of software evolution, this paper proposes
an extraction and representation of the different software
artifacts in order to ensure a unified and detailed description of
heterogeneous software artifacts, exploitable by several IT
tools and allowing responsible for the evolution to complete
the adopted reasoning to the concerned change.

The approach is validated by performing a specific platform
for the collection of knowledge and a semi-automatic
mechanism to facilitate the extraction of all types of
heterogeneous artifacts. Validation is performed mainly in the
source code to validate the extraction of software artifacts and
their dependencies in distributed applications. The rest of the
paper is organized as follows:

Section II presents the foundations of our approach,

Heterogeneous Artifacts Construction for Software
Evolution Control
Mounir Zekkaoui, Abdelhadi Fennan

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1381

showing how we attacked the problem, the methods and tools
we used and presents the results of our approach, the meta-
model construction, unified formalism of software artifacts
extraction. Section III presents the web platform that we have
developed to validate our approach and we conclude in the last
section.

II.UNIFIED META-MODEL OF ARTIFACTS

A. The Artifacts Classification
Several approaches of software artifacts building have been

implemented. They generally use systems queries on graphs
and graph rewriting systems. For decades compilers have used
tree structures to represent the programs. However, trees are
limited in the representation of different software artifacts.
The concept of graph, more particularly that of typed and
attributed graphs [11], is a generic way, semi-automatic and
most suitable than trees to represent the structure of artifacts
as well as additional information about themselves (through
attributes).

Classification or hierarchy of artifacts proceeds a strategy of
simplification the artifacts extraction process. We retain two
main classification criteria allowing us to define two levels (or
dimensions). These are the abstraction and granularity levels
[12]. It is important to note that artifacts can have the same
abstraction level without the same granularity level. Within
the paradigm object, for example, an instance variable (field of
a class) and a method have the same abstraction level, but not
the same granularity level. Similarly, artifacts can have the
same granularity level but different abstraction level. Thus, a
class has the same granularity level as a template or class
template but not the same level of abstraction (a template to a
level higher than that of a class abstraction).

For a better understanding of software applications, we
considered that all artifacts, regardless of their type, from
different file types and are similar to typed graphs [11]. An
Artifact is then composed of elements (artifacts). Each
element is typed. It can carry values for attributes and can
reference other elements. All attributes and references are also
typed. The artifacts are interconnected to different abstro-
granular levels [12]. All artifacts can be represented by the
hierarchy levels in the triple <ΣFt, ΣLv, Σart> where ΣFt is the set
of all file types, ΣLv is the set of all levels. The kth artifact of jth

level of the ith type of file is represented by the triple <Fti, Lvj,
artk>. For example, <FtJava, LvClass, Calculator> denotes that
Calculator is an artifact belonging to the class level in a file
Java type.

Modeling the inter-relationships artifacts is a complex and
very important task. We consider three types of relationships
(Fig. 1) [13]. They are:
� Inter-files relationships: These relationships connect

artifacts belonging to two different file systems. This is
the case for example of the relationship between a UML
class and a Java class that implements or the relationship
between java class and the deployment descriptor (xml
file).

� Horizontal relationships: They represent different kinds

of semantic links in the same file and linking artifacts of
the same granular level. This is particularly the case of the
call relationship between two methods or the inheritance
relationship between two classes, ...

� Vertical relationships: They connect two artifacts
belonging to the same file at different granular levels. An
example of this type of relationship is the one between a
class of these attributes, a method body or block the
instructions that compose it...

Fig. 1 Software artifacts classification by file type

B. U2MHA: The Construction Meta-Model
The platform that we have developed analyzes and extracts

the heterogeneous artifacts by different kinds of parsers that
we defined by file type and level of artifact and allows a
representation of these artifacts homogeneously in the meta-
model U2MHA proposed in Fig. 2.

To improve the performance of our platform, we propose a
unified approach to extract only the artifacts selected by
evolution expert, it means that the developer responsible for
the evolution specifies the different artifacts to extract by level
and it is through a web form (web interface) choosing file type
and artifact levels to extract. For more complex artifacts such
as compounds artifacts, text files and documents specifying
business rules, we adopt an approach that is to define them
manually by the expert of evolution. This means that artifacts
are extracted manually (example above) or by specific
algorithms implemented by file type and level of artifact such
as java and xml files.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1382

Fig. 2 shows the meta-model U2MHA tha
describe the structure of uniform representa
[13]. Specifics algorithms have defined by fi
of artifacts and other manually added by expe
adopted approach. Listeners adapted by le
different construction operations (create, m
monitor each artifact in the meta-model
respecting the temporal order of the diff
(versioning) for better control of software evo

Fig. 2 (U2MHA) Unified meta-model of heterog

We tried to provide a simple and scalabl
represent all types of artifacts. We considered
are stored in files. Each file type must hav
hierarchical levels (e.g.: java file, the class le
methods which can find the parameters). T
also be represented in a hierarchical manne
have elements (artifacts), and each element
elements (artifacts), and so on. Each artifact b
and may have other attributes by level s
experts.

III. EXTRACTION MECHANISM (J
A job is a recording of artifacts extractio

file type and abstro-granular level, perform
through web application developed (forms)
started manually by the user of the applica
launched through listeners or programmed bat

Fig. 3 shows the process of creating and up
jobs.

RefLevel

Artifact

-Long version
-String name
-String value
-Date date

ReferentialData

#String code
#String value
#description

Parent
0..*

0..1

1..*1

0..*

Parent

0..*

0..1

ArtifactAttribute

-String name
-String value

0..* 1

RefAttributType

1

0..*

0..*
1

at we proposed to
ation of artifacts
ile type and level
erts following the

evel are listening
modify, delete) to

of construction,
ferent operations
olution.

geneous artifacts

le meta-model to
d that all artifacts

ve abstro-granular
evel that contains

The artifacts may
r, an artifact can

t may have other
belongs to a level
set manually by

JOBS)
on parameters by
m by developers
). A job can be

ation as it can be
tch.

pdating extraction

Fig. 3 Jobs creation

Our web platform provides to
interface for manage extraction jobs
delete and launch). The user must se
by the extraction (or several spec
type), then it can choose an exis
(using parsers supplied with the ap
one. To create a new level the user
types of extraction:
� Delimiters: allows artifacts e

tokens (start and end) user
extraction uses a generic parser

� RegEx: for extracting artifa
specified regular expression, thi
generic parser RegExParser.

� New parser: Give users the
parser specific to their needs.

The meta-model EJ2M (Fig. 4) pr
extraction jobs created by users thro

File

-String name
-String path

RefFileType

1 1

0..*

t

n process

o developers an intuitive
s of artifacts (add, modify,
elect the file (s) designated
cific file by selecting file
sting abstro-granular level
pplication) or create a new
r must choose among three

extraction framed by the
r-specified, this type of
DelimitersParser.

acts respecting the user-
is type of extraction uses a

ability to mention a new

resents the data of different
ugh the web application.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1383

Fig. 4 EJ2M: Extraction Jobs Meta-Model

The launch of created jobs is translated by unified
representation of all software artifacts required in a
homogeneous form (Fig. 2). This is all done as a web
application within the Eclipse platform. In other words, the
developer has a uniform representation of all heterogeneous
artifacts without leaving his usual work environment and
therefore it is possible to simultaneously conduct changes on
the platform and an activity analysis in order to improve the
quality and consistency of data throughout the development
process. The prototype allows users to add new parsers and
customize the extraction by adding new jobs to treat other files
types, in addition to modify those already defined for a
specific extraction management.

IV. VALIDATION PROTOTYPE

For operational validation of the proposed approach for
software evolution, we have implemented an integrated
platform and hosting various modules and components that
implement each one of the aspects of evolution discussed in
this article.

Our platform and all the modules that constitute were
implemented with Java language by Eclipse IDE (Integrated
Development Environment) as web application shared and
scalable. The peculiarity and the central objective of Java is
that written in this language software should be easily portable
to multiple operating systems such as UNIX, Windows, Mac
OS or GNU / Linux, with little or no modification. The choice
of Eclipse was dictated by the fact that it is an open source
IDE interesting a number of increasingly growing developers
worldwide [14]. This is, in our opinion is the best way to
disseminate our implementations within the developer

community for which they were designed in the first place.
This, we think he should promote the use and test our

implementations and therefore their continuous improvement.
It is also a good opportunity to find partners testing our tools
on real projects sizes.

A web project consists of a set of resources such as source
code files, xml documents, properties files, texts, etc. The
platform we have developed allows retrieving and viewing
heterogeneous artifacts by different kinds of parsers (Parsers)
and allows a representation of these artifacts homogeneously
in the meta-model U2MHA previously proposed.

We implemented parsers by file type (java, properties, xml,
text ...) and libraries in java to retrieve artifacts semi-
automatically. It also allows to listen to the different
construction operations (add, modify, delete) to update the
repository artifacts. We also implemented a web application
accessed by everyone, to customize the extraction file type
and level of artifact through a simplified web form instead of
extracting all the software artifacts. Through the web interface
of this application, you can modify the technical parameters of
the application, search and view the extraction results
(artifacts).

For more complex artifacts such as compounds artifacts,
text files and documents specifying business rules, we adopt
an approach that is to define it manually by the expert of
evolution. That means that the repository of software artifacts
is extracted by different parsers and different static analysis
tools and also by information provided by the experts or
development actors (architects, quality specialists, etc...).

In this section, we describe the structure and design of the
validation prototype of the approach of semi-automated
construction of artifacts that we offer. The prototype still
allows analyzing different artifacts constituting a software
application and was primarily experienced in the case of
distributed applications Java type.

The prototype contains:
� The Parsers (parser by file type) to analyze the different

file types to feed the referential database of software
artifacts (see meta-model U2MHA – Fig. 2).

� A uniform mechanism of extraction based parsers and
allows you to customize and develop new extractors by
file type and abstro-granular levels.

� A web application allowing developers to specify the
types of files and abstro-granular levels involved in the
extraction, customization and development of other types
of parsers to support other file types by applying and
search and view the referential of artifacts.

A. Overall Architecture of the Validation Prototype
Our platform, called Archi Artifacts is a modular tool of

extraction and management of heterogeneous artifacts of
distributed applications. It is built using Eclipse. Eclipse is an
open source platform widely used to build an open and
extensible development platform consisting of tools and
runtimes for building, deploying and managing software
including all phases of the life cycle. Eclipse provides a set of
tools assisting the developer in every stage of development

ExtractionJob

+filePath
+package
+creationDate

ExtractionLevel

+name
+description

Parent level

0..1

0..*

1

0..*

EnumExtractionType
<<enumeration>>

+DELIMITERS
+REGEX
+NEW_PARSER

1

0..*

ExtractionType

DELIMIERS

+startToken
+endToken

RegEx

+regex

NewParser

+name
+description
+classPath

1

0..1

FileType

+name
+description

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1384

and testing to deployment. We developed parsers, an
extraction strategy and a web project designed to manage and
customize the extraction of heterogeneous artifacts affecting
distributed applications. Fig. 5 shows the overall architecture
of Archi Artifacts. Archi Artifacts comprises three major
modules, are: Artifact Parser, Artifact Extractor and Artifact
Data Visualizer.

The internal architecture showing the interaction of these
modules is shown schematically in Fig. 5. We discuss the
implementation details of these three modules in the following
sections.

Fig. 5 Validation Overall architecture of the validation prototype

B. Artifact Parser Module
Artifact Parser is a module of our platform including

parsers by file type and artifact level, allowing analysis of
source documents of various types of files and programming
language (+ + Java, C, C, Perl, PHP, COBOLE, text, xml, doc,
etc.). Parsers have been developed using Java Compiler
Compiler (JavaCC) and other existing open source parsers.
JavaCC is a compiler compilers and a lexical analyzer
generator entirely written in Java and integrated the Eclipse
platform. It allows to interpret the grammar of a given
language and to generate a parser. This simplified us the
opportunity to add new file types as the progress of the
development of our prototype. We have developed many
parsers also includes a parser of source code and Java byte
code. For the latter parser, a step of decompilation was
necessary. So we integrated a Java decompiler called
JreversePro. It is an open source Java decompiler used under
the GNU GPL license. A source from the input files,
ArtifactParser module is used by the Artifact Extractor module
for generating various software artifacts and their relationships
as specified by our U2MHA model.

C.Artifact Extractor Module
A modular and scalable architecture, including an extraction

mechanism that allows management of extraction jobs through
a graphical interface and allows developers to add other file
types dealing other extraction modules. The module contains

listeners of modification actions on selected file types, using
extractors to update the U2MHA repository.

The Artifact Extractor module is a strategy that includes
specific implementations using different parsers (depending
on the type of files to scan) to generate different software
artifacts and their relationships as specified by our U2MHA
model. This mechanism was implemented using the design
pattern Strategy. The Strategy pattern is a software design
pattern that enables an algorithm's behavior to be selected at
runtime under certain conditions. The intended use of this
Strategy is to enable evolution experts to customize or create a
new specific extraction code for other file types. The result of
the execution of Artifact Extractor module in other words the
generated artifacts (stored in the repository of artifacts
U2MHA) is used either for research and consulting software
artifacts by Visualizer or by other tools of analysis and
management of data consistency.

D.Artifact Data Visualizer Module
It allows viewing the extraction results, history and the

relationship between the different artifacts, and can be evolved
perhaps by the developers to meet the expectation of users.

Artifact Data Visualizer is a visualization module multiple
of our referential of artifacts (extraction result), we have
implemented a web interface based on HTML5 and CSS3for
the research and consultation of the various software artifacts.
We are currently working on the visualization as graphs and
manipulation of these graphs to define the various operations.
We will use the framework Java Universal Network / Graph
(JUNG). This is an open source library that can be reused for
modeling, analysis and visualization of data as graphs or
networks. The library allows the definition of the graph data
structure and use some primitive user interfaces associated
with handling tools graph construction.

V.CONCLUSION AND PROSPECTS

In this article, we have presented an approach for extracting
heterogeneous artifacts on a simplified and unified meta-
model. This approach can be used by several computer tools
for better software development evolution. It includes a
unified meta-model of representation of different
heterogeneous artifacts and a uniform and modular mechanism
of extraction to support information engineering in software
development projects. And we validated our approach by
developing a web platform to better use by the developer
community.

Through its modular architecture, our web prototype serves
as a good basis to implement a whole chain of processing tools
above it. Many tasks in the software development and reverse
engineering require not only to retrieve information that
interesting to us, but also to deal with a certain special rules.
Tasks such as pretreatment, refactoring, consistency
validation, etc., all require a custom extraction tool. For
example, block modification of any entity before updating the
class in the UML model. This example shows that our
approach is a good basis for the implementation of tools and
languages for the development of software engineering.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1385

Our implementation works continue and we are currently
using this approach to manage the consistency of
heterogeneous software artifacts.

REFERENCES

[1] M. Ambros, M.Lanza, “Reverse Engineering with Logical Coupling”,
WCRE ’06 : In Proceedings of the 13th Working Conference on Reverse
Engineering, IEEE Computer Society, pp. 189-198, 2006.

[2] M. Lungu, M.Lanza, T. Girba, R.Heeck, “Reverse Engineering Super-
Repositories”, In 14th Working Conference on Reverse Engineering, pp.
120-129, 2007.

[3] H. Kagdi, S. Yusuf, J. I. Ma- letic, “Mining sequences of changed-files
from version histories, MSR ’06 : In Proceedings of the 2006
international workshop on Mining software repositories, ACM, pp. 47-
53, 2006.

[4] F. V. Rysselberghe, S.Demeyer, Studying Software Evolution
Information by Visualizing the Change History, ICSM ’04 : In
Proceedings of the 20th IEEE International Conference on Software
Maintenance, IEEE Computer Society, pp.328-337, 2004.

[5] X. Blanc, I. Mounier, A. Mougeno , T.Mens, “Detecting model
inconsistency through operation-based model construction”, In
Proceedings of the 30th international conference on Software
engineering, pp.511-520, 2008.

[6] M. Eichberg, M. Mezini, K. Ostermann, and T. Schäfer, “XIRC: A
Kernel for Cross-Artifact Information Engineering in Software
Development Environments”, In Proceedings of the 11th Working
Conference on Reverse Engineering, pp.182-191, 2004.

[7] A.Egyed, “Fixing Inconsistencies in UML Design Models”, In
Proceedings of the 29th international conference on Software
Engineering, pp. 292-301, 2007.

[8] X. Blanc, I. Mounier, A. Mougeno , T.Mens, “Incremental Detection of
Model Inconsistencies based on Model Operations”, In Proceedings of
the 21st International Conference on Advanced Information Systems
Engineering, pp. 32-46, 2009.

[9] S. Caffiau, P. Girard, L. Guittet, X. Blanc, “Vérification de cohérence
entre modèles de tâches et de dialogue en conception centrée-
utilisateur”, Revue des sciences et technologies de l’information, ISI,
vol. 16, no. 5, pp.9-41, 2011.

[10] C. Nentwich, L. Capra, W. Emmerich, A.Finkelsteiin, “xlinkit: A
Consistency Checking and Smart Link Generation Service”, ACM
Transactions on Internet Technology, TOIT, vol. 2, no. 2, pp. 151-185,
2002.

[11] H. Ehrig, U. Prange, G.Taentzer, “Fundamental Theory for Typed
Attributed Graph Transformation, Graph Transformations”, In Second
International Conference, ICGT 2004, Springer 2004.

[12] A. Ahmad, H. Basson, L. Deruelle, M.Bouneffa, “A knowledge-based
framework for software evolution control”, in 27th INFormatique des
ORganisationsetSystèmesd'Information et de Décision (INFORSID), pp.
26-29, 2009.

[13] M. Zekkaoui, A. Fennan, “Consistency Management of Heterogeneous
Software Artifacts”, International Journal of Computer Applications,
vol. 78, no. 14, pp. 35-41, September 2013.

[14] G. Goth, “Beware the March of this IDE: Eclipse is overshadowing
other tool technologies”, IEEE Software, vol. 22, no. 4, pp. 108-111,
August 2005.

