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Abstract—This paper presents an adaptive feedback linearization
approach to derive helicopter. Ideal feedback linearization is defined
for the cases when the system model is known. Adaptive feedback
linearization is employed to get asymptotically exact cancellation for
the inherent uncertainty in the knowledge of the given parameters of
system. The control algorithm is implemented using the feedback
linearization technique and adaptive method. The controller
parameters are unknown where an adaptive control law aims to drive
them towards their ideal values for providing perfect model matching
between the reference model and the closed-loop plant model. The
converged parameters of controller would then provide good estimates
for the unknown plant parameters.
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. INTRODUCTION

ONTROL of nonlinear systems using the state feedback

linearization method, or the exact linearization method,
has received a great deal of attention in the nonlinear control
theory [1-3]. Feedback linearization consists of finding a
feedback control law and a state variable transformation
(diffeomorphism), such that the closed-loop system model
becomes linear in a new coordinate system. The applicability of
feedback linearization, however, is somewhat limited due to the
requirement of detailed knowledge of the system model.
Moreover, along with stringent constraints that must be
satisfied by the original nonlinear system in order to synthesize
the nonlinear controller. In our study, to facilitate the use of the
feedback linearization without a prior knowledge of the system
nonlinearities, the twin rotor helicopter [4] is used in modeling
the unknown nonlinear system. Since helicopters are difficult
types of aircraft to control. Generally they exhibit complex
behaviors and their dynamics are in general nonlinear, time
varying and may be highly uncertain.
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Il. SYSTEM DESCRIPTION

A. Modeling of Helicopter

Dynamics of the twin rotor system, are derived in [5] for the
ETH helicopter process using Euler-Lagrange approach. A
schematic of the helicopter process configuration is shown in
Fig. 1. The helicopter consists of a vertical axle (A), on which a
lever arm (L) is connected by a cylindrical joint. The helicopter
has two degrees of freedom: the rotation of the vertical axle
(angle) with respect to the fixed ground, and the pivoting of the
lever arm (angle) with respect to the vertical axle. Two rotors

are mounted on the lever arm: Rl, and Rz, with the resultant
aerodynamic forces giving rise to moments in the B and g
directions, respectively. The voltages U, and U, to the rotor
motors are the inputs of the system.

The dynamics for ETH helicopter model are:

d .
—¢= 1
dt¢ ¢ ()
d . .
a¢: L, + L+ L, ] @)
d .
—0=0 3
at (3)
d . .
EHZLS [L + L, + L] @)

Fig. 1 Helicopter process configuration
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ia) ——ia) +iu (5)
dt T, kT,
d w :—ia)2+ u, (6)

T, kT,
where:
L, =cos® @, —2hcoséml, +h?sin®6m+J,
L, = 2cos@sin 8g63 | —2h(sin? 6 — cos? )goml
L, = 2h” sin @ cos Agém
L, = D, || cos 6 + 1, c0s 6C,,, |, |
L, =J, h’m
L, =—c0s@sindp?J, —h(-sin’ @+ cos’ G)g°ml,
L, =—gcoséml_ +h?sin@cosdp’m
Ly = mghsin 6 +1,C,0,|w,|+ D,w,|w,|

where D, , D, are aerodynamic torque coefficient, C,, C,
are Drag force coefficient , K, , K, are rotors constant, T, ,

T, are rotors time constants and U, , U, are rotors input
voltages.

B. Simplification of the Model

The values of different parameters are given in [6]. Due to
complexity of nonlinear terms, exact state feedback
linearization of (1) to (6) is not possible. Therefore, the model is
simplified by reducing the height of the pivot point to zero i.e.
h=0.

After inserting values of various parameters, the resulting
dynamics of twin rotor system are:

X, =X, (7)

X, =1.16x107° X sec(X,) +1.1x107* xZ sec(x,)
+2X,X, tan(x;) (8)

Xy =X, 9)

X, =1.998x107* xZ +7.05x107°x?

—14.98¢08(X;) — X2 €0S(X,) Sin(X;) (10)
%, = —0.9091x, +90.9091u, (11)
X¢ =—3.03x4 +218u, (12)

I1l. FEEDBACK LINEARIZING CONTROL OF HELICOPTER

A. Feedback Linearizing Control

A brief review of nonlinear control using feedback
linearization [7] is presented. Without loss of generality, the
multi-input, multi-output nonlinear system with m-input,
m-output is considered.

x=f(x)+g,(u; +...+g,(X)u,
y= hl(x)
: (13)
Yo =Ny (X)

where x eR" s state vector, ueRP represents control
inputs, y eRP stands for outputs, f and g are smooth
vector fields, and h is a smooth scalar function. Now,
differentiate the outputs Yi with respect to time to get

p
yi=Lh; + D (Lgh)y; (14)
i=1

In (14) L h; stands for the Lie derivative of h; with respect to
f ,similarly L;h; . Note that if each of the (L h;)(x) =0,
then the input do not appear in (14) . Define ; to be the

smallest integer such that at least one of the inputs appears in

y? e,

. . P .
y = Uh, + > L, (Lh) ), (15)
i=1
With at least one of the L (L’?’lhj) # 0 VX. Define the

p x p matrix A(X)as

Loy (L77hy) Ly (L)
AX) = : " : (16)
Lgl(L};l_lhp) Lgp(L};pilhp)

Then equation (15) may be written as
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Lth, u;
Co = : + A(X)
yy L' h, u

yfh)
: «))

If A(X) € RP*P is bounded away from singularity, the state
feedback control law

Lh,
u=-A(x)" +A(X) v (18)
Leh,
Yields the closed-loop decoupled, linear system
(v
=] (19)
(rp)
Yo' Vo
where [Vl v, ]T are the new sets of inputs defined by the
designer.

Once linearization has been achieved, any further control
objective such as model latching, pole placement, tracking may
be easily met. If A(X) define in (16) is singular, linearization
may still be achieved using dynamic state feedback. The
development may be followed using integrators before some of
the inputs; exact conditions under linearization may be
achieved by given dynamic state feedback [8].

B. Nonlinear Control Design for Helicopter

We can divide the dynamics in two subsystems. Subsystem 1
contains equations (7) to (10) whereas subsystem 2 consists of
(11) and (12). Subsystem 1 represents the position of twin rotor
system whereas subsystem 2 represents the velocity of main
and tail rotor. So,

X2
2x,, tan(x; )
X4
—14.98¢0s(x, ) — X2 cos X, sin(x,)

F(x) =

0 0
0.116sec(x,) 1.1sec(x,)
0 0
1.998 0.0705

g(x) =

h) =[x X

The feedback linearization law is

u=-A"X)b(x)+ A(X) v

where A(X) with p = 2 is given by

A 2{0.116sec(x3) 1.1sec(x3)} 0
1.998 0.0705
and
2X,X, tan(x,)
b — 274 3
) [—14.98003(x3)—x§ cos(xs)sin(xs)} @)
Thus,

NN
= A" (X)| —b(x)+
u, v,

For tracking of outputs the control inputs V, and V, are
selected as:

|:V1} :|: ydl - Kllél - K12e1 }
\P ydz - KZléZ - Kzzez

€, and e, are errors defined as: € =Yy, —Y, and

(22)

e, =Y,— Yy, Where Y,;,Y,, are desired outputs. From
(22), the error dynamics are given by:

g +K, & +K.,e =0
"l 11'1 12~1 (23)
€, +K,e +K,e, =0

IV. ADAPTIVE FEEDBACK LINEARIZATION SCHEME

In practical implementations of exactly linearization control
laws, the chief drawback is that they are based on exact
cancellation of nonlinear terms. If there is any uncertainty in the
knowledge of the nonlinear functions f and g , the
cancellation is not exact and the resulting input-output equation
is not linear. we use the parameter adaptive control to get
asymptotically exact cancellation.

A. Adaptive Control of SISO Systems
Consider a SISO system with L h(X) = 0 . Further, let
f(x)and g(x) have the form

(24)

f(0 =301,
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9(x)=>_679,(x) (25)
j=1

with 6’i1,i :1,---,n1;6j2, j=1....n, unknown parameters

and the f,(X), g;(X) known functions. Consequently, the
control law u is replaced by

u= % (- L?h+ V) (26)
L,h

and L h, L hare the estimates of L h, L h, respectively

Lih=3 1)L ;h (27)
i=1

L,h=>02(t)L h (28)
i=2

. .
(HH,QZT) , @ R™™ the parameter estimate, and

p=0- 0 the parameter error, then substituting (26) into (18)
and after some calculation yields

y=v+ ¢1T Wy + @y W, (29)
with
L,,h
w, e R" =] (30)
Lfnlh
L h A
. % [(=Lih+v)
w,eR™ = i |———= (31)
Lgnzh Lgh

The control law used for tracking is
V=Y, +K(Yy-VYq)
The following error equation is obtained relating y — Yy, =¢€

.
to the parameter error ¢ = (¢” +¢° ) _

e+Ke=g'w (32)

Along with the update law

$=—ew (33)

w e R™™ s define to be the concatenation of W,, W, . [9]

B. Adaptive Control of MIMO Systems

From the preceding discussion it is easy to see how the
feedback control law for square system can be adaptive by
replacing the control law of (18) by

u=—A?(x)xb(x)+ Ax)* xv (34)

Note that if A(X)is invertible, then the feedback linearization
control law is also the decoupling control law. Thus, if

A(X) and B(X) depend linearly on certain unknown

parameters, the scheme of the previous section can be readily
adapted.

V. SIMULATION RESULTS FOR HELICOPTER MODEL

Simulation results for both arrangements are shown. The
performance of the adaptive feedback linearization controller is
evaluated and compared with exact feedback linearization by
computer simulation.

A. Feedback Linearization with Known Parameter

Fig. 2 shows the response of system using feedback
linearization with known parameter. The Error between actual
and desired outputs goes to zero as shown in Fig. 3. Fig. 4
shows that all states of system are bounded.

In this part of simulation we will see that when we have
uncertain parameter in our system, feedback linearization is not
due to get exact cancellation for the uncertainty of the given
system parameters, and we have an error in our outputs. This
fact is shown by Fig. 5 and Fig. 6.

B.  Adaptive Feedback Linearization with Unknown
Parameter

In the last part of simulation we show that adaptive feedback
linearization can get asymptotically exact cancellation for the
inherent uncertainty in the knowledge of the given system
parameters. The responses are shown by Fig. 7 and Fig. 8.
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Fig. 5 Actual and desired outputs (unknown parameter control law)

Fig. 2 Actual and desired outputs (known parameter control law)
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Fig. 6 Tracking error (unknown parameter control law)
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Fig. 3 Tracking error (known parameter control law)
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Fig. 7 Actual and desired outputs (adaptive feedback linearization)

Fig. 4 System states (known parameter control law)
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Fig. 8 Tracking error (adaptive feedback linearization)

VI. CONCLUSION

In this paper, we have developed feedback linearization
strategy using the adaptive control of nonlinear systems with
unknown parameter. In this design, the feedback linearization
technique is used in an adaptive manner. Computer simulation
on a nonlinear system with unknown parameters was
performed, illustrating the effectiveness of the proposed
feedback linearization-based adaptive control method.

From these results, it is concluded that the online adaptive
feedback linearization suggested in this paper is very effective
in dealing with performance degradation problem of the
trajectory following caused by insufficient information of
system parameters.
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