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Abstract—In this study, an analysis has been performed for 

heat and mass transfer of a steady laminar boundary-layer flow 
of a viscous flow past a nonlinearly stretching sheet. 
Parameters n, Ec, k0, Sc represent the dominance of the 
nonlinearly effect, viscous effect, radiation effect and mass 
transfer effect which have presented in governing equations, 
respectively. The similarity transformation and the 
finite-difference method have been used to analyze the present 
problem. 
 

Keywords—Nonlinearly stretching sheet, heat and mass transfer, 
radiation effect, viscous effect. 
 

NOMENCLATURE 
 
A  control surface area 
B  constant 
C  concentration 
D  diffusing coefficient 

pc   specific heat at a constant pressure 
Ec  Eckert number  
f   dimensionless stream function 
g   dimensionless temperature 
k1  surface temperature parameter. 
k   fluid thermal conductivity 

0k  dimensionless parameter related with thermal 
radiation 

*k   mean absorption coefficient 
L   reference length 
m   surface temperature parameter 
n   parameters related to the surface stretching speed. 

rN   radiation parameter 

rq   radiative heat flux 
T   temperature across the thermal boundarylayer 
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u, v   velocity components along x and y directions, 

respectively 
x, y  Cartesian coordinates along the plate and normal to it, 

respectively 
α  thermal diffusivity 
η  dimensionless similarity variable 
θ  dimensionless temperature 
μ  dynamic viscosity 
ν  kinematic viscosity 
ρ  density 
Pr  Prandtl number 

*σ  Stefan-Boltzmann constant 
τ  shear stress 

I. INTRODUCTION 
HE study of visco-elastic fluids had become of increasing 
importance in the last few years. Qualitative analyses of 

these studies have significant bearing on several industrial 
applications such as polymer sheet extrusion from a dye, 
drawing of plastic films etc. When the manufacturing process at 
high temperature and need cooling the stretching sheet. The 
flows maybe need visco-elastic fluids to produce a good effect 
to reduce the temperature from the sheet. And also, the fluids 
have processed many types of effects (i.e. magnetic force, 
buoyancy and mass diffusion) into the problem, and have 
become a hybrid system need to analysis by many different 
ways. It is a well-known fact in the studies of non-Newtonian 
fluid flows by Hartnett [1]. Rajagopal et al. [2] studied a 
Falkner-Skan flow field of a second-grade visco-elastic fluid. 
Massoudi and Ramezan [3] studied a wedge flow with suction 
and injection along walls of a wedge by the similarity method 
and finite-difference calculations. An excellent review of 
boundary layers in non-linear fluids was recently written by 
Rajagopal [4]. These are related studies to the present 
investigation about second-grade fluids. All of above are 
dealing with forced convection problems. Recently, Vajravelu 
and Soewono [5] had solved the fourth order non-linear 
systems arising in combined free and forced convection flow of 
a second order fluid, over a stretching sheet. The stretching 
sheet flow of a non-Newtonian fluid is also one of important 
flow fields in real world, Raptis [6] had studied heat  
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transfer of a visco-elastic fluid. On the other hand, researches in 
connection with visco-elastic fluid or second grade 
non-Newtonian fluids, but there are not the mixed convection 
flow [7]. Recently, the thermal boundary layer over a 
nonlinearly stretching sheet has become important for many 
studies toward the related problems. Rafael Cortell [8] studied 
effects of viscous dissipation and radiation on the thermal 
boundary layer over a nonlinearly stretching sheet. Kechil and 
Hashim [9] studied series solution of flow over nonlinearly 
stretching sheet with chemical reaction and magnetic field. 
Bataller [10] studied similarity solutions for flow and heat 
transfer of a quiescent fluid over a nonlinearly stretching 
surface. Cortell [11] studied viscous flow and heat transfer over 
a nonlinearly stretching sheet. Vajravelu [12] studied viscous 
flow over a nonlinearly stretching sheet. Sanjayanand et al. 
[13], Cortell, Rafael [14] and Seddeek [15] had studied the heat 
and mass transfer problems about the viscoelastic boundary 
layer flow over a stretching sheet with magnetic effect, but not 
consider the mixed convection with radiation effect. In the 
present investigation, a study for heat and mass transfer 
problem has been processed.  

II. THEORETICAL AND ANALYSIS 

A. Flow Field Analysis 
We consider the flow of an incompressible viscous fluid past 

a flat sheet coinciding with the plane y = 0, the flow being 
confined to y >0. Two equal and opposite forces are applied 
along the x-axis so that the wall is stretched keeping the origin 
fixed. The steady two-dimensional boundary layer equations 
for this fluid, in the usual notation, are:  

u v 0,
x y
∂ ∂

+ =
∂ ∂

                                                                           (1) 

2

2

u u uu v
x y y
∂ ∂ ∂

+ = υ
∂ ∂ ∂

                                                                (2) 

The boundary conditions to the problem are: 
n

wu (x) Bx ,= v 0=  at y =0,                                                   (3) 
u 0→  as  y →∞ ,                                                              (4) 
Defining new similarity variables as: 

n 1
2B(n 1)y x ,

2v

−+
η = ( )nu Bx f ' ,= η                                        (5) 

( ) n 1
2

Bv n 1 n 1v x f f '
2 n 1

−+ −⎡ ⎤= − + η⎢ ⎥+⎣ ⎦
 

and substituting into Eqs. (1) and (2) give: 

( )2 2nf ' ff '' f ''' 0
n 1

⎛ ⎞ − − =⎜ ⎟+⎝ ⎠
                                              (6) 

where a prime denotes differentiation with respect to the 
independent similarity variable η. The boundary conditions (3) 
and (4) become:   
f 0, f ' 1= =  at 0η =                                                                (7) 

'f 0→  as η→∞                                                                    (8) 
For the linearly stretching boundary problem (i.e., n = 1) the 
exact solution for the velocity field f is:  

f ( ) 1 exp( )η = − −η                                                              (9) 
and this exact solution is unique, while for the nonlinearly 
stretching boundary problem (i.e., n ≠  1) there is no exact 
solution. The shear stress at the stretched surface is defined as  

w
w

u
y

⎛ ⎞∂
τ = μ⎜ ⎟∂⎝ ⎠

                                                                        (10) 

and we obtain form (5) and (10) 
( ) 3n 1

2
W

B n 1
B x f ''(0)

2

−+
τ = μ

υ
                                               (11) 

 

B. Heat Transfer Analyses 
By using usual boundary layer approximations, the equation 

of the energy for temperature T in the presence of radiation and 
viscous dissipation, is given by:  

22
r

2
p p p

qT T k T u 1u v
x y c c y c yy

⎛ ⎞ ∂∂ ∂ ∂ υ ∂
+ = + −⎜ ⎟∂ ∂ ρ ∂ ρ ∂∂ ⎝ ⎠

                    (12) 

Using the Rosseland approximation for radiation [16], the 
radiative heat flux is simplified as  

* 4

r
4 Tq
3k y
σ ∂

= −
∂

                                                                    (13) 

We assume that the temperature differences within the flow 
such as that the term 4T  may be expressed as a linear function 
of temperature. Hence, 
expanding 4T  in a Taylor series about T∞  and neglecting 
higher-order terms we get  

4 3 4T 4T T 3T∞ ∞≅ −                                                                     (14) 
In view to Eqs. (13) and (14), Eq. (15) reduces to 

22

2
0

T T T uu v
x y k cp yy

⎛ ⎞∂ ∂ α ∂ υ ∂
+ = + ⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

                                        (15) 

where k
cp

α =
ρ

 is the thermal diffusivity; R
0

R

3Nk
3N 4

=
+

and 

*
T

R * 3

k k
N

4 T∞

=
σ

 is the radiation parameter. It is worth mentioning 

that the parameter RN  is physically more relevant that the 
similarity parameter 0k above introduced. For this reason, 
although throughout the paper the parameter 0k  will be 
employed some time to simplify some equations, however, we 
take RN  instead of 0k  as a governing parameter. If the thermal 
radiation’s effect is not considered in the energy equation, we 
have 0k  = 1 in the above equation. Similarity solutions of Eq. 
(15) can be found by choosing appropriate boundary 
conditions. It is of a certain interest to consider separately the 
characteristics of the following two cases of main practical 
interest.  

Here, the boundary conditions are: 
( )k1

WT T T Ax∞= = + as y=0;                                                 (16) 

T T∞→ as y→∞  
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Defining the non-dimensional temperature ( )
W

T T
T T

∞

∞

−
θ η =

−
 

and using Eqs. (5) and (16) into Eq. (15), we get .  

0 0
2k'' k f ' k f '

n 1
⎛ ⎞θ + σ θ − σ θ =⎜ ⎟+⎝ ⎠

                                                 (17) 

( )22n k
0 ck E x f ''−−σ  

( )0 1,θ =   ( ) 0,θ ∞ →                                                             (18) 

Where 
2

C
p

CE ,
Ac

=  and Pr υ
=
α

  

 

C. Mass Transfer Analyses 
The steady boundary-layer equation for this flow, mass 

transfer, in usual notations, is:  
2

2
C C Cu v D
x y y
∂ ∂ ∂

+ =
∂ ∂ ∂

                                                             (19) 

where C is the concentration, D is mass diffusivity, respectively. 
For the solutions of heat and mass transfer equations, it can be 
defined non-dimensional temperature and concentration 
variables as: 

w

C C( )
C C

∞

∞

−
φ η =

−
                                                                   (20)                                                             

This leads to the non-dimensional form of temperature and 
concentration equations as follows: 

'' '
cS f 0φ + φ =                                                                         (21) 

Where Sc= /Dυ  is the Schmidt number. The corresponding 
boundary conditions are: 

1φ =   at  0η =  
0 asφ = η→∞      

the heating rate on the wall is: 
(n 1) / 2

w y=0 w
Tq  = -k( ) k(T T ) B(n 1) / 2 x '(0)
y

−
∞

∂
= − − + υ θ

∂
   (22) 

Once we know the f (η) and its derivatives, one can calculate 
the values of the local skin friction at the surface from the 
following relations: 

(3n 1) / 2 ''
x y 0

u( ) B B(n 1) / 2 x f (0)
y

−
=

∂
τ = − = μ + υ

∂
                     (23) 

In addition, the local Nusselt number xNu  has defined by: 

w
x

w

qhx xNu
k T -T k∞

= =                                                            (24) 

This expression has written as: 
(n 1) / 2

xNu B(n 1) / 2 x '(0)+= − + υ θ                                         (25)                                                  
The Sherwood number has defined by: 

(n 1) / 2
x y 0

w

hx CSh ( ) B(n 1) / 2 x '(0)
C -C y

−
=

∞

∂
= = − + υ φ

∂
           (26) 

 

III.  NUMERICAL TECHNIQUE  
In the present problem, the set of similar equations (13) to 

(17) are solved by a finite difference method. These ordinary 

differential equations have discretized by an accurate central 
difference method, and a computer program has been 
developed to solve these equations.  To avoid errors in 
discretization and calculation processing and to ensure the 
convergence of numerical solutions, some conventional 
numerical procedures have been applied in order to choose a 
suitable grid size Δη = 0.01 - 0.05, a suitable η  range and a 
direct gauss elimination method with Newton's method [17] is 
used in the computer program to obtain solutions of these 
difference equations. Hsiao et al. [18-23] Vajravelu. [24] are 
also using analytical and numerical solutions to solve the 
related problems. So, some numerical technique methods will 
be applied to the same area in the future. In this study, the 
program to compute finite difference approximations of 
derivatives for equal spaced discrete data. The code employ 
centered differences of O( 2h ) for the interior points and 
forward and backward differences of O(h) for the first and last 
points, respectively. See Chapra and Canale, Numerical 
Methods for Engineers [25].  

IV. RESULTS AND DISCUSSION 
The model for grade-two fluids is used in this study. The 

effects of dimensionless parameters are included the 
nonlinearly number (n), the Prandtl number (Pr), the radiation 
parameter (k0), the viscous dissipation number (Ec) and the 
Schmidt number (Sc) which are mainly interested of the study. 
Flow and temperature fields of the stretching sheet flow are 
analyzed by utilizing the boundary layer concept to obtain a set 
of coupled momentum equation, energy equation and mass 
equation. A similarity transformation is then used to convert the 
nonlinear, coupled partial differential equations to a set of 
nonlinear, coupled ordinary differential equations. A 
second-order accurate finite difference method is used to obtain 
solutions of these equations. 
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Fig. 1 f  vs. η  for varies parameters 

 
Fig. 1 depicts dimensionless velocity profiles f vs. η  as 

Pr=2, Sc=0.2, Ec=0.1, k0=0.1 and n=0.01, 0.1, 1.0, 5.0, 10.0. 
Figure 1 reveals that the increase of n results in the decrease of 
dimensionless velocity distribution at a particular point of the 
flow region. This is because there would be a decrease of the 
momentum boundary layer thickness with the increase of 
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values of non-linear parameter n. From the result could find the 
momentum effect decreasing with a larger n. 
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Fig. 2 θ  vs. η  for varies parameters 

 
Fig. 2 depicts dimensionless temperature gradient profiles 

'θ  vs. η  as n=0.2, Sc=0.2, Ec=0.1, k0=0.1 and Pr=0.01, 0.5, 
1.0, 5.0, 10.0. Figure 2 reveals that the increase of Prandtl 
number Pr results in the decrease of temperature distribution at 
a particular point of the flow region. This is because there 
would be a decrease of the thermal boundary layer thickness 
with the increase of values of Prandtl number Pr. From the 
result could find the thermal effect increasing with a larger Pr. 
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Fig. 3 θ  vs. η  for varies parameters 

 
Fig. 3 depicts dimensionless temperature gradient profiles 

'θ  vs. η  as n=0.2, Sc=0.2, Pr=0.1, k0=0.1 and Ec=0.1, 3, 5.0, 
10.0, 15.0. Fig. 3 reveals that the increase of viscous dissipation 
number Ec results in the increase of dimensionless temperature 
distribution at a particular point of the flow region. This is 
because there would be a increase of the thermal boundary 
layer thickness with the decrease of values of viscous 
dissipation number Ec. From the result could find the thermal 
effect decreasing with a larger Ec. 

Fig. 4 depicts dimensionless temperature gradient profiles 
'θ  vs. η  as n=0.2, Sc=0.2, Ec=0.1, Pr=2 and k0=0.01, 0.5, 

1.0, 2.0, 3.0. Fig. 4 reveals that the increase of radiation 
parameter k0 results in the decrease of temperature distribution 

at a particular point of the flow region. This is because there 
would be a decrease of the thermal boundary layer thickness 
with the increase of values of radiation parameter k0. From the 
result could find the thermal effect increasing with a larger k0. 
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Fig. 4 θ  vs. η  for varies parameters 
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Fig. 5 φ  vs. η  for varies parameters 

 
Fig. 5 depicts dimensionless concentration profiles φ  vs. η  

as Pr=2.0,  k0=0.1, Ec=0.1 and Sc = 0.01, 0.5, 1.0, 2.0, 3.0. The 
effect of Schmidt number Sc on mass transfer process may be 
analysis from Figure 5 for the case of prescribed concentration 
and prescribed mass flux, respectively. Fig. 5 also shows that 
the increase of value of Schmidt number Sc results in the 
decrease of concentration distribution as a result of decrease of 
the concentration boundary layer thickness with the increased 
values of Sc. From the result could find the mass transfer effect 
increasing with a larger Sc. 

V. CONCLUSION 
There are some important conclusions as: 

 

(1) It seemed that the increase of Prandtl number Pr results in 
the decrease of temperature distribution at a particular point 
of the flow region.  

(2) It was found that when parameter n increased, the fluid 
velocity decreased. However it is observed that the effect of 
momentum in the boundary layer, which causes the 
temperature to decrease, while the presence of heat 
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absorption effects caused reductions in the fluid 
temperature, which results in decreasing the fluid velocity.  

(3) It was become that the increase of  Ec results in the increase 
of temperature distribution at a particular point of the flow 
region.  

(4) It is also observed that increase in thermal radiation 
parameter k0 produces a significant decrease in the 
thickness of the thermal boundary layer of the fluid and so 
as the temperature decreases in presence/absence of thermal 
conductivity parameter. 

(5) The effect of Schmidt number Sc on mass transfer process 
may show that the increase of value of Schmidt number Sc 
results in the decrease of concentration distribution as a 
result of decrease of the concentration boundary layer 
thickness with the increased values of Sc. 
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