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Abstract—Hazard rate estimation is one of the important topics 

in forecasting earthquake occurrence. Forecasting earthquake 
occurrence is a part of the statistical seismology where the main 
subject is the point process. Generally, earthquake hazard rate is 
estimated based on the point process likelihood equation called the 
Hazard Rate Likelihood of Point Process (HRLPP). In this research, 
we have developed estimation method, that is hazard rate single 
decrement HRSD. This method was adapted from estimation method 
in actuarial studies. Here, one individual associated with an 
earthquake with inter event time is exponentially distributed. The 
information of epicenter and time of earthquake occurrence are used 
to estimate hazard rate. At the end, a case study of earthquake hazard 
rate will be given. Furthermore, we compare the hazard rate between 
HRLPP and HRSD method. 
 

Keywords—Earthquake forecast, Hazard Rate, Likelihood point 
process, Point process.  

I. INTRODUCTION 
OINT process is a stochastic model that can explain the 
natural phenomena that are random in both space and 

time. The earthquake is one example of point process. In this 
model, the earthquake is seen as a random collection of points 
in space, where each point stated time or / and location of an 
event. 

The earthquake occurrence is generally viewed as a Poisson 
process. In this process, the occurrence is memory less and 
independent from the other. In this study, the time between 
successive earthquakes as random variable decrypted. 
Stochastic study of earthquake occurrence has been used since 
many years ago. Approach the probabilistic prediction 
magnitude earthquake on a particular fault proposed by 
Rikitake  and Ogata [10], [9]. 

Ferraes estimated the interval of waiting until the 
occurrence of the next earthquake (earthquake recurrence 
time) using the concept of conditional probability [6]. This 
concept explains that if an earthquake does not occur in the 
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time interval since the last earthquakes, the earthquake will 
occur at the maximum conditional probability. This model 
explains that the typical large earthquake will be repeated 
along the same segment of a fault or plate boundary. 

In terms of forecasts, the difficulty that arises is the 
involvement of the difference in the distribution of time since 
the occurrence of the last event. A number of distribution 
models often used are: Gaussian, Weibull, log normal, 
gamma, and Pareto [14]. However, it has yet to be claimed the 
most appropriate distribution for inter event time of two  
successive earthquakes. 

Earthquake hazard rate estimation studies have been carried 
out by experts. Vere-Jones [13] and Ogata [9] estimated the 
earthquake hazard rate using a parametric approach, namely 
through the point process likelihood equations called Hazard 
Rate Likelihood Point Process (HRLPP). 

The likelihood equation is expressed by Vere-Jones [13] 
and Ogata [9] as non-linear equations, where the solution is 
often solved numerically. The method used by Vere-Jones and 
Ogata is limited to the estimated hazard rate for observation 
interval. Furthermore, Sunusi et al. [11] using a temporal point 
process likelihood equations are constructed via Riemann 
Stieltjes approach to estimate the hazard rate for waiting time 
is exponentially distributed. 

This method uses a set time of occurrence of events in a 
time interval of observation. Study of hazard rate estimation is 
also expressed by Darwis  et al. [3] and Sunusi [12] using 
maximum likelihood and match it with the Gompertz models. 
To renew hazard models on location and time, a sequential 
approach was used least squares (least square sequential). In 
addition to the parametric approach, several experts using the 
non-parametric approach to estimate the hazard rate to be 
periodic Poisson process [7], [8]. 

II. HAZARD RATE ESTIMATION 

A. Hazard Rate Likelihood of Point Process 
Generally, likelihood function is product of probability 

density function. In point processes, the probability density 
function is not known. Hence, the likelihood function of point 
process is approximated by Poisson. The stationary Poisson 
process on the line is completely defined by [2], in which we 
use ܰሺܽ௜, ௜ܾ ሿ to denote  the number of events of the process 
falling in the half-open interval ሺܽ௜, ܾ௜ሿ for ܽ௜ ൏ ܾ௜ ൑ ܽ௜ ൅ 1: 
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ܲሺܰሺܽ௜, ܾ௜ሿ ൌ ݊௜,   ݅ ൌ 1, 2, … , ݇ሻ ൌ
∏ ሾఒሺ௕೔ି௔೔ሻሿ೙೔

௡೔!
௞
௜ୀଵ ݁ିఒሺ௕೔ି௔೔ሻ                                    

   (1) 
where  ߣሺ ௜ܾ െ ܽ௜ሻ ൌ ׬ ௕೔ݐሻ݀ݐሺߣ

௔೔
.  

Therefore, following directly from (1), that  
 
  ܲሺܰሺ0, ߬ሿ ൌ 0ሻ ൌ ݁ିఒሺఛሻ                   (2) 
 
is the probability of finding no points in an interval of length 
߬. This may also be interpreted as the probability that the 
random interval extending from the origin to the point first 
appearing to the right of the origin has length exceeding ߬. 
Besides that, the (2) shows that the interval under 
consideration has an exponential distribution. 
 Construction of likelihood function takes the more general 
form [2]: 
 

;ሺ଴,்ሿሺܰܮ ,ଵݐ ,ଶݐ … , ேሻݐ ൌ
݌ݔ݁ ቀെ ׬ ݐሻ݀ݐሺߣ ൅ ׬ log ሻ்ݐሻܰሺ݀ݐሺߣ

଴
்

଴ ቁ                              (3) 
 

Let the times of occurrence are ݐଵ, ,ଶݐ … ,  ௡ in time intervalݐ
[S,T] and hazard rate function in parameter form ߣሺ࣢|ݐ௧ሻ, so 
likelihood of point process is written by: 
 
,ଵݐ|ߠሺܮ ,ଶݐ … , ;௡ݐ ܵ, ܶሻ ൌ
ሼ∏ ࣢௧ሻ௡|௜ݐఏሺߣ

௜ୀଵ ሽ݁݌ݔ ቄെ ׬ ்ݐ࣢௧ሻ݀|ݐఏሺߣ
௦ ቅ                             (4) 

B. Hazard Rate Single Decrement  
In this section, we presented a method to estimate the 

hazard rate of temporal point process called HRSD. HRSD 
include likelihood estimation of single decrement and the 
momen estimation of single decrement [3], [6]. HRSD 
estimation different from estimation methods have been 
introduced and used in statistical seismology,  that is HRLPP. 

HRSD estimation considered as a waiting time estimation 
problem so that it can be used to forecast earthquake 
occurrence time for the next period, whereas the previous 
method of looking at the hazard rate estimation as a problem 
of estimation of event time occurrence in a time interval of 
observation. 

Another difference is the HRSD estimation calculated for 
each subsequent period. While the previous approach only 
estimate the hazard rate in the interval of observation. In the 
estimation method HRSD, besides many parameters  get  
involved of number of  earthquakes ሺ݀௧బ),  the parameter of 
earthquake occurrence time ሺݏ௜ሻ is considered. 

In actuarial studies,  hazard rate symbolized by ߤ௧బ, then we 
used ߤ௧బ for further discussion. Let ܺሺݐ଴ሻ ൌ ܶ െ  ଴ statesݐ
waiting time until the next earthquake occurrence, given the 
difference in time ݐ଴  since the last occurrence of seismic 
events and T is the time recurrence of the two earthquakes. 

Let ߤ, ܵ, dan f successively declared as hazard rate, survival 
function, and the probability density function.  Hazard rate can 
be expressed as [4]: 

 

௧೚ߤ ൌ lim∆௧బื଴
௉ሺ௧బழ்ஸ௧బା∆௧బ|்வ௧బሻ

∆௧బ
ൎ ௙ሺ௧బሻ

ௌሺ௧బሻ  
.            (5)  

             
By integral we have: െߤ௬݀ݕ ൌ ݀ ln ܵሺݕሻ  for ሾݐ଴, ଴ݐ ൅  ଴ሿ soݐ∆
that we found that there was no incident until ݐ଴ ൅  ଴ when itݐ∆
is known there was no incident until ݐ଴, is [1]: 
 

௧బ݌଴ݐ∆ ൌ ܲሺݐ଴ ൐ ଴ݐ ൅ ܶ|଴ݐ∆ ൐ ଴ሻݐ ൌ ݁ି ׬ ఓ೤ௗ௬೟బశ∆೟బ
೟బ  

       ൌ ݁ି ׬ ఓ೟బశೞௗ௦∆೟బ
బ .                                         (6) 

 
Suppose ݐ଴ ൌ 0 , that shortly after the earthquake, was 
obtained 
 
௧బ݌଴ݐ∆  ൌ  ܵሺݐ଴ሻ ൌ ܲሺܶ ൐ ଴ሻݐ ൌ ݌ݔ݁ ቀ׬ ௧బ∆ݕሻ݀ݕሺߤ

଴ ቁ     (7) 
 
where  ܵሺݐ଴ሻ is a survival function. Distribution of recurrence 
T and the waiting time until the next occurrence of each event 
is expressed as follows [1]: 
 

ܶ~.∆௧బ  ௧బ                        (8)ߤ௧బ݌
and 

             ܺ~.∆௧బ  ௧బା∆௧బ                              (9)ߤ௧బ݌
 
In this expression, .∆௧బ  ௧బା∆௧బ is the chance that an incidentߤ௧బ݌
occurred between ݐ଴ and ݐ଴ ൅  ଴  when it is known there areݐ∆
no events until ݐ଴, and 
 
׬ ሺ∆௧బ݌௧బߤ௧బା∆௧బሻ ൌ 1;    ୢ

ୢ୲
ሺ∆௧బ݌௧బሻ ൌ ஶ

଴ െ∆௧బ݌௧బߤ௧బା∆௧బ     (10) 
 
Hazard rate estimation using single-decrement approach 

through Maximum Likelihood Estimate (MLE) method 
requires information exit time, ie the time when the event 
arises. Suppose ݀௧బ that states the number of events that occur 
in interval ሺݐ଴, ଴ݐ ൅ 1ሻ and ൫݊௧బ െ ݀௧బ൯ state the number of 
events in ሺݐ଴, ଴ݐ ൅ 1ሻ  and ൫݊௧బ െ ݀௧బ൯  state the number of 
events after  ݐ଴ . Because the time for each event is different, 
then the event is considered individually and take the 
multiplication contribution of each event to the likelihood 
function. Likelihood L for the i-th event at intervals            
 ሺݐ௜, ௜ݐ ൅ 1ሻ  given by the probability density function  for the 
occurrence of events on that interval when it is known that no 
events until ݐ଴. It can be expressed as follows [5]: 

 
௜ܮ ൌ ݂ሺݐ଴ሺ݅ሻ|ܶ ൐ ଴ሺ݅ሻݐ ൌ ௌ൫௧బሺ௜ሻ൯ఓሺ௧బሺ௜ሻሻ

ௌሺ௧బሻ
            (11) 

 
That contributed to the incident- i in L. If let's say ݏ௜ ൌ
଴ሺ݅ሻݐ െ ,଴ݐ଴ is a time of event-i into the interval ሺݐ ଴ݐ ൅ 1ሻ, 
with 0 ൏ ௜ݏ ൑ 1, then 
 

௜ܮ ൌ ௌሺ௧బା௦೔ሻఓሺ௧బା௦೔ሻ
ௌሺ௧బሻ

ൌ.௦೔  ௧బା௦೔        (12)ߤ௧బ݌
 
Contribution of number of occurrences ݀௧బ to L is 
∏ .௦೔  ௧బା௦೔ߤ௧బ݌

ௗ
௜ୀଵ . Contribution of    ݊ బ െ ݀௧బevents which 
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occur after ݐ଴ ൅ 1 is ൫݌௧బ൯௡೟బିௗ೟బ  where ݊௧బ is the number of 
events that occur at ݐ଴ or after. Thus the total likelihood L is 
 

ܮ ൌ ൫1 െ ௧బ൯௡೟బష೏೟బݍ ෑ.௦೔ ௧బା௦೔ߤ௧బ݌

ௗ೟బ

௜ୀଵ

 

                           ൌ ൫݌௧బ൯௡೟బష೏೟బ ∏ .௦೔ ௧బା௦೔ߤ௧బ݌

ௗ೟బ
௜ୀଵ      (13) 

 
To solve the equation (13) for ݍො௧బ, we need  assumption that 
the distribution of  .௦೔  .௧బݍ ௧బା௦೔ is expressed in theߤ௧బ݌
Following this review, we consider ݈௧బା௦  is the number of 
events after ݐ଴ ൅  and we assumed that it was exponentially ݏ
distributed which is required to declare  .௦೔   .௧బା௦೔ߤ௧బ݌

If ݈௧బା௦ states the number of events after ݐ଴ ൅  is an ݏ
exponential function, then  

 
࢙૙ା࢚࢒     ൌ ܾܽ௦                                                          (14)  
              
For  ݏ ൌ 0, we have ݈௧బାଵ ൌ ܾܽ . So ܾ ൌ

૙శ૚࢚࢒

ࢇ
ൌ

૙శ૚࢚࢒

૙࢚࢒
 . Based 

on (10), we have   
 

࢙૙ା࢚݈ ൌ ൫݈௧బାଵ൯࢙. ൫࢚࢒૙൯૚ି࢙ ൌ ሺ࢚݌૙ሻ࢙. ݈௧బ.                           (15) 
 
Thus 
 
  ሺ݌௧బሻ௦ ൌ

௟೟బశೞ

௟೟బ
ൌ.௦ ௧బ݌                                          (16) 

 
and   
 
.௦ ௧బݍ ൌ 1 െ.௦ ௧బ݌ ൌ 1 െ ሺ݌௧బሻ௦ ൌ 1 െ ሺ1 െ  ௧బሻ௦.             (17)ݍ

 
Furthermore, 
௧బା௦ߤ    ൌ െ ln ௧బ݌ ൌ  (18)                                   .ߤ

 
Therefore, by (16) and (18), we obtained a total likelihood as 
follows: 
 
ܮ  ൌ ሺ1 െ ௧బሻ௡೟బష೏೟బݍ ∏ ௧బ൯௦೔ௗ೟బ݌௧బା௦൫ߤ

௜ୀଵ   
                    ൌ ௗ೟బߤ ݌ݔ݁ ቀെߤ ቂ൫݊௧బି݀௧బ൯ െ ∑ ௜ݏ

ௗ೟బ
௜ୀଵ ቃቁ             (19) 

Log likelihood for (15) is 
 
ℓ ൌ ln ܮ ൌ ݀௧బ ln ߤ െ ߤ ቂ൫݊௧బି݀௧బ൯ ൅ ∑ ௜ݏ

ௗ೟బ
௜ୀଵ ቃ .                (20) 

 
The solution of  ௗℓ

ௗఓ
ൌ 0  is 

 
ߤ̂   ൌ  

ௗ೟బ

൫௡೟బషௗ೟బ൯ା∑ ௦೔
೏೟బ
೔సభ

.                                   (21) 

 
Because of  ݍ௧బ is one to one correspondence with ߤ, then by 
(21) we have: 
 
ො௧బݍ   ൌ 1 െ exp ሺെ̂ߤሻ                                     (22) 

which is the maximum likelihood estimator for . 

III. CASE STUDY 
In this section, numerical simulations of HRLPT and HRSD 

are given. For this case, we  use earthquake occurrence data 
for Nusa Tenggara region which taken from the Engdahl 
catalog with a magnitude ܯ ൒ 5. Furthermore, we selected 
sampling units based on the observation period of 30 years. 

Subsequently, to obtain parametric model of hazard rate 
value, we make an empirical estimates. Furthermore, to find 
parametric model of hazard rate value, we performed 
regression to the hazard rate value. Determination of 
parametric models starting from the simplest model, that is the 
linear model, furthermore quadratic model, and cubic model. 
The result of estimation of empirical hazard rate ߣሺ࣢|ݐ௧ሻ for 
linear parametric model is:  

 
࣢௧ሻ|ݐሺߣ ൌ െ0.09588 ൅   , ݐ0.01563
 

with Mean Square Error (MSE) is 0.0123. Visually, the 
regression curve for cubic models have followed the pattern of 
the data. Based on residual normal probability plot, regression 
curve, and MSE = 0.0036, we concluded that the model with a 
cubic equation:  
 

࣢௧ሻ|ݐሺߣ  ൌ െ0.1002 ൅ ݐ0.06870 െ ଶݐ 0.00790

൅  ଷݐ 0.000247
 
 represent the hazard rate value. The result of HRSD 
estimation through maximum likelihood estimates procedure 
for exponential assumption can be seen in Table I. Based on 
the above description it can be seen that the estimated hazard 
rate through HRLPP and HRSD methods were not 
significantly different or the same. 

 
TABLE I 

SUMMARY HAZARD RATE VALUE THROUGH HRLPP AND HRSD METHOD 
No ሺݐ଴, ଴ݐ ൅ 1ሿ HRSD  ߤ௧బ HRLPP  ߣሺ࣢|ݐ௧ሻ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

(0,1] 
(1,2] 
(2,3] 
(3,4] 
(4,5] 
(5,6] 
(6,7] 
(7,8] 
(8,9] 

(9,10] 
(10,11] 
(11,12] 
(12,13] 
(13,14] 
(14,15] 
(15,16] 
(16,17] 
(17,18] 
(18,19] 
(19,20] 
(20,21] 
(21,22] 
(22,23] 
(23,24] 
(24,25] 

0.0286 
0.0296 
0.0300 
0.0000 
0.0313 
0.0648 
0.0348 
0.0723 
0.0782 
0.0207 
0.0211 
0.0437 
0.0914 
0.0244 
0.0000 
0.0251 
0.0259 
0.0528 
0.0285 
0.0581 
0.0620 
0.1377 
0.4711 
0.3261 
0.7565 

0.0282 
0.0290 
0.0299 
0.0000 
0.0308 
0.0635 
0.0339 
0.0702 
0.0755 
0.0204 
0.0208 
0.0426 
0.0889 
0.0244 
0.0000 
0.0250 
0.0256 
0.0526 
0.0278 
0.0571 
0.0606 
0.1290 
0.4444 
0.2667 
0.5455 
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The probability that there is no event in interval  ሺ0,  :଴ሿ isݐ

.௧బ ଴݌ ൌ ܵሺݐ଴ሻ ൌ ݌ݔ݁ ቊെ න െ0.1562 
௧బ

଴
൅ – ݏ 0.09786  ଶݏ 0.01121 

൅  ቋݏ݀ ଷݏ 0.000348 

        
.௧బ ଴݌ ൌ exp ሼ0.1562 ݐ଴ െ ଴ݐ 0.04893 

ଶ ൅ ଴ݐ 0.003736667 
ଷ െ

଴ݐ 0.000087 
ସሽ. 

So the probability that at least an event occur in the future 
interval is: 

.௧బ ଴ݍ ൌ 1 െ exp ሼ0.1562 ݐ଴ െ ଴ݐ 0.04893 
ଶ

൅ ଴ݐ 0.003736667 
ଷ  െ ଴ݐ 0.000087 

ସሽ 
 

TABLE II 
RESULT OF PROBABILITY EARTHQUAKE FORECAST FOR WAITING TIME 
EXPONENTIALLY DISTRIBUTED  IN INTERVAL ሺݐ଴, ଴ݐ ൅ ݊ሿ , THERE IS NO 

EARTTHQUAKE UNTIL ݐ଴. 
No ݐ଴ (year) .௧బ ଴ .௧బ݌  ଴ݍ
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1 
7 
15 
 21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0 
        0.79551 

0.64315 
0.56643 
0.45478 
0.32723 
0.20590 
0.11032 
0.04891 
0.01739 
0.00480 
0.00099 
0.00014 

1 
0.20449 
0.35685 
0.43357 
0.54523 
0.67277 
0.79409 
0.88968 
0.95109 
0.98261 
0.99519 
0.99901 
0.99985 
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