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Abstract—We present a hardware oriented method for real-time 

measurements of object’s position in video. The targeted application 
area is light spots used as references for robotic navigation. Different 
algorithms for dynamic thresholding are explored in combination 
with component labeling and Center Of Gravity (COG) for highest 
possible precision versus Signal-to-Noise Ratio (SNR). This method 
was developed with a low hardware cost in focus having only one 
convolution operation required for preprocessing of data.  
 

Keywords—Dynamic thresholding, segmentation, position 
measurement, sub-pixel precision, center of gravity.  

I. INTRODUCTION 

UTOMATIC indoor- and outdoor navigation techniques for 
robots and vehicles are of greatest importance for the 

development of future smart products and household robots. 
Fig. 1 depicts the schematic principle for navigation using a 

video camera assembled on top of a vehicle and light beacons 
sending light into the camera. This smart camera is able to 
identify a number of beacons in its neighborhood and measure 
the spatial positions of the light spots projected on the sensor. 
The angle of the incoming light rays relative to the vehicles 
direction can then be computed. Every beacon can be 
identified using coded light such that the position and direction 
of the vehicle can be calculated. This measurement technique 
is very similar to nautical navigation on sea. Larsson et al. 
presents a similar automatic navigation system based on a 
rotating laser [1]. The machine vision system used for 
navigation shown in Fig. 1 has motivated us to investigate how 
to get high precision on the light spot position measurement at 
real-time performance for a reasonable low hardware cost. 

Most of the computations for a machine vision system are 
preferably done on a computational platform closely located to 
the image sensor. The smart camera, see Fig. 2A, constitutes 
such a configuration [2][3].  
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Fig. 1 Navigation of vehicle using smart camera and light beacons. 
 

Machine vision algorithms are typically divided into the 
following steps [4]: Video is acquired from the image sensor at 
Image acquisition. Image objects are extracted from the pre-
processed video data at Segmentation, see Fig. 2B. During 
Labelling, pixels belonging to the same image component are 
assigned a unique label. At Feature extraction an image 
component is described for example in terms of region features 
such as area, ellipse-, square- or circle parameters. 
Components can also be described in terms of gray value 
features such as mean gray value or position. This feature 
information can then be used for Classification of image 
components. Information about recognised objects in the 
camera’s observation area can then be transmitted at the 
camera output using typically a very low bandwidth.  

Field Programmable Gate Array (FPGA) is a computational 
platform that offers massive parallelism, on-chip memories, 
arithmetic units and is therefore found to be most suitable for 
front end video processing [3][5].  
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Fig. 2 A) Smart camera. B) Fundamental steps of  machine vision. 

Hardware Centric Machine Vision for High 
Precision Center of Gravity Calculation 

Xin Cheng, Benny Thörnberg, Abdul Waheed Malik and Najeem Lawal 

A 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

494

 

 

However, due to the limited resources, it becomes essential to 
consider hardware costs such as memory storage requirements, 
bit-widths and complexity of arithmetic operations when 
selecting and designing algorithms for implementation in real-
time FPGA systems. 

When used for image processing, COG is an algorithm for 
calculating the mass center of an image object [6]. The image 
objects of interests must first be separated from the 
background at an image segmentation step before the COG can 
be applied separately on all objects [4][7]. This image 
segmentation is at its simplest form a threshold applied 
globally on the grey levels of the image. The precision of the 
calculated COG is dependent on image noise as well as the 
selected threshold. This is, because thresholding is the method 
to exclude pixels with low SNR from the COG calculation.  

We have found several articles on COG [6][8][9][10][11] 
and several books and articles on image segmentation [4][7]. 
But to our knowledge, we have not found any article that 
combines image segmentation with component labeling and 
COG that investigates the accuracy and robustness of the 
calculated object positions and its dependency of the SNR. We 
propose in this work an enhanced segmentation method for 
efficient extraction of light spots from a non uniform 
background to be combined with component labeling and 
COG for high precision measurement of image object 
positions. This enhanced image object position measurement 
algorithm is developed with a low hardware cost in focus. We 
strongly believe that algorithms for real-time video processing 
and machine vision must be developed in combination with an 
analysis of a possible computational hardware platform.   

II.  CENTER OF GRAVITY  

From the definition of COG [6], coordinate ),( yxc of a 

light spot in a gray-level 2D image can be calculated over a 
neighborhood Ω of pixels, 
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0<a  are input data to the COG calculation.  In the first case, 
the COG is attracted to the brighter pixels in the neighborhood 
or else darker pixels. Since the light spots in our study are 
brighter pixels, we apply the first case by simply selecting 

0=m  and 1=a . 
We can describe the approximate variance of the COG 

based on the assumption of an input image with additive noise 
having zero mean and variance 2σ [6], 
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N is the number of pixels in a neighborhood Ω 

and wµ̂ estimates the local mean value of the weight signal. 

Equation (2) is found to be a good variance estimator under 
the conditions that the neighborhood Ω has a mass center that 
coincides with the light spot’s mass center. We define the 
signal-to-noise ratio for an object as, 

σ
µwSNR
ˆ

= . (3) 

This allow us to rewrite the expression for the COG variance 
from equation (2) as, 
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The reversed standard deviation of the COG output can be 
interpreted as the sub-pixel precision of the determined 
position of an object. The reversed standard deviation is 
simply developed from equation (4) as, 

( ) SNR
y

,
x

N
x,ycstd

Ωx,yΩx,y

⋅


















≈
∑∑

∈∈

22

11
)(

1
. (5) 

Thus, according to equation (5) we can expect that the 
standard deviation of the calculated position of a light spot is 
reversely proportional to the light spot’s SNR. But we can also 
conclude that the same standard deviation will be dependent 
on the neighborhood Ω of pixels. This neighborhood of pixels 
is determined by the segmentation as depicted in Fig. 2B. 

The simplest method for segmentation is to apply a 
threshold on the pixel gray values. This threshold determines 
which pixels are to enter into the neighborhood Ω. For bright 
image components such as light spots on a dark background 
and using smaller threshold, more pixels will enter into the 
neighborhood Ω. 

III.  IMAGE SEGMENTATION BY THRESHOLDING 

Thresholding plays an important role in segmenting objects 
from background in image processing due to its intuitive 
properties and simplicity of implementation. For a threshold 
Txy, this operation can be formalized into, 
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B(x,y) is the resulting binary image and f(x,y) is the input 
gray level image. In this section, we will discuss different 
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methods for selecting the threshold Txy. We will also show how 
preprocessing can be applied to suppress the influence of a 
non homogeneous image background as well as how we have 
improved this preprocessing compared to referenced literature. 
At the end of this section, based on existing work, we propose 
an FPGA based hardware architecture to be used for the image 
segmentation. 

A. Optimized global threshold using Otsu’s criterion 

Otsu’s criterion [7] selects a global threshold T such that it 
maximizes the in between variance of classes belonging to 
objects and background. If the image has objects with equal 
intensity and a distinct background such that its image 
histogram becomes bimodal, we can get an optimized 
threshold by using Otsu’s method. However, an image having 
a non uniform background and multiple light spots with 
different range and illumination intensities, Otsu’s criterion 
cannot be applied directly with good results.  

B. Variable- or dynamic thresholding 

We know the local standard deviation σxy denotes the local 
contrast and the local mean mxy denotes the local average 
intensity. By comparing the pixel intensity with its local 
average intensity, we can segment it even if the background is 
non uniform [4][7]. If the local contrast is also considered, it is 
named Variable thresholding [7] and the local threshold Txy 
can be determined by the following formula, 

xyxyxy bmaT += σ . (7) 

The non negative constants a and b are selected on 
experimental basis.  

Dynamic thresholding as described in [4] is very similar to 
equation (7) but the threshold is now defined as Txy=mxy+ Ddiff. 
In this case the thresholding is based on a global nonzero 
constant Ddiff selected on experimental basis. From this we 
conclude that Dynamic thresholding can alternatively be 
described as two subsequent steps: 

 
1) Image preprocessing: Calculate an estimation of the 

image background by using the local mean values and 
subtract this background from the original image. This 
operation corresponds to a high-boost filter [7]. 

2) Thresholding: Apply a global threshold T on the 
preprocessed image according to equation (6).   

 
The Image preprocessing in step 1 constitutes one single 

convolution operation, suitable for real-time video processing. 
This is a 2D filter, preferable illustrated in the frequency 
domain. The amplitude characteristic for an 11x11 pixels filter 
mask is shown in Fig. 3. It is the combination of mean value 
and subtraction as described in step 1 results in a high-boost 
filter. The stop band for the low frequencies will suppress the 
image background while higher frequencies for the small light 
spots will pass this filter.  
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Fig. 3 Ampl. characteristics for pre-processing filter of Algorithm 1. 
 

Since the image background is suppressed at step 1, the 
global threshold T used at step 2 could possibly be optimized 
using Otsu’s criterion [7]. However the global statistics 
required for this operation will have a high hardware cost 
associated with it. A much simpler computation of the global 
threshold T is, 

( )),(max yxfPT ⋅= . (8) 

P is another global threshold specified in percentage of the 
maximum pixel value for a whole video frame (image). P was 
experimentally selected to P=0.10 for all experiments in this 
work. 

C. Improved preprocessing 

Equation (5) estimates the stability of the COG output under 
the influence of noise assuming a fixed neighborhood Ω 
centered over the image object. However, the thresholding 
operation is also sensitive to noise which means that the 
neighborhood Ω will shrink, grow and alter its shape in a non 
deterministic manner. In order to reduce the noise sensitivity, 
we suggest that the filter’s response to the high frequencies 
must be limited. Fig. 4 shows the frequency response for a 
modified preprocessing filter. This filter was generated by 
simply convolving the filter mask corresponding to amplitude 
characteristic in Fig. 3 with a Gaussian function g(x,y) defined 
for an 11x11 pixel neighbourhood Ф. 
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 The parameter σ was experimentally selected to σ=1.2. We 
see in Fig. 4 that the resulting amplitude characteristic now 
corresponds to a two dimensional band pass filter. For this 
simple addition to the preprocessing filter, the improvement of 
the subpixel precision for the calculated light spot positions 
will be shown in section V. 
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Fig. 4 Pre-processing filter of Algorithm 2 and 3. 

D. Hardware architecture for image segmentation 

The improved preprocessing, previously described in 
section III.C combines a high-boost filter with a Gaussian 
smoothening filter in one single convolution operation. For 
real-time processing on FPGA, convolving is preferable 
implemented using the hardware architecture shown in Fig. 5. 
This is a memory hierarchy where data reuse is exploited. 
There are First-In-First-Out (FIFO) registers used for delaying 
the video data equal to the number of clock cycles 
corresponding to one line of progressive video. These FIFO 
registers are preferably implemented in on-chip block-RAMs 
[12]. Pixel delays are implemented as registers close to the 
data path. The computational logic is preferably pipelined such 
that a throughput of one pixel per clock cycle is achieved. 

IV.  MEASUREMENT OF IMAGE OBJECT POSITIONS 

In previous section, we proposed a method to be used for 
segmentation of light spots from image background. In this 
section, we also include image component labeling and 
computation of light spot’s position by COG. 

A. Three alternative algorithms 

We have developed three alternative algorithms from which 
we will choose the one that gives the best performance. These 
algorithms are represented as Signal Flow Graphs (SFG) 
divided into two main parts, Preprocessing and Object 
processing. See Fig. 6 and Fig. 7. Preprocessing corresponds 
for Algorithm 1 in Fig. 6 to the filter illustrated in Fig. 3.  
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Fig. 5 Hardware architecture for the preprocessing filter. 
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Fig. 6 Signal flow graph for Algorithm 1 and 2. 
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Fig. 7 Signal flow graph for Algorithm 3. 

 
The method for segmentation used for Algorithm 1 equals 

the dynamic thresholding as described in [4] and presented in 
section III.B.  
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Algorithm 2 shown in Fig. 6 and Algorithm 3 shown in Fig. 

7 are both based on the improved dynamic thresholding using 
the preprocessing filter shown in Fig. 4. Object processing 
corresponds for all three algorithms to thresholding, labeling 
and COG calculation. The only difference is that for Algorithm 
3, COG is calculated on the squared pixel data. 

B. HW architecture for component labelling and COG 

Based on previous research, we propose the following 
hardware architecture as suitable for implementation of 
component labelling and COG calculation on FPGA [13].  

A neighbourhood of labels that can be used for both 4- and 
8-connectivity labelling is shown in Fig. 8A. A delay line of 
one FIFO-buffer and two registers holds the recursive data 
dependency arising from the neighbourhood of previously 
labelled pixels, see Fig. 8B. Pixels are assigned labels at P5 
based on the neighbouring labels in P6 to P9. We assume that 
the latency of the labelling is exactly one clock cycle. The 
length of the FIFO buffer is NC – 2 numbers of elements where 
NC equals the length of one image row [13]. The kernel for 
labelling and COG calculation (feature extraction) is further 
described in Fig. 9. 

The Labeller assigns label codes. Label pairs (A,B) are sent 
to the Equivalence table whenever neighbouring labels are 
found equal and must be merged. Label merging is targeted to 
either Table A or B dependent on odd or even frame (O/E). 
Resolving of linked lists of labels is thus frame interleaved 
with labelling and label merging. 

In parallel with assigning label codes for connected image 
components, data is accumulated in data table A or B. This 
accumulation corresponds in the case of COG calculation to 
the numerators and denominators for each connected 
components, see equation (1). When the Resolver is ready, the 
division of numerator and denominator according to equation 
(1) is done. 
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Fig. 9 Kernel for labeling and calculation of COG. 
 
This final calculation of COG will require access to the 

resolved equivalence table. This division is preceded by 
accumulation of numerators and denominators in Data table A 
or B. Accumulation of data and final calculation of COG is 
thus frame interleaved.  

V. EXPERIMENTAL SETUP 

The experiments carried out to analyze the performance of 
Algorithm 1 to 3 are described in this section.  

A. Image acquisition 

A board was used as a laminate for the assembly of 90 
infrared Light Emitting Diodes (IR-LED). Se Fig. 10A.  

 
 

A) 

B) 

 
Fig. 10 A) Camera setup for image acquisition of 90 LED light spots. 

               B)   Intensity mesh plot of three light spots. 
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Fig. 11 Synthetic background added to original image of light spots. 

 
A camera equipped with an optical IR band pass filter was set 
up in front of this board using a rigid tripod. The IR filter 
matches the optical wavelength of the LEDs such that the 
influence from visible stray light was suppressed. A series of 
images having the same condition for lightening and exposure 
were acquired. A mesh plot of the intensity for four out of 90 
LEDs is shown in Fig. 10B. 

B. Simulations 

A simulation script was written in Matlab to read the 250 
images previously acquired and stored in a data file. 
Algorithms 1 to 3, see Fig. 6 and Fig. 7, were all modeled 
using Matlab. The acquired images were then used as 
simulation stimuli in order to analyze the subpixel precision 
versus SNR for the 90 light spots under the influence of image 
noise.  

In addition, we also wanted to efficiently verify the ability 
of the image segmentation to suppress the influence of a 
background shade. For this purpose we created a synthetic 
background shown in Fig. 11. This background was then 
added to all images to allow for a simple comparison with the 
results using no synthetic background. Subpixel precision 
versus SNR is expected to be unaffected by this synthetic 
background. 

The plotting of subpixel precision versus SNR requires a 
method to calculate the SNR for each light spot within a series 
of images. 

 

C. Signal-to-Noise-Ratio 

First, we calculate the mean power frame P(x,y) from N 
number of frames, 
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A mean value frame M(x,y) is also calculated from the same N 
number of frames, 
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The mean power frame P(x,y) and the mean value frame 
M(x,y) is then used to calculate a frame of standard deviations 
S(x,y) for all pixels. This is a pixel wise measure of the 
temporal noise, estimated from N number of frames. 

),(),(),( 2 yxMyxPyxS −=  (12) 

Let the mean value frame M(x,y) be a measure of the signal 
and the standard deviation S(x,y) a measure of the noise. Then 
the Signal-to-Noise-Ratio for a single light spot detected 
within a neighborhood Ω becomes, 
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The SNR was calculated at simulation according to equation 
(13) for all 90 light spots. 

VI.  RESULTS 

This section presents the simulation result from analyzing 
subpixel precision versus SNR for the 90 LEDs illustrated in 
Fig. 10A. Positions of LED light spots where calculated using 
Algorithm 1 to 3, described in section IV.  SNR was calculated 
for each light spot according to equation (13).  

Fig. 12 and Fig. 13 show the simulation results for 
Algorithm 1 and 2. Fig. 14 and Fig. 15 show the simulation 
results for Algorithm 3 with and without the synthetic 
background added. 

Fig. 12 to Fig. 14 all show 90 values corresponding to the 
90 LEDs in the experimental setup as illustrated in Fig. 10. In 
addition to the 90 values there is also a line fitted to data 
having least square error. The parameters for these lines are 
shown in Table I for all the diagrams. The first column in 
Table I shows the line intersection with the vertical axis at 
SNR=11. The second column shows the line slope.  

VII.  ANALYSIS 

Algorithm 2 in comparison with Algorithm 1 shows about 
160 percent improvement of subpixel precision at SNR=11 
and according to Table I. Algorithm 2 also has about 50 
percent stronger slope.  
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Fig. 12 Sub-pixel precision vs SNR for Algorithm 1 with data offset. 
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Fig. 13 Sub-pixel precision vs SNR for Algorithm2 with data offset. 
 

This improved performance is obviously due to the changes 
we made to the preprocessing filter described in section III.C. 
However, the correlation between SNR and subpixel precision 
is weaker for Algorithm 2 when comparing Fig. 12 and Fig. 
13. From equation (5) based on an estimator of COG variance 
published in [6] we expect a linear dependency of subpixel 
precision versus SNR for the light spots. This estimation is 
based on that a light spot is always centered within a 
neighborhood Ω. However, this can never be the case when Ω 
grows and shrinks as a result of image noise at segmentation. 
Equation (5) shows that subpixel precision is also dependent 
on Ω. 

The only difference between Algorithm 2 and Algorithm 3 
is that the latter computes COG based on squared image data. 
See Fig. 6 and Fig. 7. This difference obviously improves the 
correlation when comparing Fig. 13 and Fig. 14.  
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Fig. 14 Sub-pixel precision vs SNR for Algorithm 3 with data offset. 
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Fig. 15 Sub-pixel precision vs SNR for Alg. 3 without data offset. 
 

TABLE I  
PARAMETERS FOR LEAST SQUARE FITTED LINES 

 
Intersection with vertical axis at 

SNR=11 
Slope 

Algorithm 1 9.0 4.40 
Algorithm 2 23.7 6.61 
Algorithm 3 26.6 6.18 
Algorithm 3 
without synthetic 
background added 

26.7 6.14 

 
The improvement of subpixel precision at SNR=11 is 195 
percent if compared with Algorithm 1. When making this 
improvement by firstly squaring data, we think it is important 
to also scale and truncate data for preserved fixed point 
precision. Otherwise the storage requirement for the data 
tables shown in Fig. 9 will explode in size. Remember that 
these data tables are used to accumulate the numerators and 
denominators according to equation (1). Exactly how the fixed 
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point precision will affect the hardware implementation and 
subpixel precision is beyond the scope of this paper and needs 
further investigation. 

We can conclude that when Algorithm 3 is simulated with 
input images having a synthetic background added or not, it 
does not cause any detectable difference in subpixel precision. 
We take this as a proof that the segmentation really acts as 
dynamic and transparent to reasonable background shades. 

In addition to the results generated from simulations shown 
in section VI, we have also analyzed and suggested hardware 
architectures for FPGA-based real-time computation. We 
strongly believe that algorithms developed for machine vision 
having real-time constraints must also be accompanied with a 
primary solution for hardware implementation. This is, 
because hardware resources are always limited and we think it 
is beneficial to have the computational platform in mind 
already at algorithm development.  

VIII.  CONCLUSIONS 

Algorithm 3 has an improved method for segmentation of 
image components in comparison with state of the art dynamic 
thresholding. These improvements are as high as 195 percent 
for the subpixel precision at SNR=11 and 40 percent for the 
slope. This means that any improvements of SNR for the 
navigation system that we target caused by longer exposure 
times or more intensive illumination will pay off better in 
terms of improved subpixel precision when Algorithm 3 is 
used instead of Algorithm 1. 

This analysis will be very useful when designing the 
navigation systems that we target. Decisions can be made on 
balancing exposure time, light intensity and subpixel precision 
for a given camera setup.  

The real-time constraints for the kind of machine vision 
systems that we target require aggressive parallelization of the 
computation to be met. FPGAs are known to offer this 
parallelism. Therefore we also in this work, based on previous 
research, suggest hardware architectures suitable for 
computation of the developed algorithm. 
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