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Haar wavelet method for solving FitzHugh-Nagumo
equation

G.Hariharan and K.Kannan

Abstract—In this paper, we develop an accurate and ef£cient
Haar wavelet method for well-known FitzHugh-Nagumo equation.
The proposed scheme can be used to a wide class of nonlinear
reaction-diffusion equations. The power of this manageable method
is con£rmed. Moreover the use of Haar wavelets is found to be
accurate, simple, fast, ¤exible, convenient, small computation costs
and computationally attractive.

Keywords—FitzHugh-Nagumo equation; Haar wavelet method;
Adomain decomposition method; Computationally attractive.

I. INTRODUCTION

The nonlinear equation proposed by Hodgkin and Huxley
[13] is the most widely accepted mathematical description of
the excitation and propagation of nerve impulses [3,9,21,28],
that is

∂u

∂t
=
∂2u

∂x2
+ u(u− α)(1 − u) (1)

where is an arbitrary constant. This generally called FitzHugh-
Nagumo (FN) equation. The FN system of equations has been
derived by both FitzHugh [8] and Nagumo et al. [22]. It
is an important nonlinear reaction-diffusion equation used in
circuit theory, biology and the area of population genetics [4]
as mathematical models. The FN equation describes the dy-
namical behavior near the bifurcation point for the Rayleigh-
Benard convection of binary ¤uid mixtures [24]. When , the
FN equation reduces to the real Newell-Whitehead equation.
By using Hirota method, Kawahara and Tanaka [16] have
found new exact solutions of Eq. (1); by applying the non-
classical symmetry reductions approach, Nucci and Clarkson
[23] have obtained some new exact solutions with Jacobbi
elliptic function. Some other solutions of Eq. (1) have been
given by several authors [6,25,27]. Huaying Li and Yucui Guo
[20] have obtained the new exact solutions of the FN equation
by using £rst integral method. More recently, Abbasbandy
[1] proposed the Soliton solutions for the FN equation by
using homotopy analysis method. Abdusalam [2] studied the
Analytic and approximate solutions for Nagumo telegraph
reaction diffusion equation. Angela Slavova and Pietro Zecca
[26] have introduced a cellular neural network (CNN) model
of FN equation. In this paper, we develop Haar wavelet
method for solving Eq. (1). In solving ordinary differential
equations by using Haar wavelet related method, Chen and
Hsiao [7] had derived an operational matrix of integration
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based on Haar wavelet. Lepik [17,18,19] had solved higher
order as well as nonlinear ODEs and some nonlinear evolution
equations by Haar wavelet method. Hariharan et al. [11]
have introduced a Haar wavelet method for solving Fisher’s
equation. We introduce a Haar wavelet method for solving the
FitzHugh-Nagumo (FN) equation with the initial and boundary
conditions, which will exhibit several advantageous features:
i) Very high accuracy fast transformation and possibility of
implementation of fast algorithms compared with other known
methods. ii) The simplicity and small computation costs,
resulting from the sparsity of the transform matrices and
the small number of signi£cant wavelet coef£cients. iii) The
method is also very convenient for solving the boundary value
problems, since the boundary conditions are taken care of au-
tomatically. Beginning from 1980’s, wavelets have been used
for solution of partial differential equations (PDE). The good
features of this approach are possibility to detect singularities,
irregular structure and transient phenomena exhibited by the
analyzed equations. Most of the wavelet algorithms can handle
exactly periodic boundary conditions. The wavelet algorithms
for solving PDE are based on the Galerkin techniques or on
the collocation method. Evidently all attempts to simplify the
wavelet solutions for PDE are welcome. One possibility for
this is to make use of the Haar wavelet family. Haar wavelets
(which are Daubechies of order 1) consists of piecewise
constant functions and are therefore the simplest orthonormal
wavelets with a compact support. A drawback of the Haar
wavelets is their discontinuity. Since the derivatives do not
exist in the breaking points it is not possible to apply the Haar
wavelets for solving PDE directly. There are two possibilities
for getting out of this situation. One way is to regularize
the Haar wavelets with interpolating splines (e.g. B-splines or
Deslaurier-Dabuc interpolating wavelets). This approach has
been applied by Cattani [5], but the regularization process
considerably complicates the solution and the main advantage
of the Haar wavelets-the simplicity gets to some extent lost.
The other way is to make use of the integral method, which
was proposed by Chen and Hsiao [7]. There are discussions by
other researchers [12,14]. The paper is organized the following
way. For completeness sake the Haar wavelet method is
presented in Section 2. Function approximation is presented in
Section 3. The method of solution of the FitzHugh-Nagumo
(FN) equation is proposed in Section 4. Some numerical
examples are presented in Section 5. Concluding remarks are
given in Section 6.

II. HAAR WAVELET PRELIMINARIES

Haar wavelet is the simplest wavelet. Haar transform or
Haar wavelet transform has been used as an earliest example
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for orthonormal wavelet transform with compact support. The
Haar wavelet transform is the £rst known wavelet and was
proposed in 1910 by Alfred Haar. They are step functions
(piecewise constant functions) on the real line that can take
only three values. Haar wavelets, like the well-known Walsh
functions (Rao 1983), form an orthogonal and complete set
of functions representing discretized functions and piecewise
constant functions. A function is said to be piecewise constant
if it is locally constant in connected regions.

The Haar transform is one of the earliest examples of what
is known now as a compact, dyadic, orthonormal wavelet
transform. The Haar function, being an odd rectangular pulse
pair, is the simplest and oldest orthonormal wavelet with
compact support. In the mean time, several de£nitions of
the Haar functions and various generalizations have been
published and used. They were intended to adopt this concept
to some practical applications as well as to extend its in
applications to different classes of signals. Haar functions
appear very attractive in many applications as for example,
image coding, edge extraction, and binary logic design.

After discretizing the differential equations in a conventional
way like the £nite difference approximation, wavelets can be
used for algebraic manipulations in the system of equations
obtained which lead to better condition number of the resulting
system.

The previous work in system analysis via Haar wavelets was
led by Chen and Hsiao [6], who £rst derived a Haar operational
matrix for the integrals of the Haar function vector and put the
application for the Haar analysis into the dynamical systems.
Then, the pioneer work in state analysis of linear time delayed
systems via Haar wavelets was laid down by Hsiao [10], who
£rst proposed a Haar product matrix and a coef£cient matrix.
Hsiao and Wang proposed a key idea to transform the time-
varying function and its product with states into a Haar product
matrix. The orthogonal set of Haar function is shown in Fig.1.
This is a group of square waves with magnitudes of in certain
intervals and zeros elsewhere. For applications of the Haar
transform in logic design, ef£cient ways of calculating the
Haar spectrum from reduced forms of Boolean functions are
needed.

The Haar wavelet family for is de£ned as follows.

hi (t) =

⎧⎨
⎩

1 for t ∈
[

k
m
, k+0.5

m

)
−1 for t ∈

[
k+0.5

m
, k+1

m

)
0 , elsewhere

(2)

Integer m = 2j (j = 1, 2, . . . J) indicates the level of the
wavelet; k = 0,1,2, · · ·, m-1 is the translation parameter.
Maximal level of resolution is J. The index i is calculated
according to the formula i = m + k + 1 ; in the case of
minimal values m=1,k=0, we have i=2, the maximal value of
i is 2m = 2(J+1). It is assumed that the value i=1 corresponds
to the scaling function for which h 1 . Let us de£ne the
collocation points and discretise the Haar function in this way
we get the coef£cient matrix , which has the dimension .
The operational matrix of integration P, which is a 2M square
matrix, is de£ned by the equation

(PH)il =
∫ tl

0

hi (t) dt (3)

Any function y(t) which is square integrable in the interval
[0 ,1) can be expanded in a Haar series with an in£nite number
of terms y(t) =

∑∞

i=0 cihi(t), i = 2j + k, j ≥ 0, 0 ≤ k <

2j , t ∈ [0, 1)
where the Haar coef£cients
ci = 2j

∫ 1

0
y(t)hi(t)dt

are determined in such a way that the integral square error

E =
∫ 1

0

[
y(t) −

∑m−1
i=0 cihi(t)

]2

dt
is minimum where m = 2j ,j ∈ {0} ∪N
In general ,for the function y(t) to be smooth the series

expansion in equation (3) contains an in£nite number of terms.
If y(t) is a piecewise constant or may be approximated as
piecewise constants , then the sum in equation (4) will be
terminated after m terms , that is

y(t) ∼=
m−1∑
i=0

cihi(t) = cTmhm(t) (4)

where t ∈ [0, 1) and cm Δ [co, c1, c2, ........, cm−1]
T (5)

where T stands for transposition ,m stands for their dimension.
The £rst four Haar functions can be expressed as follows :

h0(t) = [ 1 1 1 1 ]
h1(t) = [ 1 1 − 1 − 1 ]
h2(t) = [ 1 − 1 0 0 ]
h3(t) = [ 0 0 1 − 1 ]
If y(t) = [ 7 1 3 0 ] is piecewise constant then ,

y(t) = 11
4 h0(t) + 5

4h1(t) + 3h2(t) + 3
2h3(t) = cTH(t) where

H(t) = H4(t)Δ

⎡
⎢⎢⎣
h0(t)
h1(t)
h2(t)
h3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦ (6)

The Haar coef£cients ci can be obtained by using
(5)directly. ci can also be obtained by matrix inversion. For
this piecewise constant y(t),
cT = y(t)H−1

4 =
[
11
4

5
4 3 3

2

]
Equation (12) is called forward transform that is used

to obtain wavelet coef£cients.The function y(t) can be re-
covered from the corresponding wavelet coef£cients and the
wavelets hi(t) . Hence (10) is known as inverse transform.
As H and H−1 contain many zeros , this phenomenon makes
the Haar transform much faster than the Fourier and Walsh
transforms.

A. Integration of Haar wavelets :

In wavelet analysis for a dynamical system, all func-
tions need to be transformed into Haar series. As impulse
functions are not preferred ( since they are the derivatives of
Haar wavelets ), Integration of Haar wavelets are preferred,
which is expanded into Haar series with coef£cient matrix P
[15].
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∫ 1

0
hm(t)dt ∼= Pm×mhm(t), t ∈ [0, 1) Where m x m square

matrix P is called the operational matrix of integration which
satis£es the following recursive formula.

P1×1 =
〈

1
2

〉
Pm×m =

1
2m

[
2mPm

2 ×m
2

−Hm
2 ×m

2

H−1
m
2 ×m

2
Om

2 ×m
2

]
(7)

where Om
2 ×m

2
is a null matrix of order m

2 × m
2

Hm×m Δ [hm(t0) hm(t1) · · · · · ·hm(tm−1)]
and
i
m

≤ t < i+ 1
m

and H−1
m×m = 1

m
HT

m×m diag(r)

r Δ

⎡
⎢⎢⎣1 1 2 2 4 4 4 4 · · · · · ·

m

2
m

2
m

2
· · · · · ·

m

2︸ ︷︷ ︸
m
2 elements

⎤
⎥⎥⎦ (8)

for m > 2 , proof of equation (14) is found in [15].

III. FUNCTION APPROXIMATION

Any function y(x) ∈ L2(R) can be decomposed as

y(x) =
∑

cnhn(x) (9)

where the coef£cients cn are determined by

cn = 2j

∫
y(x)hn(x)dx (10)

where n = 2j + k, j ≥ 0, 0 ≤ k < 2j . Specially

c0 =
∫
y(x)dx (11)

The series expansion of y(x) contains an in£nite terms.
If y(x) is piecewise constant by itself, or may be approximated
as piecewise constant during each subinterval, then will be
terminated at £nite terms, that is

y(x) =
∑

cnhn(x) = cTmhm(x) (12)

Where the coef£cients cT
( m) and the Haar function vector

hm(x) are de£ned as
cTm = [co, c1, ..., cm−1]
and hm(x) = [h0(x), h1(x), ..., hm−1(x)]
where ’T’ means transpose and m = 2j .

IV. METHOD OF SOLUTION OF FITZHUGH-NAGUMO

EQUATION

Consider the FitzHugh-Nagumo equation

∂u

∂t
=
∂2u

∂x2
+ u(u− α)(1 − u) (13)

with the initial condition u(x, 0) = f(x), x ∈ [0, 1] and the
boundary conditions u(0, t) = g0(t), u(1, t) = g1(t), 0 < t ≤
T

Let us divide the interval (0,1] into N equal parts of length
Δt = (0, 1]/N and denote ts = (s − 1)Δt, s = 1, 2, ..., N .

We assume that u̇′′(x, t) can be expanded interms of Haar
wavelets as formula

u̇′′(x, t) =
∑

cs(n)hn(x) = cT(m)h(m)(x) (14)

where . and ’ means differentiation with respect to t and x
respectively, the row vector cT(m) is constant in the subinterval
t ∈ (ts, ts+1]

Integrating formula (14) with respect to t from ts to t and
twice with respect to x from 0 to x , we obtain

u̇(x, t) = (t− ts)cT(m)h(m)(x) + u′′(x, ts) (15)

u(x, t) = (t− ts)cT(m)Q(m)(x)h(m)(x)

+u(x, ts) − u(0, ts) + x[u′(0, t) − u′(0, ts)] + u(0, t) (16)

u̇(x, t) = cT(m)Q(m)(x)h(m)(x) + xu̇′(0, t) + u̇(0, t) (17)

By the boundary conditions, we obtain
u(0, ts) = g0(ts), u(1, ts) = g1(ts)
u̇(0, t) = g′0(t), u̇(1, t) = g′1(t)

Putting in formulae (16) and (17), we have
u′(0, t) − u′(0, ts) = −(t− ts)cT(m)Q(m)(x)h(m)(x)

+g1(t) − g0(t) − g1(ts) + g0(ts) (18)

u̇′(0, t) = g′1(t) − cT(m)Q(m)(x)h(m)(x) − g′0(t) (19)

Substituting formulae (18) and (19) into formulae (15)-(17),
and discretizising the results by assuming x→ xl , t→ ts+1

we obtain

u′′(xl, ts+1) = (ts+1 − ts)cT(m)h(m)(xl) + u′′(xl, ts) (20)

u(xl, ts+1) = (ts+1−ts)cT(m)Q(m)(x)h(m)(xl)+u(xl, ts)−
g0(ts) +g0(ts+1) + xl[−(ts+1 − ts)cT(m)P(m)f

+g1(ts+1) − g0(ts+1) − g1(ts) + g0(ts)] (21)

u̇(xl, ts+1) = cT(m)Q(m)(x)h(m)(x) + g1(ts+1)

+xl[−cT(m)P(m)f + g′1(ts+1) − g′0(ts+1)] (22)

Where the vector f is de£ned as
f = [1, 0, ..., 0︸ ︷︷ ︸

(m−1)elements

]T

In the following the scheme

u̇(xl, ts+1) = u′′(xl, ts+ 1) + u(xl, ts+ 1) (23)

[u(xl, ts+ 1) − α][1 − u(xl, ts+ 1)]
which leads us from the time layer ts to ts+1 is used.
Substituting equations (20)-(23) into the equation (24), we

gain
cT(m)Q(m)(x)h(m)(xl)
+xl[−cT(m)P(m)f + g′1(ts+1) − g′0(ts+1)] + g′0(ts+1)

= u′′(xl, ts+1) + u(xl, ts+1)[u(xl, ts+1)−α][1− u(xl, ts+1)]
(24)

From formula (24) the wavelet coef£cients can be successively
calculated.
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V. TEST PROBLEM

Consider the following problem

∂u

∂t
=
∂2u

∂x2
+ u(u− α)(1 − u) (25)

with the initial condition u(x, 0) = λ, x ∈ [0, 1] and the
boundary conditions u(0, t) = g0(t), u(1, t) = g1(t), 0 < t ≤
T

The Haar scheme is given by
cT(m)Q(m)(x)h(m)(xl) +xl[−cT(m)P(m)λ + g′1(ts+1) −

g′0(ts+1)] + g′0(ts+1)

= u′′(xl, ts+1) + u(xl, ts+1)[u(xl, ts+1)−α][1− u(xl, ts+1)]
(26)

From formula (26) the wavelet coef£cients can be successively
calculated.

Using Adomian decomposion method, the exact solution in
a closed form is given by

u(x, t) = 1/1 + e
−ζ
√

2 (27)

which is full agreement with the results in [15], where ζ =
x+ ct and c =

√
2[12 − α]

TABLE I
COMPARISON OF EXACT AND HAAR SOLUTIONS FOR

FITZHUGH-NAGUMO EQUATION AT t = 0.48 AND m = 32

x Exactsolution Haarsolution(m = 32)
0.1 0.52274 0.52246
0.2 0.55205 0.55197
0.3 0.58157 0.58135
0.4 0.61118 0.61099
0.5 0.64073 0.64057
0.6 0.67007 0.67045

Computer simulation was carried out in the cases m=16 and
m=32, the computed results were compared with the exact
solution, more accurate results can be obtained by using a
larger m .

All the numerical experiments presented in this section were
computed in double precision with some MATLAB codes on a
personal computer System Vostro 1400 Processor x86 Family
6 Model 15 Stepping 13 Genuine Intel 1596 Mhz.

VI. CONCLUSION

The theoretical elegance of the Haar wavelet approach
can be appreciated from the simple mathematical relations
and their compact derivations and proofs. It has been well
demonstrated that in applying the nice properties of Haar
wavelets, the differential equations can be solved conveniently
and accurately by using Haar wavelet method systematically.
In comparison with existing numerical schemes used to solve
the nonlinear parabolic equations, the scheme in this paper
is an improvement over other methods in terms of accuracy.
It is worth mentioning that Haar solution provides excellent
results even for small values of ( ). For larger values of (i.e.,
, , and ), we can obtain the results closer to the real values.
The Fitzhugh-Nagumo (FN) equation is a special case of the
Burgers-Huxley equation. The Burgers-Huxley equation also
has special cases where it reduces to the Burgers equation

and to the Newell-Whitehead equation. The main goal of
this work is to apply the Haar wavelet method to the well-
known FitzHugh-Nagumo (FN) equation that appears in many
scienti£c applications. The work also con£rmed the power
of the Haar wavelet method in handling nonlinear equations
in general. This method can be easily extended to £nd the
solution of all other non-linear parabolic equations. Another
bene£t of our method is that the scheme presented here,
with some modi£cations, seems to be easily extended to
solve model equations including more mechanical, physical
or biophysical effects, such as nonlinear convection, reaction,
linear diffusion and dispersion.
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