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H∞ approach to functional projective
synchronization for chaotic systems with

disturbances
S.M. Lee, J.H. Park, H.Y. Jung

Abstract—This paper presents a method for functional projective
H∞ synchronization problem of chaotic systems with external distur-
bance. Based on Lyapunov theory and linear matrix inequality (LMI)
formulation, the novel feedback controller is established to not only
guarantee stable synchronization of both drive and response systems
but also reduce the effect of external disturbance to an H∞ norm
constraint.

Keywords—Chaotic systems, functional projective H∞ synchro-
nization, LMI.

I. INTRODUCTION

Chaos is very interesting nonlinear phenomenon and has
extensive applications in many areas. Since the first work of
Pecora and Carrol in 1990 [1], chaos synchronization has
received increasing attention due to its theoretical challenge
and its great potential applications in secure communication,
economics, signal generator design, chemical reaction, biolog-
ical systems and so on [2].
The idea of synchronization is to use the output of the
master system to control the slave system so that the output
of the response system follows the output of the master
system asymptotically. Up to date, a number of synchro-
nization schemes by using various control theories such as
variable structure control, observer-based control, time-delay
feedback approach, back-stepping design technique, active
control, parameters adaptive control, nonlinear control have
been proposed in the literature [3]-[8]. Recently, fractional-
order chaotic systems has been attracted lots of attention since
it has been found that many systems in interdisciplinary fields
can be described by fractional differential equations. Thus,
the synchronization schemes above are extended to fractional-
order chaotic systems [9]-[10] due to its potential applications
in secure communication and control processing.
On the other hand, some noises or disturbances always exist in
real systems that may cause instability and poor performance.
Therefore, the effect of the noises or disturbances must be
also reduced in synchronization process for chaotic systems.
Motivated by this, Y.Y. Hou et. al. [11] firstly adopted the
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H∞ control concept to reduce the effect of the disturbance for
chaotic synchronization problem of a general class of chaotic
systems. Recently, dynamic control method for designing H∞
synchronization of chaotic systems has been proposed in [12].
More recently, a generalized synchronization method, called
functional projective synchronization, has been developed
[13]-[14]. In the scheme, the responses of the synchronized
dynamical states synchronize up to not a constant but a scaling
function.

In this paper, the problem of functional projective H∞ chaos
synchronization to general chaotic system with disturbance is
considered. The functional projective synchronization scheme
is the general synchronization concept including complete
synchronization, anti-synchronization, phase synchronization,
and generalized synchronization [3]-[8]. A new stabilizing
controller for functional projective H∞ synchronization be-
tween drive and response chaotic systems is proposed. The
resulting closed-loop error system is asymptotically stable and
the H∞-norm from the disturbance to controlled output is
reduced to a prescribed level. Based on the Lyapunov method
and LMI framework, an existence criterion for such controller
is represented in terms of LMI.
Notation: ‖ · ‖ refers to the Euclidean vector norm and the
induced matrix norm. For symmetric matrices X and Y , the
notation X > Y (respectively, X ≥ Y ) means that the
matrix X − Y is positive definite, (respectively, nonnegative).
diag{· · ·} denotes the block diagonal matrix. � represents
the symmetric part of a matrix. λmin(A) denotes the smallest
eigenvalue of A.

II. PROBLEM STATEMENT AND MAIN RESULTS

Consider a class of chaotic systems described by the non-
linear differential equation as follows:

ẋ(t) = Ax(t) + f(x(t)) (1)

where x(t) ∈ Rn is the state variable, the matrices A ∈ Rn×n

is a constant matrix, and f(x(t)) ∈ Rn is a nonlinear function.
Note that all the chaotic systems can be written of the form (1).
The synchronization problem of system (1) is considered using
the drive-response configuration. This is to say, if the system
(1) regarded as the drive system, a suitable response system
with control input should be constructed to synchronize the
drive system. According to the above drive-response concept,
slave chaotic systems can be described by the following
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equations:

ẏ(t) = Ay(t) + f(y(t)) +Dw(t) +Bu1(t) + u2(t) (2)

where y(t) ∈ Rn is the state vector of slave system, B and
D are constant matrices with appropriate dimensions, w(t) ∈
Rl is the disturbance, and u1(t) and u2(t) are the linear and
nonlinear control inputs, respectively.
Define the synchronization error as

e(t) = y(t)− α(t)x(t). (3)

where α(t) = diag{α1(t), α2(t), · · · , αn(t)}, (αi(t) �= 0)
is the scaling function factor and αi(t) is assumed to be
differentiable in time.
Then, the dynamics of synchronization error between the drive
and response systems given in Eqs. (1)-(2) is given by

ė = Ae+ g − α̇(t)x+Dw +Bu1 + u2. (4)

where g = f(y(t))− α(t)f(x(t)).
Next, in order to make the H∞ synchronization between drive
system (1) and response one (2), we propose the following
control laws:

u1(t) = −βBTPe(t), (5)

u2(t) = − g(t)gT (t)Pe(t)

‖gT (t)Pe(t)‖+ 0.5ε‖e(t)‖2

− α̇(t)x(t)xT (t)α̇(t)Pe(t)

‖xT (t)α̇(t)Pe(t)‖+ 0.5ε‖e(t)‖2 (6)

where β and ε are the positive scalars, and the feedback gain
P is the control parameter which is determined later.

Definition 1. The drive (1) and response (2) chaotic systems
with functional projective error (3) achieve the functional pro-
jective H∞ synchronization with the disturbance attenuation
γ if the following conditions are satisfied [15]:

• With zero disturbance, the synchronization error systems
(3) with certain controller is exponentially stable.

• With zero initial condition and a given constant γ > 0,
the following condition holds:

J =

∫ ∞

0

[eT (t)e(t)− γ2wT (t)w(t)]dt ≤ 0,(
i.e sup

w �=0, w∈L2[0,∞]

‖e(t)‖2
‖w(t)‖2 ≤ γ

)
. (7)

Then, the controller is said to be the functional projective H∞
synchronization controller with the disturbance attenuation
γ. The parameter γ is called the H∞-norm bound of this
controller.

Theorem 1. For given positive scalars γ, η, and ε, there exist a
stabilizing controller given by Eqs. (5)-(6) for the error system
(4) if there exist a positive-definite matrix X and a positive
scalar β satisfying the following LMI:⎡⎣ XAT +AX − 2βBBT + ηX D δX

� −γ2I 0
� � −δI

⎤⎦ < 0 (8)

where δ =
√
4ε+ 1. Then, the H∞ synchronization with the

disturbance attenuation γ is obtain by the controller.
Proof. Let us consider the following Lyapunov function:

V = eT (t)Pe(t). (9)

Taking the time derivative of V along the solution of (4), we
have

V̇ = eT
(
ATP + PA− 2βPBBTP

)
e

+2eTP (g +Dw − α̇(t)x) + 2eTPu2. (10)

Applying the nonlinear control input u2(t) to Eq. (10) gives
that

V̇ ≤ eTQe+
‖gTPe‖ · ε‖e‖2

‖gTPe‖+ 0.5ε‖e‖2

+
‖xT α̇(t)Pe ‖ · ε‖e‖2

‖xT α̇(t)Pe ‖+ 0.5ε‖e‖2 + 2eTPDw,

≤ eTQe+ 4ε‖e‖2 + 2eTPDw, (11)

where Q = ATP + PA − 2βPBBTP and the well-known
inequality 0 ≤ ab/(a+ b) ≤ a ∀ a, b > 0 is used.
Thus, if the inequality, eT (Q+4εI)e+2eTPDw ≤ 0, holds,
i.e., [

e(t)
w(t)

]T [
Q+ 4εI PD
DTP 0

] [
e(t)
w(t)

]
≤ 0, (12)

we have V̇ ≤ 0.
Now, in order to establish the H∞ performance for error sys-
tem, consider the following performance index J(e(t), w(t)):

J(e(t), w(t)) = V̇ + eT (t)e(t)− γ2wT (t)w(t). (13)

Substituting (11) into (13) yields

J ≤
[

e(t)
w(t)

]T [
Q+ 4εI + I PD

DTP −γ2I

] [
e(t)
w(t)

]
. (14)

If there exist a constant η > 0 such that

Θ̄ =

[
Q+ (4ε+ 1)I + ηP PD

DTP −γ2I

]
< 0, (15)

then, we have

J < −
[

e(t)
w(t)

]T [
ηP 0
0 0

] [
e(t)
w(t)

]
. (16)

From Eq. (16), we can easily obtain that

V̇ |w(t)=0 < −ηλmin(P )‖e(t)‖2 < 0 for all e(t) �= 0. (17)

Based on Lyapunov stability theory, the synchronization error
system (4) with the linear controller u1(t) and nonlinear
controller u2(t) is exponentially stable for w(t) = 0.
Integrating the function in Eq. (16) from 0 to ∞, we have

V (∞)− V (0) +

∫ ∞

0

(‖e(t)‖22 − γ2‖w(t)‖22
)
dt ≤ 0. (18)

With zero initial condition, we have∫ ∞

0

(‖e(t)‖22 − γ2‖w(t)‖22
)
dt ≤ 0. (19)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:2, 2012

164

By Definition 1, functional projective H∞ synchronization
with the disturbance attenuation γ is obtained by the control
(5)-(6). Finally, here we give an equivalent condition of
stability criterion (15) which can be solved by various efficient
convex algorithms. The fact that Θ̄ < 0 given in (15) by
postmultiplying and premultiplying the matrix diag{P−1, I}
and by its transpose, respectively, is equivalent to[

(1, 1) D
DT −γ2I

]
< 0 (20)

where X = P−1, (1, 1) = XAT + AX − 2βBBT + ηX +
(4ε + 1)XX . By Schur Complement, the inequality (20) is
equivalent to the LMI (8). This completes the proof. �

Remark 1. When the scaling function αi(t) equals
to any constant such as αi(t) = 1, αi(t) = −1, and
αi(t) = nonzero constant, respectively, the synchronization
problem becomes complete synchronization, anti-
synchronization, and projective synchronization, respectively.
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Fig. 1. The state trajectories of synchronization of 4-dimensional chaotic
system without disturbance signal w(t) in Case 1

Example: Let us consider the following four-dimensional (4D)
chaotic system [16] described by⎧⎪⎪⎨⎪⎪⎩

ẋ1 = a(x2 − x1) + x2x3x4,
ẋ2 = b(x1 + x2)− x1x3x4,
ẋ3 = −cx3 + x1x2x4,
ẋ4 = −dx4 + x1x2x3,

(21)

where x1, x2, x3 and x4 are state variables, and a, b, c and d
are all positive real constant parameters.
For drive-response concept for synchronization, the following
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Fig. 2. The synchronization error of 4-dimensional chaotic system without
disturbance signal w(t) in Case 1

system parameters are considered:

A =

⎡⎢⎢⎣
−30 30 0 0
10 10 0 0
0 0 −10 0
0 0 0 −10

⎤⎥⎥⎦ , B = D =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ ,

f(x) =

⎡⎢⎢⎣
x2x3x4

−x1x3x4

x1x2x4

x1x2x3

⎤⎥⎥⎦ , f(y) =

⎡⎢⎢⎣
y2y3y4
−y1y3y4
y1y2y4
y1y2y3

⎤⎥⎥⎦ .

Now, in order to make functional projective H∞ synchro-
nization of the systems (1) and (2) via control laws (5) and
(6), let us solve the problem given in Theorem 1 with the
constants η = 0.1 and ε = 0.1 and the disturbance attenuation
γ = 0.5. By MATLAB’s LMI Control Toolbox, one can see
that the LMI given in Eq. (8) is feasible and get a possible
solution set: β = 9.9931 and

X =

⎡⎢⎢⎣
1.1704 −0.1754 0.2100 0.2100
−0.1754 0.4812 0.2083 0.2083
0.2100 0.2083 4.1670 −0.0537
0.2100 0.2083 −0.0537 4.1670

⎤⎥⎥⎦ .
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Fig. 3. The error state e(t) for 4-dimensional chaotic system with disturbance
signal w(t) in Case 1

In the numerical simulations, the fourth-order Rung-Kutta
method is used to solve the systems with time step size
0.0001. For the simulation, we assume that the follow-
ing initial conditions, (xm1(0), xm2(0), xm3(0), xm4(0)) =
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Fig. 4. The state trajectories of synchronization of 4-dimensional chaotic
system without disturbance signal w(t) in Case 2

(0.1, −0.5, 0.2, −0.3), (xs1(0), xs2(0), xs3(0), xs4(0)) =
(−0.2, 1, 0.1, 1) are employed. The Gaussian noise with
mean 0 and variance 1 is imposed on the response system.
For functional projective synchronization, the scaling functions
are chosen for two cases:

• Case 1: αi(t) = −1.5, (i = 1, · · · , 4) : Projective
synchronization

• Case 2: αi(t) = 2 − cos(t), (i = 1, · · · , 4) : Functional
synchronization

First, without disturbance signal and by applying the con-
troller (5)-(6) with the control parameters P (= X−1) and β
obtained above, each state trajectories of drive and response
systems are illustrated in Fig. 1. In Fig. 2, The synchronization
error between drive and response systems is illustrated. It
shows that the synchronization error converges to zero ex-
ponentially. In order to observe the H∞ performance with
disturbance attenuation, the response of the controlled output
error e(t) is depicted in Fig. 3, which shows functional
projective H∞ synchronization controller reduces the effect
of the disturbance input w(t) on the controlled error state e(t)
to within a prescribed level γ = 0.5.

Next, simulation results for Case 2 are given in Figs. 4-6.
When αi(t) = 2 − cos(t), the simulation results in Figs. 4-6
confirm the effectiveness of our proposed control scheme for
master-slave functional synchronization scheme.

III. CONCLUSIONS

The functional projective H∞ synchronization method has
been investigated for chaotic systems with disturbances. Based

on Lyapunov theory and LMI formulation, the controller for
the problem has designed to guarantee synchronization for
drive and response chaotic systems. The controller reduces
the H∞-norm from the disturbance to the output error within
a prescribed level. Finally, our method is applied to a 4-
dimensional chaotic system in order to illustrate the effec-
tiveness of the control scheme.
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Fig. 5. The synchronization error of 4-dimensional chaotic system without
disturbance signal w(t) in Case 2
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Fig. 6. The error state e(t) for 4-dimensional chaotic system with disturbance
signal w(t) in Case 2

REFERENCES

[1] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys.
Rev. Lett. 64, (1990) 821-824.

[2] G. Chen, X. Dong, From chaos to order: methodologies, perspectives
and applications, Singapore: World Scientific, 1998.

[3] C.C. Wang, J.P. Su, Chaos, Solitons Fractals 20 (2004) 967-977.
[4] Ju H. Park, O.M. Kwon, Chaos, Solitons Fractals 23 (2005) 445-450.
[5] X. Wu, J. Lu, Chaos, Solitons Fractals 18 (2003) 721-729.
[6] Ju H. Park, Chaos, Solitons and Fractals 25 (2005) 333-338.
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