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Abstract—Ability of accurate and reliable location estimation in 

indoor environment is the key issue in developing great number of 
context aware applications and Location Based Services (LBS). 
Today, the most viable solution for localization is the Received 
Signal Strength (RSS) fingerprinting based approach using wireless 
local area network (WLAN). This paper presents two RSS 
fingerprinting based approaches – first we employ widely used 
WLAN based positioning as a reference system and then investigate 
the possibility of using GSM signals for positioning. To compare 
them, we developed a positioning system in real world environment, 
where realistic RSS measurements were collected. Multi-Layer 
Perceptron (MLP) neural network was used as the approximation 
function that maps RSS fingerprints and locations. Experimental 
results indicate advantage of WLAN based approach in the sense of 
lower localization error compared to GSM based approach, but GSM 
signal coverage by far outreaches WLAN coverage and for some 
LBS services requiring less precise accuracy our results indicate that 
GSM positioning can also be a viable solution. 
 

Keywords—Indoor positioning, WLAN, GSM, RSS, location 
fingerprints, neural network.  

I. INTRODUCTION 
OCALIZATION techniques enable location estimation of 
people, mobile devices or equipment. Although Global 

Positioning System (GPS)  is the most popular positioning 
system for open outdoor environments, there is an unmet need 
for a reliable positioning system that can work indoors, where 
the microwave radio signals used by the GPS are greatly 
attenuated [1-3].  

Accurate indoor localization is an important and novel 
emerging technology [1]. There are numerous important 
applications in industrial, commercial, public safety, everyday 
life and military settings [4].  The ability of an accurate 
location determination leads to substantial context aware 
computing [5] and a great number of useful LBS.   

As new mobile technology comprising highly sophisticated 
devices as smartphones or tablets experiences a massive 
growth these days, context defined by location of the mobile 
devices grows in importance.  

To determine the location of the users within the network it 
is preferable to employ the existing wireless communications 
infrastructure. Most research in indoor localization systems 
use the wireless communication infrastructure primarily based 
on the wireless local area networks (WLANs), in particular the 
IEEE 802.11 standard since its widely deployed equipment 
and the RSS measurement can be easily obtained from IEEE 
802.11 MAC software. Currently, the most popular solution 
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based on WLAN's RSS is the fingerprinting architecture [6-
12]. 

In this paper we investigate if an indoor positioning system 
based on GSM fingerprints can achieve high accuracy 
comparable to WLAN fingerprints performance. GSM-based 
indoor positioning system has advantages over WLAN in 
terms of far outreaching signal coverage and high acceptance 
of mobile phones among users. As a part of GSM standard 
(e.g. [13]) which is required for successful handovers, mobile 
phones are required to report signal strength of 6 neighboring 
cells. So, a fingerprint could be easily obtained just by 
software thus obviating the need for investments in 
infrastructure. Increasing the number of channels would result 
in larger fingerprint and potentially increased localization 
accuracy, but it would require changes in GSM specification 
and phones' operation, so we are, in this paper, interested only 
in building a GSM positioning system which could be easily 
implemented on every mobile phone without any 
modifications in their operations and investments in network 
infrastructure thus enabling ubiquitous positioning 
applications. 

Section 2 describes the localization technique based on 
location fingerprinting and neural network. Measurement 
setup and localization results of the developed positioning 
systems in WLAN and GSM networks are given in Section 3. 
We close this paper with a conclusion in Section 4. 

II.  LOCALIZATION BASED ON FINGERPRINTING AND  
NEURAL NETWORK 

A location fingerprint based on RF characteristics such as 
RSS is the basis for representing a unique position or location. 
It is created under the assumption that each position or 
location inside a building has a unique RF signature. The 
process is composed of two phases: a phase of data collection 
called off-line phase and a phase of locating a user in real-time 
called on-line phase (Fig. 1).  

The first phase consists of recording a set of RSS 
fingerprints in a database as a function of the user’s location 
covering the entire zone of interest and using this data as input 
and as the target of pattern matching algorithm. During this 
phase we use a set of predefined reference points 

( , ),  1, ...,i i iL x y i M= = , where RSS values from N APs are 

measured. A reference fingerprint [ ]1 2, , ..., T

NF f f f=  is a 
vector of RSS samples where f denotes the RSS value related 
to particular AP. A series of reference fingerprints is collected 
at each reference point and stored in a database together with 
the referent physical coordinates ( , ).i ix y   

 During the second phase, an RSS fingerprint is measured 
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by receiver. Given a new fingerprint ' ' '

1 2' , , ...,
T

NF f f f= ⎡ ⎤⎣ ⎦  

measured at unknown location L' we use the reference data 
from off-line phase in order to obtain a location estimate by 
applying a pattern matching algorithm. 
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Fig. 1 Location determination based on RSS fingerprints 

 
Pattern matching algorithms can be classified into 

deterministic and probabilistic types based on the approaches 
that model the relationship between location fingerprints and 
location. The deterministic types of algorithms are those that 
are based on the nearest neighbor classifiers and the neural 
network classifiers. Location is typically estimated by 
minimizing an error function, e.g. the Euclidean distance 
between F' and the reference fingerprints in the database. The 
probabilistic types of algorithms are those that are based on 
the statistical learning theory. Several localization systems 
using the fingerprinting technique have been recently 
deployed in outdoor and indoor environments. The main 
differences between these systems are the types of fingerprint 
information and pattern matching algorithms [9, 11, 14].  

Neural networks, as a pattern matching algorithm, have 
been employed in wide range of positioning systems and have 
demonstrated good results [2, 15-17]. A trained artificial 
neural network can perform complex tasks such as 
classification, optimization, control and function 
approximation [18, 19]. Artificial neural network (ANN) can 
be used to establish a relationship between pattern of RSS 
samples and location. The pattern-matching algorithm of the 
system can be viewed as a function approximation problem 
consisting of a nonlinear mapping from a set of input variables 
(RSS from N access points) into two output variables 
representing the two dimensional location (x, y) of the mobile 
station.  

An ANN is consisting of processing units which 
communicate by sending signals to each other over a large 
number of weighted connections. The total input to unit k is 
simply the weighted sum of the separate outputs from each of 
the connected units plus a bias or offset term θk: 

 
 

 ( ) ( ) ( ) ( )k jk j k
j

s t w t y t tθ= +∑  (1) 

 
Generally, for activation function yk some sort of threshold 

function is used: a hard limiting threshold function (a sgn 

function), or a linear or semi-linear function, or hyperbolic 
tangent function. One of the most popular ANNs is the 
MultiLayer Percepton (MLP), Fig. 2. 

 

 
Fig. 2 General structure of multi-layer perceptron [18] 

 
The MLP is a feed-forward multi-layer network which uses 

a supervised error-based learning mechanism.  Each layer 
consists of units which receive inputs from units from layer 
directly below and send their output to units in a layer directly 
above. There are no connections within a layer. 
Backpropagation is used for finding the optimal weights – it 
modifies the weights of the network in order to minimize the 
mean square error between the desired and actual outputs of 
the network. 

III. EXPERIMENTAL SETUP AND RESULTS 
Localization of users in the widely available IEEE 802.11 

WLAN environments is an emerging technology. Unlike other 
positioning systems, like IR and ultrasonic, WLAN-based 
positioning systems reuse the existing WLAN infrastructures, 
which lowers the cost of indoor positioning. Also, many 
persons already carry possible positioning devices around with 
them in their daily life (smart phones, laptops and tablets with 
WLAN interface). The RSS indicator can be easily read in 
every 802.11 interface which makes the solution cost effective 
since only software deployment is required. Besides that, 
GSM has additional advantage in terms of far outreaching 
signal coverage and high acceptance of mobile phones among 
users. GSM fingerprint can also be easily obtained since every 
mobile phone is required to report signal strength of 6 
neighboring cells. Thus, in this paper we aim to investigate the 
possibility of using GSM signals for positioning. For 
comparison, we developed two positioning systems – WLAN 
and GSM based, in the same indoor environment. 

A. Location Fingerprinting 
Measurements were made in the part of the fourth floor of 

our university building, dimensions of approximately 
28m×15m, total area 420m2. Area includes 4 offices, 3 
laboratories, a classroom and a hallway. The layout of the 
floor and locations of the APs are shown in Fig. 3.  
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Fig. 3 The test location layout with positions of the access points 
 
We used three Access Points (AP) WRT54GS from Linksys 

which are IEEE 802.11b/g compatible. For collection of the 
RSS samples from APs we used a Fujitsu-Siemens laptop with 
the Network Stumbler software [20]. The WLAN Proxim 
Orinoco card was plugged into the PCMCIA slot on the right 
side of the laptop. To collect the RSS samples, the laptop was 
placed on the box approximately one-meter high. 

Locations in terms of coordinates for the measurement of 
RSS have been chosen and stored together with three 
measurements of RSS values for given location. Total number 
of measurements was 125, 110 for training and 15 for testing. 
Collecting enough statistics for creating location fingerprints 
is the key to achieving good performance with any indoor 
positioning system.  

 

 
Fig. 4 RRS values from three AP 

 
The RSS sampling period in our measurement was one 

second, with 400 samples per location. Measurement locations 
were not forming the regular grid due to office and laboratory 
equipment, inaccessible areas, etc. In Fig. 4, RSS values from 
three APs are shown at one measurement location. It can be 
seen that the measured signal strength at a fixed position 
varies over time and the variations can be up to 10 dBm. 

In Fig. 5, 2D propagation of the signal strength of AP1 is 
plotted. Colors denote signal strength; blue presents the 
weakest signal and red the strongest signal. For AP1 signal 
strength is from -86.4 dBm to -45.8 dBm.  

 

 
Fig. 5 2D propagation of the signal strength of AP1 

 
For GSM measurements we used Sony Ericsson MD300 

device which works like an ordinary GSM mobile phone, but 
provides more advanced programming capabilities, e.g. AT 
command for reading neighboring cells signal strength – 
AT*E2EMM.  For such purpose, we built an application for 
reading data from MD300 device. Application screenshot is 
shown in Fig. 6. 
 

 
Fig. 6 Application for data collection from MD300 modem 

 
In Fig. 7, signal strength values from seven GSM channels 

from one GSM provider are shown at one measurement 
location. Compared to Fig. 4, it can be seen that the measured 
signal strength appears to be more stable than WLAN signal.  

 

 
Fig. 7 Measured signal from seven GSM 1800 channels from one 

GSM provider 
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WLAN, and it can be applied practically everywhere without 
any new infrastructure deployments. 
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