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Group of p-th roots of unity modulo n
Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract—Let n ≥ 3 be an integer and p be a prime odd number.
Let us consider Gp(n) the subgroup of (Z/nZ)∗ defined by :

Gp(n) = {x ∈ (Z/nZ)∗ / xp = 1}.
In this paper, we give an algorithm that computes a generating set of
this subgroup.
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I. INTRODUCTION

LET n ≥ 3 be an integer, recall that (Z/nZ)∗ denotes the
group of units of the ring (Z/nZ). For more details on

the structure of (Z/nZ)∗ see [2], [3] and [4].
The group (Z/nZ)

∗ has several applications, the most
important is cryptography, that is RSA cryptosystem (see
[7]). The security of the RSA cryptosystem is based on the
problem of factoring large integers and the task of finding
e-th roots modulo a composite number n whose factors are
not known.

Let p be a prime odd number, we notice by Gp(n) the part
of (Z/nZ)∗ formed by the elements x that verify xp = 1. We
can easily prove that Gp(n) is a subgroup of (Z/nZ)∗ which
contains exactly the unity and the elements of order p.
Remember also that these elements of order p in (Z/nZ)

∗

exist if and only if p divides λ(n), with λ is the Carmichael
lambda function, otherwise Gp(n) is not reduced to {1} if
and only if p divides λ(n).
The elements of Gp(n) other than 1 have the order p and so
the order of Gp(n) is of the form pt with t an integer. Then
we obtain the following result:

Proposition :
Let n ≥ 3 be an integer and p be a prime number, then there
exists an integer t such as :

Card(Gp(n)) = pt

with t = 0 if and only if p does not divide λ(n).

Our work consists to determine explicitly the integer t
described in the preceding proposition and by giving at the
same time with an effective manner the decomposition of
Gp(n) in product of cyclic groups and give a generating
family of this group. Finally, we give the algorithm written
in Maple. The case p = 2 is treated in [1] and in this
article, our approach is the same as it. For more details
about the algorithmic number theory see [5] and [6], and for
introduction to Maple see [10].
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II. P-TH ROOTS OF UNITY MODULO N

Let us consider an integer n ≥ 3 and p a prime odd
number, let n = pαpα1

1 pα2
2 . . . pαm

m the decomposition of n in
prime factors.
We know that the p-th roots of unity modulo n, which are
nontrivial, exist if and only if p divides λ(n), that is to say
α ≥ 2 or there exists i such as p divides pi − 1.
Thus, in our study, we will distinguish these following cases
α = 0, α = 1 and α ≥ 2, but before that we are going to
give some results which will be useful thereafter.

Definition 2.1: Let n ≥ 3 be an integer and p be a prime
number, we denote αp(n) the number of prime factors q of
n such that p divides q − 1.

Remark :
• α2(n) is the number of prime odd factors of n.
• The function αp is additive, that is to say if n and m are
coprime numbers, then

αp(m.n) = αp(m) + αp(n)

and generally, for all the numbers not equal to 0, n and m we
have:

αp(m.n) = αp(m) + αp(n)− αp(GCD(m,n)).

In the following, we consider an integer n ≥ 3 whose the
factorization is n = pαpα1

1 pα2
2 . . . pαm

m , with p a prime odd
number dividing λ(n).

Proposition 2.1: Let x be a p-th root of unity modulo n.
If p does not divide pi − 1, then pi divides x− 1.

Proof :
We have xp ≡ 1[n] =⇒ xp ≡ 1[pi] and thus the order of x in
(Z/piZ)

∗ is 1 or p, but the order of x in (Z/piZ)
∗ divides

pi − 1 and thus it cannot be p. Therefore x ≡ 1[pi] and then
we obtain the result.�

Now, we will ameliorate the precedent result with the
following lemma :

Lemma 2.1:

GCD(x− 1, 1 + x+ x2 + . . .+ xp−1) ∈ {1, p}
Proof :
One can easily verify that we have:

(x− 1)(xp−2 + 2xp−3 + 3xp−4 + . . .+ (p− 2)x+ (p− 1))−
(1 + x+ x2 + . . .+ xp−1) = p.�
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Corollary 2.1: Let x be a p-th root of unity modulo n. If
p does not divide pi − 1 and p �= pi, then pαi

i divides x− 1.

Proof :
We have xp ≡ 1[n] =⇒ xp ≡ 1[pαi

i ] then pαi
i divides

xp − 1 = (x − 1)(1 + x + x2 + . . . + xp−1), or p does not
divide pi − 1 and thus pi divides x− 1 also we know that the
GCD(x − 1, 1 + x + x2 + . . . + xp−1) ∈ {1, p} and p �= pi,
then pαi

i divides x− 1.�

If p divides n, that is to say α ≥ 1, and x is
a p-th root of unity modulo n, then p divides
xp − 1 = (x− 1)(1 + x+ x2 + . . .+ xp−1) and consequently
p divides x − 1 or 1 + x + x2 + . . . + xp−1 and seeing the
relation given in the proof of Lemma 2.1 we conclude that p
divides both at the same time, and thus

PGCD(x− 1, 1 + x+ x2 + . . .+ xp−1) = p.

We are interested now in the case of α ≥ 2, we saw in [1]
for p = 2 that 2α−1 divides x − 1 or x + 1, we are going to
see that this result is not true for an odd prime p and more
precisely we have the following result:

Proposition 2.2: Let x be a p-th root of unity modulo n
(α ≥ 2), then pα−1 divides x− 1.

The case α = 2 is trivial, for α ≥ 3, one needs the following
lemma:

Lemma 2.2: Let p be a prime odd number and x be an
integer, then we have :

xp ≡ 1 [p3] =⇒ x ≡ 1 [p2]

Proof :
It is clear that xp ≡ 1[p3] =⇒ x ≡ 1 [p], so x = 1 + kp
(k ∈ N) and consequently xp ≡ 1 + p2k [p3] (this writing
is possible because p ≥ 3) moreover p3 divides p2k, then p
divides k and finally we obtain: x ≡ 1 [p2].�

Remark : Notice that the precedent lemma is not true
for p = 2, for instance 32 ≡ 1 [8] and 3 �≡ 1 [4].

Proof of Proposition 2.2:
We have xp ≡ 1 [pα] (α ≥ 3) and so in particulary xp ≡ 1 [p3],
from the precedent lemma we conclude that x ≡ 1 [p2].
We have pα divides xp−1 = (x−1)(1+x+x2+ . . .+xp−1)
and as PGCD(x− 1, 1 + x+ x2 + . . .+ xp−1) = p besides
p2 divides x− 1, so pα−1 divides x− 1.�

Remark :
The precedent proposition shows that pα−1 divides x− 1, but
this does not mean that the p-adic valuation of x− 1 is α− 1
and this is proved by the following examples.

An application example :

• n = 73 ∗ 29 = 9947, we have 3447 ≡ 1 [n] and
344 ≡ 1 [73]. 24027 ≡ 1 [n] and 2402 ≡ 1 [74].

• n = 72 ∗ 29 ∗ 43 ∗ 71 = 4338313, we have 3505477 ≡ 1 [n]
and 350547 ≡ 1 [74].

Let us return to our principal aim, which is the study of
the group Gp(n), we begin by the case α = 0.

Case 1 : α = 0

Let n be an integer whose decomposition into prime
factors is n = pα1

1 pα2
2 . . . pαm

m with pi �= p for all i. Let x
be a p-th root of unity modulo n, we have shown in the
above results that if p does not divide pi − 1, then pαi

i

divides x − 1. The condition p divides λ(n) implies that
it exists at least an integer i such that p divides pi − 1,
let σ be a permutation of the set {1, 2, ..,m} such that
n = p

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(d)

σ(d) p
ασ(d+1)

σ(d+1) . . . p
ασ(m)

σ(m) and p divides
only p

ασ(1)

σ(1) , p
ασ(2)

σ(2) . . . and p
ασ(d)

σ(d) , then p
ασ(d+1)

σ(d+1) . . . p
ασ(m)

σ(m)
divides x− 1.
We start our study by the following theorem:

Theorem 2.1: Let n be an integer whose decomposition in
prime factors is n = pα1

1 pα2
2 . . . pαm

m with pi �= p for all i and
p divides only p1 − 1, then Gp(n) is a cyclic subgroup of
(Z/nZ)

∗ of order p.

Proof :
Let x be a p-th root of unity modulo n, we have pα2

2 . . . pαm
m

divides x − 1, then x is a solution of one of the following
systems : ⎧⎨

⎩
x− 1 = pα2

2 . . . pαm
m K

1 + x+ x2 + . . .+ xp−1 = pα1
1 K ′

⎧⎨
⎩

x− 1 = pα1
1 pα2

2 . . . pαm
m K

1 + x+ x2 + . . .+ xp−1 = K ′

Clearly, 1 is the unique solution of the second system. Now,
we will show that the first system have exactly p−1 solutions,
which follows immediately from the two following lemmas.

Lemma 2.3: The systems⎧⎨
⎩

x− 1 = pα2
2 . . . pαm

m K

1 + x+ x2 + . . .+ xp−1 = pα1
1 K ′

(�)

⎧⎨
⎩

x− 1 = pα2
2 . . . pαm

m K

1 + x+ x2 + . . .+ xp−1 = p1K
′

(��)

have the same number of solutions respectively modulo n
and n/pα1−1

1 .

Proof :
It is clear that any solution of (�) is a solution of (��). Recip-
rocally let x be a solution of (��), then xp ≡ 1 [p1p

α2
2 . . . pαm

m ]
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that is to say xp = 1 + p1p
α2
2 . . . pαm

m K1 and therefore

xpp
α1−1
1 = (1 + p1p

α2
2 . . . pαm

m K1)
p
α1−1
1

= 1 +

p
α1−1
1 −1∑
i=1

C i

p
α1−1
1

(p1p
α2
2 . . . pαm

m K1)
i +

(p1p
α2
2 . . . pαm

m K1)
p
α1−1
1

It is easily verified that all C i

p
α1−1
1

are divisible by pα1−1
1 and

pα1−1
1 ≥ α1, then xpp

α1−1
1 ≡ 1 [n]. From the other hand

xp
α1−1
1 = (1 + pα2

2 . . . pαm
m K)p

α1−1
1

= 1 +

p
α1−1
1 −1∑
i=1

C i

p
α1−1
1

(pα2
2 . . . pαm

m K)i +

(pα2
2 . . . pαm

m K)p
α1−1
1

and as the C i

p
α1−1
1

are divisible by p1 and K is not divisible

by p1, then xp
α1−1
1 − 1 is divisible by all the pi except p1

and consequently xp
α1−1
1 is a solution of (�).

Let x and y be two solutions of (��) such as
xp

α1−1
1 = yp

α1−1
1 [n] and thus xp

α1−1
1 = yp

α1−1
1 [p1],

hence x ≡ y [p1], on the other hand it is clear that
x ≡ y [pα2

2 . . . pαm
m ] and consequently x ≡ y [p1p

α2
2 . . . pαm

m ].
We therefore conclude that the number of solutions of (�) is
greater than or equal to that of (��). Thus the systems (�)
and (��) have the same number of solutions modulo n and
n/pα1−1

1 respectively.�

Lemma 2.4: The following system⎧⎨
⎩

x− 1 = pα2
2 . . . pαm

m K

1 + x+ x2 + . . .+ xp−1 = p1K
′

(��)

has p− 1 solutions modulo n/pα1−1
1 .

Proof :
We know that Z/p1Z is the field of decomposition of the
polynomial Xp1 −X , and more precisely we have :

Xp1 −X =

p1−1∏
i=0

(X − i)

and therefore

Xp1−1 − 1 =

p1−1∏
i=1

(X − i)

and as p divides p1 − 1 then the polynomial Xp − 1 divides
Xp1−1 − 1 and therefore the polynomial Xp − 1 is also a
product of factors of degree 1, that is to say

Xp − 1 =

p∏
i=1

(X − γi)

and as 1 is a root of Xp − 1 then we take γ1 = 1 and finally
we obtain

1 +X +X2 + . . . Xp−1 =

p∏
i=2

(X − γi)

and consequently the system (��) is equivalent to the follow-
ing systems:⎧⎨
⎩

x− 1 = pα2
2 . . . pαm

m K2

x− γ2 = p1K
′
2

⎧⎨
⎩

x− 1 = pα2
2 . . . pαm

m K3

x− γ3 = p1K
′
3

. . .

⎧⎨
⎩

x− 1 = pα2
2 . . . pαm

m Kp

x− γp = p1K
′
p

It is clear that each of these systems has only one solution
modulo p1p

α2
2 . . . pαm

m . Also the solutions of these systems
are 2 by 2 distinct. Indeed if we denote xi the solution of the
following system⎧⎨

⎩
x− 1 = pα2

2 . . . pαm
m Ki

x− γi = p1K
′
i

then xi ≡ γi [p1]. Since the γi are distinct modulo p1, then
the xi are also distinct. We conclude that (��) have p − 1
solutions modulo n/pα1−1

1 .�

Remark :
The proof of the previous theorem gives an algorithm for
calculating the solutions of (�), and this is done in two steps :
Step 1
We resolve (��), the most difficult point in this step is
to determinate the γi. We must give the factorization of
the polynomial 1 + X + X2 + . . . + Xp−1 in the field
Z/p1Z[X] and for this we can use Berlekamp’s algorithm
[8] or Cantor-Zassenhaus algorithm [9]. Then we decompose
(��) in small systems that are resolved easily with Euclidian’s
algorithm.
Step 2
To find the solutions of (�), it is sufficient to see that they
are also solutions of (��) set to the power pα1−1

1 modulo n.

Note also that the set of solutions of (�) forms with 1
a cyclic group of order p, then any solution of (�) generates
this group. Thus in practice it is sufficient to determine a
solution of (�) to find the others.

A sample calculation :

We want to determine the elements of order 7 modulo
n with n = 10609215 = 294 ∗ 5 ∗ 3. The first step consists to
give the factorization of 1 +X +X2 + . . .+X6 in the field
Z/29Z[X], by using Berlekamp’s algorithm, we obtain :

1 +X +X2 + . . .+X6

= (X + 4)(X + 5)(X + 6)(X + 9)(X + 13)(X + 22).

Let’s consider the following system⎧⎨
⎩

x− 1 = 15K

x+ 4 = 29K ′

which gives 29K ′− 15K = 5, and by the euclidian algorithm
we obtain K ′ = −5 and K = −10.
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Therefore x = −149 = 286 modulo 435 = 29∗5∗3. Thereby
28629

3

modn = 1006441 is an element of order 7 modulo n
and consequently the elements of G7(n) are

G7(n) = {1006441, 10064412, . . . , 10064417}
that is to say

G7(n) = {1006441, 8684356, 6860611, 4797001,
5450251, 9979951, 1}

Now, we give an algorithm in MAPLE which allows us for
any fixed integer n and a prime odd number p, as described in
the last theorem, to give a generator of the cyclic group Gp(n).

Gene p := proc(n, p) local LB,LD,P, gen, i, LFact;
LD := [ ];LB := [ ];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
if (LFact[i][1]− 1 mod p = 0) then
LD := [op(LD), LFact[i]];
end :
end :
P := convert(Berlekamp(x̂p− 1, x) mod LD[1][1], list);
if(P [1]− x+ 1 mod LD[1][1] <> 0) then
LB := Bezout(LD[1][1], n/(LD[1][1]̂LD[1][2]), P [1] −
x+ 1);
gen := ((LD[1][1] ∗ LB[1]− (P [1]− x)modn))&̂
(LD[1][1]̂(LD[1][2]− 1))modn;
else
LB := Bezout(LD[1][1], n/(LD[1][1]̂LD[1][2]), P [2] −
x+ 1);
gen := (LD[1][1] ∗ LB[1]− (P [2]− x)modn)&̂
(LD[1][1]̂(LD[1][2]− 1))modn;
end :
eval(gen);
end :
end :

Algorithm 2.1

Remark :
The Berlekamp’s procedure used in this algorithm is
predefined in MAPLE.

In the remainder of this paragraph, considering an integer n
whose decomposition in prime factors is n = pα1

1 pα2
2 . . . pαm

m

and p a prime odd number such that pi �= p for all i. For a fixed
permutation we can write n = pα1

1 pα2
2 . . . pαd

d p
αd+1

d+1 . . . pαm
m

with p divides pi − 1 for all i ∈ {1, .., d}. We have seen that
if x is a p-th root of unity modulo n, then p

αd+1

d+1 . . . pαm
m

divides x − 1. Thus p
αd+1

d+1 . . . pαm
m don’t have a significant

role in our study, for the rest we set pαd+1

d+1 . . . pαm
m = A.

Definition 2.2: Let x a p-th root of unity modulo n, we say
that x is initial if all the pi, i ∈ {1, .., d} divides x− 1 except
for only one pi. We say that this p-th root is associated to pi,
and we write :

x− 1 = pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK.

with K is an integer not divisible par pi.

We denote by Gpi
p (n) the set formed by the unity and the

initial p-th roots of unity associated to pi, and we have the
following theorem :

Theorem 2.2: Gpi
p (n) is a cyclic subgroup of Gp(n) with

cardinality p.

Proof :
The initial p-th roots of unity associated to pi are the solutions
of the system :⎧⎪⎨

⎪⎩
x− 1 = pα1

1 pα2
2 . . .

∨
pαi
i . . . pαd

d AK

1 + x+ x2 + ..+ xp−1 = pαi
i K

′
(�)

We saw in the foregoing that this system have p− 1 solutions
modulo n and then Card(Gpi

p (n)) = p. Let’s prove now that
Gpi

p (n) is a subgroup. Let x and y be two solutions of (�),
we have

x− 1 = pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK and

y − 1 = pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK ′

and therefore

x.y = 1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d A(K

+ K ′ + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKK ′)

Note that x.y is a p-th root of unity and therefore
at this stage we have two case. If pi divides

(K + K ′ + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKK ′), then pαi
i

divides x.y − 1 and we obtain x.y = 1. If pi does not divide

(K + K ′ + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKK ′), then x.y is an
initial to p-th root of unity associated to pi. It is clear that if
x is a p-th root of unity, then its inverse x−1 = xp−1 is an
element of Gpi

p (n). Whereof Gpi
p (n) is a cyclic subgroup of

Gp(n) because its cardinality is a prime number p.�

Proposition 2.3: Let x and y be two initial p-th roots of
unity associated to pi and pj with i �= j, then x.y is a p-th
root of unity satisfying

x.y − 1 = pα1
1 pα2

2 . . .
∨
pαi
i . . .

∨
p
αj

j . . . pαd

d AK

with K is an integer which is not divisible by pi and pj .

Proof :
We have

x− 1 = pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK1 and

y − 1 = pα1
1 pα2

2 . . .
∨
p
αj

j . . . pαd

d AK2

and therefore

x.y = 1 + pα1
1 pα2

2 . . .
∨
pαi
i . . .

∨
p
αj

j . . . pαd

d A(p
αj

i K1 + pαi
i K2)
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and as pi does not divide K1 also pj does not divide K2,
then (p

αj

i K1 + pαi
i K2) is not divisible by both pi and pj .�

Definition 2.3: Let x be a p-th root of unity modulo n, we
say that it is final if all the pi, i ∈ {1, .., d} does not divide
x − 1, that is to say x − 1 = AK, with K an integer not
divisible by any pi, i ∈ {1, .., d}.

Remark :
The existence of final p-th roots of unity modulo n is ensured
by the preceding proposition, in fact if for all i ∈ {1, .., d}
we take xi an initial p-th root of unity associated to pi, then
d∏

i=1

xi is a final p-th root of unity modulo n.

Definition 2.4: Let x and y be two p-th roots of unity
modulo n, we say that y is a final conjugate of x if x.y − 1
is not divisible by any of the pi, i ∈ {1, .., d}, that is to say
x.y is a final p-th root of unity modulo n.

Proposition 2.4: Any p-th root of unity modulo n have a
final conjugate.

Proof :
If x = 1 or x is a final p-th root of unity modulo n, then we
have the result. When d = 1, then a final p-th root of unity
modulo n is also an initial p-th root of unity associated to p1
and thus all the p-th roots of unity distinct from 1 are final.
Now, we suppose that d ≥ 2 and x − 1 is divisible by a
nonempty subset of pi of cardinality t < d and we can assume
that, for a fixed permutation, this pi are p1, p2, . . . are pt and
thus

x− 1 = pα1
1 pα2

2 . . . pαt
t AK

with K is an integer which is not divisible by any of the pi,
i ∈ {t+ 1, .., d}. For all i ∈ {1, .., t} let xi be an initial p-th
root of unity associated to pi and therefore

xi = 1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t p
αt+1

t+1 . . . pαd

d AKi

with Ki not divisible by pi, and thus
t∏

i=1

xi =

t∏
i=1

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t p
αt+1

t+1 . . . pαd

d AKi)

= 1 + p
αt+1

t+1 . . . pαd

d A
t∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t Ki +K ′n

but
t∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t Ki is not divisible by any of the

pi, i ∈ {1, .., t} therefore y =
t∏

i=1

xi is a p-th root of unity

satisfies y = 1 + p
αt+1

t+1 . . . pαd

d AM with M an integer which
is not divisible by pi, i ∈ {1, .., t}. So

x.y = 1 +A(p
αt+1

t+1 . . . pαd

d AM + pα1
1 . . . pαt

t AK)

It is clear that (p
αt+1

t+1 . . . pαd

d AM + pα1
1 . . . pαt

t AK) is not
divisible by any of the pi, i ∈ {1, .., d}, and hence the result.�

Theorem 2.3: Let x be a final p-th root of unity modulo n,
then it exists d integers K1,K2, . . . ,Kd such as:

x = 1 +

d∑
i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi

and

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p = 1 [n] ∀ 1 ≤ i ≤ d.

Proof :

Since pα1
1 pα2

2 . . .
∨
pαd

d and pαd

d are coprime then it exists two
integers K̃ ′

d and K̃d such as

1 = pαd

d K̃ ′
d + pα1

1 pα2
2 . . .

∨
pαd

d K̃d (�)

and therefore

x− 1 = pαd

d AK ′
d + pα1

1 pα2
2 . . .

∨
pαd

d AKd

with K ′
d = ((x− 1)/A)K̃ ′

d and Kd = ((x− 1)/A)K̃d.
We have :

(x− pαd

d AK ′
d)

p = (x− (x− 1)pαd

d K̃ ′
d)

p

= (a(1− pαd

d K̃ ′
d) + pαd

d K̃ ′
d)

p

= (xpα1
1 pα2

2 . . .
∨
pαd

d K̃d + pαd

d K̃ ′
d)

p

= (pα1
1 pα2

2 . . .
∨
pαd

d K̃d)
p + (pαd

d K̃ ′
d)

p [pα1
1

pα2
2 . . . pαd

d ]

= 1 [pα1
1 pα2

2 . . . pαd

d ] from (�)

On the other hand

x− (x− 1)pαd

d K̃ ′
d = 1 + (x− 1)(1− pαd

d K̃ ′
d)

= 1 [A]

Thus (x − (x − 1)pαd

d K̃ ′
d)

p = 1[n] and consequently (1 +

pα1
1 pα2

2 . . .
∨
pαd

d AKd)
p = 1[n].

Suppose that it exists some integers Kt,K2, . . . ,Kd and K ′
t

such as :

x = 1 +
d∑

i=t

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi + pαt
t . . . pαd

d AK ′
t

and

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p = 1 [n] ∀ t ≤ i ≤ d

Let K̃t−1 and K̃ ′
t−1 be two integers such as

1 = pα1
1 pα2

2 . . .
∨
p
αt−1

t−1 K̃t−1 + p
αt−1

t−1 K̃
′
t−1 (��)

and therefore

pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t = pα1

1 . . .
∨
p
αt−1

t−1 . . . pαd

d AK ′
tK̃t−1+

p
αt−1

t−1 . . . pαd

d AK ′
tK̃

′
t−1.
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We have

(pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1− p

αt−1

t−1 . . . pαd

d AK ′
tK̃

′
t−1)

p

= ((pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1)(1− p

αt−1

t−1 K̃
′
t−1) +

p
αt−1

t−1 K̃
′
t−1)

p

= ((pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1)pα1

1 pα2
2 . . .

∨
p
αt−1

t−1 K̃t−1 +

p
αt−1

t−1 K̃
′
t−1)

p

= (pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1)p(pα1

1 pα2
2 . . .

∨
p
αt−1

t−1 K̃t−1)
p +

(p
αt−1

t−1 K̃
′
t−1)

p [pα1
1 pα2

2 . . . p
αt−1

t−1 ]

however

(pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1)p

= (x−
d∑

i=t

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p

= xp [pα1
1 pα2

2 . . . p
αt−1

t−1 A]

= 1 [pα1
1 pα2

2 . . . p
αt−1

t−1 A]

and consequently

(pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1− p

αt−1

t−1 . . . pαd

d AK ′
tK̃

′
t−1)

p

= (pα1
1 pα2

2 . . .
∨
p
αt−1

t−1 K̃t−1)
p +

(p
αt−1

t−1 K̃
′
t−1)

p [pα1
1 pα2

2 . . . p
αt−1

t−1 ]

= 1 [pα1
1 pα2

2 . . . p
αt−1

t−1 ] from (��)

also it is clear that

(pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t + 1− p

αt−1

t−1 . . . pαd

d AK ′
tK̃

′
t−1)

p =

1 [pαd

d . . . pαt
t A]

and so

(pαt
t p

αt+1

t+1 . . . pαd

d AK ′
t+1−pαt−1

t−1 . . . pαd

d AK ′
tK̃

′
t−1)

p = 1 [n]

That means

(1 + pα1
1 . . .

∨
p
αt−1

t−1 . . . pαd

d AK ′
tK̃t−1)

p = 1 [n].

We set Kt−1 = K ′
tK̃t−1 and K ′

t−1 = K ′
tK̃

′
t−1, we obtain so

x = 1 +
d∑

i=t

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi +

pα1
1 . . .

∨
p
αt−1

t−1 . . . pαd

d AKt−1 + p
αt−1

t−1 . . . pαd

d AK ′
t−1

= 1 +
d∑

i=t−1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi +

p
αt−1

t−1 . . . pαd

d AK ′
t−1

with

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p = 1 [n] ∀ t− 1 ≤ i ≤ d

Thus by induction, we obtain

x = 1 +
d∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi + pα1
1 . . . pαd

d AK ′
1

= 1 +
d∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi [n]

with (1+pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p = 1 [n],∀ 1 ≤ i ≤ d.�

Corollary 2.2: Any final p-th root of unity modulo n is
a product of d initial p-th roots associated respectively to
p1,p2 . . . and pd.

Proof :
From the precedent theorem, it exists some integers
K1,K2, . . . ,Kd such as:

x = 1 +
d∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi

and

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p = 1 [n] ∀ 1 ≤ i ≤ d

If we set xi = 1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi, then xi is a
p-th root of unity modulo n also from the construction of Ki

in the preceding proof, Ki is not divisible by pi. Thus xi is an
initial p-th root associated to pi. On the other hand we have

d∏
i=1

xi =

d∏
i=1

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)

= 1 +
d∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi [n] = x.�

Corollary 2.3: Every p-th root of unity modulo n is a
product of initial p-th roots.

Proof :
Let x be a p-th root of unity modulo n, if this root is final,
then the result is immediate, otherwise there is x1, x2, . . . and

xt such as x.
t∏

i=1

xi is final p-th root of unity modulo n and

from the precedent corollary there exists y1, y2, . . . and yd
initial p-th roots of unity modulo n associated respectively

to p1,p2 . . . and pd such as x.
t∏

i=1

xi =
d∏

i=1

yi and thus

x =

t∏
i=1

x−1
i .

d∏
i=1

yi and as the set of initial p-th roots of unity

modulo n associated to pi form with 1 a group, then x can

be written like following x =

d∏
i=1

zi with zi is either 1 or an

initial p-th root associated to pi.�

Corollary 2.4: Gp(n) is generated by the initial p−th
roots of unity modulo n.

Remark :
As for each pi the set of initial p-th roots of unity modulo n
associated to pi form with 1 a cyclic group then

Gp(n) =< x1, x2, . . . , xd >

with xi an initial p-th root of unity modulo n associated to
pi.
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Theorem 2.4: The map

ϕ : Gp1
p (n)×Gp2

p (n) . . .×Gpd
p (n) −→ Gp(n)

(x1, x2, . . . , xd) �−→ x1.x2, . . . xd

is an isomorphism of groups.

Proof :
We have shown that ϕ is a surjective morphism of groups,
remains to prove that it is injective.
We have ϕ(x1, x2, . . . , xd) = 1 ⇐⇒ x1.x2, . . . xd = 1,
assume that there exists an integer i such that xi �= 1, then
we can easily verify that x1.x2, . . . xd−1 is also not divisible
by pi but this is absurd, thus xi = 1 for all i and hence ϕ is
injective.�

From the previous theorem it is clear that
Card(Gp(n)) = pd, where d is a number of distinct
prime factors q of n such that p divides q − 1, that is to say
d = αp(n) and we obtain the following result :

Corollary 2.5:

Card(Gp(n)) = pαp(n).

Remark :
From the previous theorem we have

Gp(n) = {
∏

(i1,i2,..,id)∈Id

xi11 x
i2
2 . . . x

id
d , with I = {1, 2, .., p}}

with xi is a generator of the cyclic group Gpi
p (n).

We give now an algorithm written in Maple that allows us
from an integer n and an odd prime p, as described in this
foregoing, to give a generating set of Gp(n).

Gene p := proc(n, p) local LB,LD, i, LFact,GEN,P ;
LD := [ ];LB := [ ];GEN := [ ];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
if (LFact[i][1]− 1 mod p = 0) then
LD := [op(LD), LFact[i]];
end :
end :
for i from 1 to nops(LD) do
P := convert(Berlekamp(x̂p− 1, x) mod LD[i][1], list);
if(P [1]− x+ 1 mod LD[i][1] <> 0) then
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [1] − x +
1);
GEN := [op(GEN), ((LD[i][1] ∗ LB[1] − (P [1] −
x)modn))&̂(LD[i][1]̂(LD[i][2]− 1))modn];
else
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [2] − x +
1);
GEN := [op(GEN), (LD[i][1]∗LB[1]−(P [2]−x)modn)&̂
(LD[i][1]̂(LD[i][2]− 1))modn];
end :
end :
if(GEN = [ ]) then

GEN := [1];
end :
eval(GEN);
end :

Algorithm 2.2

A sample application :

Let n = 53 ∗ 79 ∗ 131 ∗ 17 ∗ 19 and p = 13, to find a
generating set of the group formed by the p-th roots of unity
modulo n, it suffices to use the previous algorithm with
the command line Gene p(n, 13). The displayed result is
[50140906, 174921943, 71677254], which represents the list
of generators of this group.

Remark :
In the case when this algorithm return [1], then this means
that Gp(n) = {1}.

Case 2 : α = 1

Let n be an integer whose decomposition into prime factors
is n = p pα1

1 pα2
2 . . . pαm

m with pi �= p for all i and let x be a
p-th root of unity modulo n, the above results show that if p
does not divide pi − 1 then pαi

i divides x − 1, on the other
hand we have xp = 1[n] implies that p divides (x − 1)(1 +
x + .. + xp−1) and from the lemma 2.1 we obtain p divides
x− 1 and 1 + x+ ..+ xp−1.
Also provided p divides λ(n) implies that there exists at least
one integer i such that p divides pi−1. For a fixed permutation
we can write n = p pα1

1 . . . pαd

d . . . pαm
m with p divides pi − 1

for all i ∈ {1, .., d} and does not divide pi − 1 for every i ∈
{d+ 1, ..,m}. Assume for the following pαd+1

d+1 . . . pαm
m = A.

We define in the same manner the initial p-th roots of unity
modulo n by replacing A with pA. The initial p-th roots of
unity modulo n associated to pi, i ∈ {1, .., d} are the solutions
of the system :⎧⎪⎨

⎪⎩
x− 1 = pα1

1 pα2
2 . . .

∨
pαi
i . . . pαd

d pAK

1 + x+ x2 + ..+ xp−1 = pαi
i K

′

We show in the same manner that this system has exactly
p − 1 roots modulo n. Thus for all i ∈ {1, .., d} there are
p − 1 initial p-th roots associated to pi. We also show that
the initial p-th roots of unity modulo n associated to pi form
with 1 a cyclic subgroup of Gp(n) of cardinality p and it is
denoted as Gpi

p (n).
We define in the same way a final p-th root of unity and its
conjugate by replacing A by pA and we obtain the following
theorem :

Theorem 2.5: Let x be a final p-th root of unity modulo n,
then there exists integers K1,K2, . . . ,Kd such that :

x = 1 +
d∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d pAKi
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and

(1 + pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d pAKi)
p = 1 [n] ∀ 1 ≤ i ≤ d.

Indeed to prove this result we can just proceed as above and
replacing A by pA.
We deduce that any final p-th root of unity modulo n is
the product of d initial p-th roots associated respectively to
p1,p2,...and pd. Hence every p-th root of unity is the product
of initial p-th roots, and we can show that Gp(n) is generated
by the initial p-th roots of unity and more precisely if we
denote xi an initial p-th root of unity associated to pi, then

Gp(n) =< x1, x2, . . . , xd > .

Also we have the following results :

Theorem 2.6: The map

ϕ : Gp1
p (n)×Gp2

p (n) . . .×Gpd
p (n) −→ Gp(n)

(x1, x2, . . . , xd) �−→ x1.x2, . . . xd

is an isomorphism of groups.

Corollary 2.6:

Card(Gp(n)) = pαp(n).

Remark :
From the previous theorem we can easily show that

Gp(n) = {
∏

(i1,i2,..,id)∈Id

xi11 x
i2
2 . . . x

id
d , with I = {1, 2, .., p}}

with xi is a generator of the cyclic group Gpi
p (n).

Finally, note that Algorithm 2.2 remains valid in this
case.

Case 3 : α ≥ 2

Let n be an integer whose decomposition into prime factors
is n = pαpα1

1 pα2
2 . . . pαm

m with pi �= p for all i and α ≥ 2. The
fact that α ≥ 2 ensures that Gp(n) is not reduced to {1}.
Suppose that for every i, p does not divide pi − 1 and let x
be a p-th root of unity modulo n, then pα1

1 pα2
2 . . . pαm

m divides
x−1 and by Proposition 2.2 it follows that pα−1 divides x−1.
So x is a solution of the system⎧⎨

⎩
x− 1 = pα−1pα1

1 pα2
2 . . . pαm

m K

1 + x+ x2 + ..+ xp−1 = K ′

But this system has p solutions modulo n which are
1, 1 + n/p, 1 + 2n/p, .. and 1 + (p − 1)n/p. Then we obtain
the following result:

Proposition 2.5: Let n = pαpα1
1 pα2

2 . . . pαm
m with α ≥ 2

and p does not divide pi − 1 for all i, then

Gp(n) = {1 + kn/p ; 0 ≤ k ≤ p− 1}
Remark:
It is clear that Gp(n) is a cyclic group of order p.

We will now exclude this case from our study, that is, there
exists at least i such that p divides pi − 1. For a fixed
permutation we can write n = pα pα1

1 . . . pαd

d . . . pαm
m with p

divides pi − 1 for all i ∈ {1, .., d} and does not divide pi − 1
for all i ∈ {d+1, ..,m} and assume for the rest of this paper
p
αd+1

d+1 . . . pαm
m = A.

Definition 2.5: Let x be a p-th root of unity modulo n, x
is said of class zero if x − 1 = pα−1pα1

1 pα2
2 . . . pαd

d AK with
K an integer.

It is clear that there are p p-th roots of unity of class zero
which are {1 + kn/p ; 0 ≤ k ≤ p − 1} and one can easily
verify that they form a cyclic group of order p denoted G0

p(n).

Definition 2.6: Let x be a p-th root of unity modulo n, it
said initial root if every pi, i ∈ {1, .., d} divides x− 1 except
for only one pi. We said that this root is associated to pi. And
we write :

x− 1 = pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK.

with K an integer that is not divided by pi.

Theorem 2.7: There exists p2 − p initial p-th roots of unity
associated to pi for all 1 ≤ i ≤ d.

Proof :
We may assume i = 1, the initial p-th roots associated to p1
are the solutions of the system :⎧⎨

⎩
x− 1 = pα−1pα2

2 . . . pαd

d AK

1 + x+ x2 + ..+ xp−1 = pα1
1 K ′

(�)

and we conclude with the following lemmas.�

Lemma 2.5: The following systems have the same number
of solutions respectively modulo n and n/pα1−1

1 .⎧⎨
⎩

x− 1 = pα−1pα2
2 . . . pαd

d AK

1 + x+ x2 + . . .+ xp−1 = pα1
1 K ′

(�)

⎧⎨
⎩

x− 1 = pα−1pα2
2 . . . pαd

d AK

1 + x+ x2 + . . .+ xp−1 = p1K
′

(��)

Proof :
It is clear that any solution of (�) is a solution of
(��). Reciprocally let x be a solution of (��), then
xp ≡ 1 [pαp1p

α2
2 . . . pαd

d A] that is to say xp = 1 +
pαp1p

α2
2 . . . pαd

d AK1 and therefore

xpp
α1−1
1 = (1 + pαp1p

α2
2 . . . pαd

d AK1)
p
α1−1
1

= 1 +

p
α1−1
1 −1∑
i=1

C i

p
α1−1
1

(p1p
α2
2 . . . pαd

d AK1)
i

+ (pαp1p
α2
2 . . . pαd

d AK1)
p
α1−1
1
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It is easily verified that all C i

p
α1−1
1

are divisible by pα1−1
1 and

pα1−1
1 ≥ α1, then xpp

α1−1
1 ≡ 1 [n]. On the other hand

xp
α1−1
1 = (1 + pα−1pα2

2 . . . pαd

d AK)p
α1−1
1

= 1 +

p
α1−1
1 −1∑
i=1

C i

p
α1−1
1

(pα−1pα2
2 . . . pαd

d AK)i

+ (pα−1pα2
2 . . . pαd

d AK)p
α1−1
1

And as C i

p
α1−1
1

are divisible by p1 and K is not divisible

by p1, then xp
α1−1
1 − 1 is divisible by all pi except p1.

Consequently xp
α1−1
1 is a solution of (�).

Let x and y be two solutions of (��) such that
xp

α1−1
1 = yp

α1−1
1 [n] thus xp

α1−1
1 = yp

α1−1
1 [p1].

Hence x ≡ y [p1], on the other hand it is clear that
x ≡ y [pα2

2 . . . pαd

d A] therefore x ≡ y [p1p
α2
2 . . . pαd

d A]. We
conclude then that the systems (�) and (��) have the same
number of solutions respectively modulo n and n/pα1−1

1 .�

Lemma 2.6: The following system have p2 − p solutions
modulo n/pα1−1

1 .⎧⎨
⎩

x− 1 = pα−1pα2
2 . . . pαm

m K

1 + x+ x2 + . . .+ xp−1 = p1K
′

(��)

Proof :
We know that

Xp − 1 =

p∏
i=1

(X − γi)

and as 1 is a root of Xp− 1 then we take γ1 = 1. Finally, we
obtain

1 +X +X2 + . . . Xp−1 =

p∏
i=2

(X − γi)

and consequently (��) is equivalent to the following systems :⎧⎨
⎩

x− 1 = pα−1pα2
2 . . . pαd

d AK2

x− γ2 = p1K
′
2

...⎧⎨
⎩

x− 1 = pα−1pα2
2 . . . pαd

d AKp

x− γp = p1K
′
p

It is clear that for each one of these systems have p solutions
modulo n/pα1−1

1 . Since, the solutions of these systems are
distinct, we conclude that (��) have p(p − 1) solutions
modulo n/pα1−1

1 .�

Proposition 2.6: The set formed by the initial p-th roots
of unity modulo n associated to pi and by the elements of
G0

p(n) is a subgroup of Gp(n) denoted Gpi
p (n) and we have

Card(Gpi
p (n)) = p2.

Proof :
Let x and y be two elements of Gpi

p (n), there are three cases

to distinguish :
• If x and y are in G0

p(n), then in this case xy belongs G0
p(n)

since the latter is a group and hence xy is in Gpi
p (n).

• If x and y are respectively in Gpi
p (n) \G0

p(n) and G0
p(n),

then we have x−1 = pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK and y−
1 = pα−1pα1

1 pα2
2 . . . pαd

d AK ′ with K an integer not divisible
by pi thus

xy = 1 + pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d A(K + pαi
i K

′)

The term K + pαi
i K

′ is not divided by pi and therefore xy is
a p-th root of unity associated to pi. Hence xy is in Gpi

p (n).
• If x and y are in Gpi

p (n) \G0
p(n), then :

x − 1 = pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK and y − 1 =

pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK ′ with K and K ′ are two
integers not divided by pi therefore

xy = 1 + pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d A(K +K ′

+ pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKK ′)

If the term K + K ′ + pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKK ′ is
divided by pi then xy belongs to G0

p(n) ⊂ Gpi
p (n), otherwise

xy is a p-th root associated to pi and consequently xy is in
Gpi

p (n).
Thus Gpi

p (n) is stable for the product and as the inverse of
the element x is xp−1, then Gpi

p (n) is stable by the inverse
operation which proves that Gpi

p (n) is a subgroup of Gp(n).
Finally, we can see that G0

p(n) does not contain an initial
p-th root associated to pi which allows us to conclude that
Card(Gpi

p (n)) = (p2 − p) + p = p2. �

Definition 2.7: Let x be a p-th root, we said that x is of
the first class if pα divides x − 1, otherwise it said to be of
the second class.

Proposition 2.7: There are p− 1 initial p-th roots of unity
associated to pi which are of the first class.

Proof :
The initial p-th roots associated to pi which are of first class
are solutions of the system :⎧⎪⎨

⎪⎩
x− 1 = pαpα1

1 pα2
2 . . .

∨
pαi
i . . . pαd

d AK

x+ 1 = pαi
i K

′

And from the previous we know that this system has p − 1
solutions modulo n.�
Let denote by

+

Gpi
p (n) the set formed by 1 and the initial

p-th roots of unity associated to pi that are of the first class

and we can easily verify that
+

Gpi
p (n) is a cyclic subgroup of

Gp(n) of cardinality p and we have the following result :

Proposition 2.8: The map

ϕ :
+

Gpi
p (n)×G0

p(n) −→ Gpi
p (n)

(x, y) �−→ x.y
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is an isomorphism of groups.

Proof :
It is clear that ϕ is surjective morphism of groups. For the

injectivity, let us consider two elements x and y of
+

Gp1
p (n)

and G0
p(n) respectively such that x.y = 1, we have :

x − 1 = pαpα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AK and y − 1 =
pα−1pα1

1 pα2
2 . . . pαd

d AK ′, therefore

xy = 1 + pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d A(K + pαi
i K

′).

As x.y = 1, then the term K + pαi
i K

′ is divided by pαi
i

therefore pαi
i divides K, hence x = y = 1.�

Definition 2.8: Let x be a p-th root of unity modulo n,
we said x is final if all the pi, i ∈ {1, .., d} does not divide
x − 1, which means x − 1 = pα−1AK, with K an integer
not divisible by pi, i ∈ {1, .., d}.

Proposition 2.9: Any final p-th root of unity modulo n
can be written in a single manner as product of a final p-th
root of the first class by a class zero’s p-th root.

Proof :
Let x be a final p-th root of unity modulo n and let’s consider
an integer y of the form y = 1 + pαAK and z a class zero’s
p-th root. We have :

x = yz ⇐⇒ x = (1 + pαAK)(1 + pα−1pα1
1 pα2

2 . . . pαd

d AK ′)
⇐⇒ x− 1 = pαAK + pα−1pα1

1 pα2
2 . . . pαd

d AK ′

⇐⇒ x− 1

pα−1A
= pK + pα1

1 pα2
2 . . . pαd

d K ′

This equation has solutions K and K ′, also
(1 + pα−1pα1

1 pα2
2 . . . pαd

d AK ′)p = 1, therefore
(1 + pαAK)p = 1 and as x − 1 is divisible by none
of the pi which implies that K is divisible by none of the
pi, this proves that (1 + pαAK) is a final p-th root of the
first class. Also it is clear that if we take K and K ′ as other
solutions, then 1 + pαAK and 1 + pα−1pα1

1 pα2
2 . . . pαd

d AK ′

are the same modulo n.�

Remark :
If for all i ∈ {1, .., d} we take xi an initial p-th root of the

first class associated to pi, then
d∏

i=1

xi is a final root of the

first class. The following theorem shows that any final root
of the first class is a product of this form.

Theorem 2.8: Any final p-th root of the first class is
product of d initial p-th roots of the first class associated
respectively to p1, p2, .. and pd.

Proof :
Let x be a final p-th root of the first class, we know that there

exist K1,K2, .. and Kd such that

x = 1 +
d∑

i=1

pαpα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi

and

(1 + pαpα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi)
p = 1 [n] ∀ 1 ≤ i ≤ d.

If we set xi = 1 + pαpα1
1 pα2

2 . . .
∨
pαi
i . . . pαd

d AKi, then xi is
an initial p-th root of the first class associated to pi and we

can easily verify that x =

d∏
i=1

xi.�

Definition 2.9: Let x and y be two p-th roots of unity
modulo n, we say y is a final conjugate root of x if x.y − 1
is divisible by none of the pi, i ∈ {1, .., d}, that means x.y is
a final p-th root modulo n.

Proposition 2.10: Any p-th root of unity modulo n have a
final conjugate.

Proof :
Let x be a p-th root of unity modulo n, if x ∈ G0

p(n) or x
is a final p-th root then we have the expected result. When
d = 1, a final p-th root is an initial p-th root associated to p1
and therefore any root that not belongs to G0

p(n) are finals.
Assume that d ≥ 2 and x − 1 is divisible by a nonempty
subfamily of pi of cardinality t < d and for a permutation,
we can assume them p1, p2, . . . and pt. Thus

x− 1 = pα−1pα1
1 pα2

2 . . . pαt
t AK

with K an integer not divisible by pi, i ∈ {t+1, .., d}. For all
i ∈ {1, .., t}, let xi be an initial p-th associated to pi therefore

xi = 1 + pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t p
αt+1

t+1 . . . pαd

d AKi

with Ki not divided by pi, whereof
t∏

i=1

xi =
t∏

i=1

(1 + pα−1pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t p
αt+1

t+1 . . . pαd

d AKi)

= 1+pα−1p
αt+1

t+1 . . . pαd

d A

t∑
i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t Ki+K
′n

but
t∑

i=1

pα1
1 pα2

2 . . .
∨
pαi
i . . . pαt

t Ki is divisible by none of the pi,

i ∈ {1, .., t}. Consequently y =
t∏

i=1

xi is a root which verify

y = 1 + pα−1p
αt+1

t+1 . . . pαd

d AM with M an integer that not
divided by pi, i ∈ {1, .., t}. Thereby

x.y = 1 + pα−1A(p
αt+1

t+1 . . . pαd

d AM + pα1
1 . . . pαt

t AK)

It is clear that (pαt+1

t+1 . . . pαd

d AM+pα1
1 . . . pαt

t AK) is divisible
by none of the pi, i ∈ {1, .., d}, hence the result.�

Corollary 2.7: Every p-th root of unity is a product of a
first class initial p-th roots by a class zero’s p-th root.
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Proof :
Let x be a p-th root modulo n, if x is final then we can write
it as a product of a final p-th root of unity of the first class by
a class zero’s p-th root and from the previous results this final
p-th root of the first class is product of d initial p-th roots
of the first class associated respectively to p1, p2, .. and pd,
hence the result. Now let us assume that x is not a final p-th
root so there exists x1,x2, .. and xt initial p-th roots such that
x1x2..xt is a final conjugate of x, then xx1x2..xt is a final
p-th root, and we have :

xx1x2..xt = y1y2..ydy0

with yi is an initial p-th root of the first class associated to pi
and y0 is a class zero’s p-th root.
From Proposition 2.8 any initial p-th root associated to pi
can be written uniquely as a product of an initial first class
p-th root associated to pi by class zero’s p-th root. Thereby

xi =
+
xi zi, with

+
xi∈

+

Gp1
p (n) and zi ∈ G0

p(n). So

x = y1y2..yd(
+
x1

+
x2 ...

+
xt)

−1(z1z2...zt)
−1y0

and as
+

Gp1
p (n) and G0

p(n) are groups, then we obtain the
result.�

Remark :
The previous result shows that Gp(n) is generated by the
initial p-th roots of the first class and the class zero’s p-th

roots and as G0
p(n) and

+

Gp1
p (n) are cyclic groups, then

Gp(n) =< x1, x2, . . . , xd, x0 >

with xi is an initial p-th root of the first class associated to pi
and x0 is a p-th root of the class zero distinct from 1. More
generally, we have the following result :

Theorem 2.9: The map

ϕ :
+

Gp1
p (n)×

+

Gp2
p (n) . . .×

+

Gpm
p (n)×G0

p(n) −→ Gp(n)

(x1, x2, . . . , xm, y) �−→ x1.x2, . . . xm.y

is an isomorphism of groups.

Proof :
It is clear that ϕ is a surjective morphism of groups and we
show that it is injective as in the analogous previous results.�

Corollary 2.8:

Card(Gp(n)) = pαp(n)+1.

Remark :
From the previous theorem we have

Gp(n) = {
∏

(i1,i2,..,id,i)∈Id+1

xi11 x
i2
2 . . . x

id
d x

i
0}

with I = {1, 2, .., p}, xi is one generator of the cyclic group
Gpi

p (n) for i �= 0 and x0 is a p-th root of the first class
different from 1.

We now give an algorithm in MAPLE that allows us to
find a generating set of Gp(n). For the computing of x0
it suffices to take x0 = 1 + n/p and for the others xi, we
proceed as above.

Gene p := proc(n, p) local LB,LD, i, LFact,GEN,P ;
LD := [ ];LB := [ ];GEN := [ ];
GEN := [op(GEN), 1 + n/p];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
if (LFact[i][1]− 1 mod p = 0) then
LD := [op(LD), LFact[i]];
end :
end :
for i from 1 to nops(LD) do
P := convert(Berlekamp(x̂p− 1, x) mod LD[i][1], list);
if(P [1]− x+ 1 mod LD[i][1] <> 0) then
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [1] − x +
1);
GEN := [op(GEN), ((LD[i][1] ∗ LB[1] − (P [1] −
x)modn))&̂(LD[i][1]̂(LD[i][2]− 1))modn];
else
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [2] − x +
1);
GEN := [op(GEN), (LD[i][1] ∗ LB[1] − (P [2] −
x)modn)& (̂LD[i][1]̂(LD[i][2]− 1))modn];
end :
end :
if(GEN = [ ]) then
GEN := [1];
end;
eval(GEN);
end :

Algorithm 2.3

III. CONCLUSION

For the cardinality of Gp(n), we can summarize it in the
following theorem :

Theorem 3.1: Let n ≥ 3 be an integer and p be a prime
odd number which does not divide n, then :
• Card(Gp(n)) = pαp(n)

• Card(Gp(pn)) = pαp(n)

• Card(Gp(p
αn)) = pαp(n)+1 with α ≥ 2

We will now give an algorithm which help us to find, from a
fixed integer n, a generating set of Gp(n).

Gene p := proc(n, p) local LB,LD, i, LFact,GEN,P ;
LD := [ ];LB := [ ];GEN := [ ];
if (n mod p̂2 = 0) then
GEN := [op(GEN), 1 + n/p];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
if (LFact[i][1]− 1 mod p = 0) then
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LD := [op(LD), LFact[i]];
end :
end :
for i from 1 to nops(LD) do
P := convert(Berlekamp(x̂p− 1, x) mod LD[i][1], list);
if(P [1]− x+ 1 mod LD[i][1] <> 0) then
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [1] − x +
1);
GEN := [op(GEN), ((LD[i][1] ∗ LB[1] − (P [1] −
x)modn))&̂(LD[i][1]̂(LD[i][2]− 1))modn];
else
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [2] − x +
1);
GEN := [op(GEN), (LD[i][1] ∗ LB[1] − (P [2] −
x)modn)&̂(LD[i][1]̂(LD[i][2]− 1))modn];
end :
end :
else
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
if (LFact[i][1]− 1 mod p = 0) then
LD := [op(LD), LFact[i]];
end :
end :
for i from 1 to nops(LD) do
P := convert(Berlekamp(x̂p− 1, x) mod LD[i][1], list);
if(P [1]− x+ 1 mod LD[i][1] <> 0) then
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [1] − x +
1);
GEN := [op(GEN), ((LD[i][1] ∗ LB[1] − (P [1] −
x)modn))&̂(LD[i][1]̂(LD[i][2]− 1))modn];
else
LB := Bezout(LD[i][1], n/(LD[i][1]̂LD[i][2]), P [2] − x +
1);
GEN := [op(GEN), (LD[i][1] ∗ LB[1] − (P [2] −
x)modn)&̂(LD[i][1]̂(LD[i][2]− 1))modn];
end :
end :
end :
if(GEN = [ ]) then
GEN := [1];
end;
eval(GEN);
end :

Algorithm 2.4
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