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Group of p-th roots of unity modulo n

Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract—Let n > 3 be an integer and p be a prime odd number.
Let us consider G (n) the subgroup of (Z/nZ)" defined by :

Gp(n) ={z € (Z/nZ)" | 27 =1}.

In this paper, we give an algorithm that computes a generating set of
this subgroup.
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I. INTRODUCTION

ET n > 3 be an integer, recall that (Z/nZ)" denotes the

group of units of the ring (Z/nZ). For more details on
the structure of (Z/nZ)* see [2], [3] and [4].
The group (Z/nZ)* has several applications, the most
important is cryptography, that is RSA cryptosystem (see
[7]1). The security of the RSA cryptosystem is based on the
problem of factoring large integers and the task of finding
e-th roots modulo a composite number n whose factors are
not known.

Let p be a prime odd number, we notice by G, (n) the part
of (Z/nZ)* formed by the elements z that verify 2P = 1. We
can easily prove that G, (n) is a subgroup of (Z/nZ)* which
contains exactly the unity and the elements of order p.
Remember also that these elements of order p in (Z/nZ)"
exist if and only if p divides A(n), with X is the Carmichael
lambda function, otherwise G,(n) is not reduced to {1} if
and only if p divides A(n).

The elements of G, (n) other than 1 have the order p and so
the order of G,(n) is of the form p' with ¢ an integer. Then
we obtain the following result:

Proposition :
Let n > 3 be an integer and p be a prime number, then there
exists an integer ¢ such as :

Card(Gy(n)) = p*
with ¢ = 0 if and only if p does not divide A(n).

Our work consists to determine explicitly the integer ¢
described in the preceding proposition and by giving at the
same time with an effective manner the decomposition of
G,(n) in product of cyclic groups and give a generating
family of this group. Finally, we give the algorithm written
in Maple. The case p = 2 is treated in [1] and in this
article, our approach is the same as it. For more details
about the algorithmic number theory see [S] and [6], and for
introduction to Maple see [10].
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II. P-TH ROOTS OF UNITY MODULO N

Let us consider an integer » > 3 and p a prime odd
number, let n = p*pl'ps? ... p&m the decomposition of n in
prime factors.

We know that the p-th roots of unity modulo n, which are
nontrivial, exist if and only if p divides A(n), that is to say
a > 2 or there exists ¢ such as p divides p; — 1.

Thus, in our study, we will distinguish these following cases
a =0, a=1and o > 2, but before that we are going to

give some results which will be useful thereafter.

Definition 2.1: Let n > 3 be an integer and p be a prime
number, we denote a,(n) the number of prime factors g of
n such that p divides ¢ — 1.

Remark :

e a(n) is the number of prime odd factors of n.

e The function «, is additive, that is to say if n and m are
coprime numbers, then

ap(m.n) = ay(m) + oy (n)
and generally, for all the numbers not equal to 0, n and m we
have:

ap(m.n) = a,(m) + ap(n) — a,(GCD(m, n)).

In the following, we consider an integer n > 3 whose the
factorization is n = p*p{'ps? ... p%m, with p a prime odd

number dividing A(n).

Proposition 2.1: Let x be a p-th root of unity modulo n.
If p does not divide p; — 1, then p; divides = — 1.

Proof :

We have 2P = 1[n] = zP = 1[p;] and thus the order of z in
(Z/p;Z)" is 1 or p, but the order of z in (Z/p;Z)" divides
p; — 1 and thus it cannot be p. Therefore = 1[p;] and then
we obtain the result.ll

Now, we will ameliorate the precedent result with the
following lemma :

Lemma 2.1:
GOD(x — 1,1 +x+2*+...+2P ) e {1,p}

Proof :
One can easily verify that we have:

(x—1)(aP 2+ 2273 43P+ 4+ (p—2x+(p—1)) —

A4+z+22+.. . +27H)=pl
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Corollary 2.1: Let x be a p-th root of unity modulo n. If

p does not divide p; — 1 and p # p;, then p* divides x — 1.

Proof :

We have 2P = 1[n] = 2P = 1[p{"] then pJ* divides
2P —1=(z—- 1)1 +z+2%+...+2P71), or p does not
divide p; — 1 and thus p; divides z — 1 also we know that the
GCD(z —1,1+x+22+...+2P71) € {1,p} and p # p;,
then p* divides = — 1.0

If p divides n, that is to say « > 1, and =z is
a p-th root of wunity modulo n, then p divides
2P —1=(z—1)(1+z+22+...4+2P"") and consequently
p divides # — 1 or 1 + 2z + 2% 4 ... + zP~! and seeing the
relation given in the proof of Lemma 2.1 we conclude that p
divides both at the same time, and thus

PGCD(.’E*1,1+1‘+1‘2+...+])F71):p,

We are interested now in the case of a > 2, we saw in [1]
for p = 2 that 22! divides # — 1 or x + 1, we are going to
see that this result is not true for an odd prime p and more
precisely we have the following result:

Proposition 2.2: Let x be a p-th root of unity modulo n
(o > 2), then p®~ ! divides = — 1.

The case o = 2 is trivial, for @ > 3, one needs the following
lemma:

Lemma 2.2: Let p be a prime odd number and = be an
integer, then we have :

P =1[p° = = =1[p?

Proof :

It is clear that 27 = 1[p®] = = = 1[p], so z = 1 + kp
(k € N) and consequently 2? = 1 + p?k [p?] (this writing
is possible because p > 3) moreover p? divides p2k, then p
divides k and finally we obtain: x = 1 [p?].l

Remark : Notice that the precedent lemma is not true
for p = 2, for instance 3% = 1[8] and 3 # 1[4].

Proof of Proposition 2.2:

We have 2P = 1[p®] (o > 3) and so in particulary 2P = 1 [p?],
from the precedent lemma we conclude that = = 1 [p?].

We have p® divides 2P —1 = (z —1)(1+z+22+... +2P71)
and as PGCD(x — 1,1+ x + 22 4+ ... + 2P~1) = p besides
p? divides z — 1, so p*~! divides z — 1.1

Remark :

The precedent proposition shows that p®~! divides = — 1, but
this does not mean that the p-adic valuation of x —1is a — 1
and this is proved by the following examples.

An application example :

en = T %29 = 9947, we have 344”7 = 1[n] and
344 = 1[7%). 24027 = 1[n] and 2402 = 1[74].

o n =T72%29%43 %71 = 4338313, we have 3505477 = 1 [n]
and 350547 = 1[74].

Let us return to our principal aim, which is the study of
the group G, (n), we begin by the case o = 0.

Case 1 : =0

Let n be an integer whose decomposition into prime
factors is n = p{'py? ... p% with p; # p for all i. Let z
be a p-th root of unity modulo n, we have shown in the
above results that if p does not divide p; — 1, then p;"
divides © — 1. The condition p divides A(n) implies that
it exists at least an integer ¢ such that p divides p; — 1,
let 0 be a permutation of the set {1,2,..,m} such that

_ Qo (1) Ao (2) Qo (d), Xo(d+1) X (m) s
= P,01) Poi2) + Po(d) Po(dr) * - Po(m) and p divides
onl Ao(1) |, Xo(2) and o(d) then Qo (d+1) X (m)

My Py Po2y -+ Ps(a) » Po(a+1) =+ Po(m)
divides = — 1.

We start our study by the following theorem:

Theorem 2.1: Let n be an integer whose decomposition in
prime factors is n = p{*p3? ... p%m with p; # p for all ¢ and
p divides only p; — 1, then G,(n) is a cyclic subgroup of
(Z/nZ)* of order p.

Proof :

Let z be a p-th root of unity modulo n, we have p5? ... p%m
divides = — 1, then z is a solution of one of the following
systems :

x—1=p5?.. . pimK

l+z+22+... +2P L =pP K’
x—1=pi"ps*...pon K

l+z+a2?+...+aP =K'

Clearly, 1 is the unique solution of the second system. Now,
we will show that the first system have exactly p—1 solutions,
which follows immediately from the two following lemmas.

Lemma 2.3: The systems

x—1=p3*. . pomK

(*)
l+z+a?+... +aP ! =plK'
xr—1=p3*.. . pomK

(%)

l+z+22+.. . 422 =p K’

have the same number of solutions respectively modulo n
a;—1

and n/p]

Proof :
It is clear that any solution of (%) is a solution of (xx). Recip-
rocally let = be a solution of (%%), then zP = 1 [p1p5?...pS&m
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that is to say 2? = 1 + pyp5? ... p%m K, and therefore

ap—1 ap—1
.’Eppl — (1 + plpg@ . -p?ﬁmKI)pl

o1l

1
T Coa(p1ps” .. pp K1)' o+
i=1

ap—1

(p1p3? .. .ppm Ky )P

It is easily verified that all C;al_l are divisible by p‘fl_l
1

and

ap—1
™1 >y, then #PP1" = 1[n]. From the other hand

Pt 1 az o JC Pyt
T = (1+4p3%...p0mK)

pT1717
= 1+ Y,
i=1

(P2 .. pom K

1
Cpor (957 - P )" +

1

and as the C;al,l are divisible by p; and K is not divisible

1 —
by pi, then ZPr ' —}1 is divisible by all the p; except py
and consequently 271" is a solution of ().

Let = and y be two solutions of (xx) such as
S R yp(lxlfl[n] and thus 2#' ' = y”{tltl [p1],
hence © = y[p1], on the other hand it is clear that
x = y[ps?...p%m] and consequently x = y [p1p5? ... por].

We therefore conclude that the number of solutions of (%) is
greater than or equal to that of (%%). Thus the systems (%)
and (%) have the same number of solutions modulo n and
n/pt ! respectively.l

Lemma 2.4: The following system
r—1=p3*.. . pom K
(%x)
l+z4+22+.. . +2P =p K’
has p — 1 solutions modulo n/p$* .
Proof :
We know that Z/p;Z is the field of decomposition of the
polynomial XP* — X, and more precisely we have :
p1—1

xr—x=J](x -9

and therefore
p1—1
xnt o= J[(x—i)
i=1
and as p divides p; — 1 then the polynomial X? — 1 divides
XPt=1 1 and therefore the polynomial X? — 1 is also a
product of factors of degree 1, that is to say
D
X7 —1=J[(X =)
i=1
and as 1 is a root of X? — 1 then we take y; = 1 and finally
we obtain
P
1+ X+ X2+ xr =[x —w)
i=2

and consequently the system (x*) is equivalent to the follow-
ing systems:

(D)

x—1=p5*.. . pirK, r—1=p5*.. . pim K3

T =y =p1K5 r — 3 =p1K;

x—1=p5*.. . p2rK,

z—vp=mK z/>
It is clear that each of these systems has only one solution
modulo p;p3?...p%m. Also the solutions of these systems

are 2 by 2 distinct. Indeed if we denote x; the solution of the
following system

x—1=p5*. . ptmK;

-7y =p K

then x; = ; [p1]. Since the ~; are distinct modulo p;, then
the z; are also distinct. We conclude that (xx) have p — 1
solutions modulo 7/p$* .1

Remark :

The proof of the previous theorem gives an algorithm for
calculating the solutions of (x), and this is done in two steps :
Step 1

We resolve (%x), the most difficult point in this step is
to determinate the ~;. We must give the factorization of
the polynomial 1 + X + X2 4 ... + XP~! in the field
Z/p1Z[X] and for this we can use Berlekamp’s algorithm
[8] or Cantor-Zassenhaus algorithm [9]. Then we decompose
(%) in small systems that are resolved easily with Euclidian’s
algorithm.

Step 2

To find the solutions of (%), it is sufficient to see that they

are also solutions of (%) set to the power p{" ~' modulo 7.

Note also that the set of solutions of (*) forms with 1
a cyclic group of order p, then any solution of (x) generates
this group. Thus in practice it is sufficient to determine a
solution of (%) to find the others.

A sample calculation :

We want to determine the elements of order 7 modulo
n with n = 10609215 = 29* 5 x 3. The first step consists to
give the factorization of 1+ X 4+ X2 + ... + X in the field
Z/297|X], by using Berlekamp’s algorithm, we obtain :
I+ X +X% 4. +X°
= (X+49)(X+5)(X +6)(X+9)(X +13)(X +22).

Let’s consider the following system

r—1=15K

r+4=29K'

which gives 29K’ — 15K = 5, and by the euclidian algorithm
we obtain K’ = —5 and K = —10.
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There}jore x = —149 = 286 modulo 435 = 29 x5 x 3. Thereby
2862 modn = 1006441 is an element of order 7 modulo n
and consequently the elements of G7(n) are

Gr(n) = {1006441,1006441%, . ..,10064417}
that is to say

G~(n) = {1006441, 8684356, 6860611, 4797001,
5450251, 9979951, 1}

Now, we give an algorithm in M APLFE which allows us for
any fixed integer n and a prime odd number p, as described in
the last theorem, to give a generator of the cyclic group G, (n).

Gene_p := proc(n,p) local LB, LD, P, gen,i, LFact;
LD:=[|;LB:=[};

LFact :=ifactors(n)[2];

for i from 1 to nops(LFact) do

if (LFact[i][1] — 1 mod p = 0) then

LD := [op(LD), LFact][i]];

end :

end :

P := convert(Berlekamp(z™p — 1, ) mod LD[1][1], list);
if(P[1] — 2 + 1 mod LDI[1][1] <> 0) then

LB := Bezout(LD[1][1],n/(LD[1)[1]"LD[1]2)), P[1] —
x+1);

gen := ((LD[1][1] * LB[1] — (P[1] — =) mod n))&"
(lLD[l][ "(LD[][2] = 1)) mod n;

LB := Bezout(LD[1][1],n/(LD[1][1]"LD[1][2]), P|2] —
z+1);

gen := (LDI1][1] * LB[1] — (P[2] — ) modn)&"

(DU (EDZ) 1) mods

e/val.(gen);

end :

end :

Algorithm 2.1

Remark :
The Berlekamp’s procedure used in this algorithm is
predefined in M APLE.

In the remainder of this paragraph, considering an integer n
whose decomposition in prime factors is n = p'pg?...p%m
and p a prime odd number such that p; # p for all 4. For a fixed
permutation we can write n = p'p3?... pgdpgjfll copom
with p divides p; — 1 for all ¢ € {1,..,d}. We have seen that
if z is a p-th root of unity modulo n, then pjit* ... pom
divides » — 1. Thus p¢t" ... p%n don’t have a significant

I
role in our study, for the rest we set py {3 ... po = A.

Definition 2.2: Let x a p-th root of unity modulo n, we say
that x is initial if all the p;, i € {1, ..,d} divides  — 1 except
for only one p;. We say that this p-th root is associated to p;,
and we write :

ay, Qo

v
z—1=ppy? ... pf .. pitAK.

with K is an integer not divisible par p;.

We denote by GPi(n) the set formed by the unity and the
initial p-th roots of unity associated to p;, and we have the
following theorem :

Theorem 2.2: GJi(n) is a cyclic subgroup of Gy (n) with
cardinality p.

Proof :
The initial p-th roots of unity associated to p; are the solutions
of the system :

\%
z—1=p"ps?...pi" .. .pj*AK
(*)
l+x+a?+. +aP L =plK
We saw in the foregoing that this system have p — 1 solutions
modulo n and then C'ard(G}:(n)) = p. Let’s prove now that

Gbi(n) is a subgroup. Let = and y be two solutions of (x),
we have

v
z—1=pi"ps?...pf" ... py*AK and

y—1=p'py? ;? L PGLAK!
and therefore
Ty = 1+p(f1p32..4[v)?’7...pgdA(K
+ K'-&-p(flpgz...;?’ .. pJAKK)

Note that z.y is a p-th root of unity and therefore
at this stage we have two case. If p; divides
\
(K + K' + pi*p3?... pi* ...pg*AKK'), then p;*
divides .y — 1 and we obtain x.y = 1. If p; does not divide
v

(K + K"+ pi'ps? ... pi" ... .py*AKK'), then z.y is an
initial to p-th root of unity associated to p;. It is clear that if
x is a p-th root of unity, then its inverse z=' = 2P~! is an
element of Gbi(n). Whereof GLi(n) is a cyclic subgroup of
G (n) because its cardinality is a prime number p.H

Proposition 2.3: Let x and y be two initial p-th roots of
unity associated to p; and p; with ¢ # 7, then .y is a p-th
root of unity satisfying

\V2 \%
zy—1=pPps?...pY ...p?j L DYTAK

with K is an integer which is not divisible by p; and p;.

Proof :
We have

v
z—1=p'py?...p" .. .p*AK, and

v
y—1=p{ps? ...p;-lj LpgtAK,

and therefore

\V2 \
z.y=1+p"ps? ... p3 ...p;’ ...pgdA(p?“Kl + piiKy)
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and as p; does not divide K; also p; does not divide Ko,
then (p;” K1 + p§" K2) is not divisible by both p; and p;.l

Definition 2.3: Let x be a p-th root of unity modulo n, we
say that it is final if all the p;, @ € {1,..,d} does not divide
x — 1, that is to say * — 1 = AK, with K an integer not
divisible by any p;, i € {1, ..,d}.

Remark :
The existence of final p-th roots of unity modulo n is ensured
by the preceding proposition, in fact if for all ¢ € {1,..,d}

we take x; an initial p-th root of unity associated to p;, then
d

H x; is a final p-th root of unity modulo n.
i=1

Definition 2.4: Let x and y be two p-th roots of unity
modulo n, we say that y is a final conjugate of z if z.y — 1
is not divisible by any of the p;, ¢ € {1,..,d}, that is to say
x.y is a final p-th root of unity modulo n.

Proposition 2.4: Any p-th root of unity modulo n have a
final conjugate.

Proof :
If x =1 or z is a final p-th root of unity modulo n, then we
have the result. When d = 1, then a final p-th root of unity
modulo n is also an initial p-th root of unity associated to p;
and thus all the p-th roots of unity distinct from 1 are final.
Now, we suppose that d > 2 and = — 1 is divisible by a
nonempty subset of p; of cardinality ¢ < d and we can assume
that, for a fixed permutation, this p; are p1,pa, ... are p; and
thus

x—1=p"p3?.. . pJtAK
with K is an integer which is not divisible by any of the p;,

i€{t+1,.,d}. Forallie {1,..,t} let z; be an initial p-th
root of unity associated to p; and therefore

v
z; =14 pPps? . pf L pttplit L pGtAK;

with K; not divisible by p;, and thus
t t

\
[Tz =TI +ppse. . p - piepityt - Py  AKS)

=1+4+piit...pg AX:p1 P52 fLLptK + K'n

but Zpl ps*

Dis 1€ {1,..,

.. pyt K; is not divisible by any of the

t
t} therefore y = le is a p-th root of unity
i=1
satisfies y = 1+ pyi1' ... pJ*AM with M an integer which
is not divisible by p;, i € {1,..,t}. So
vy =1+Alp 1 .. py AM + pt* .. pft AK)

It is clear that (py{i'...p?AM + p*...pi*AK) is not
divisible by any of the p;, i € {1, .., d}, and hence the result.l

Theorem 2.3: Let x be a final p-th root of unity modulo n,
then it exists d integers K, Ko, ..., K4 such as:

x—l—&—Zp‘flp;”. iLLpgtAK;

and

v
(I+pPtps? ... pt gt AK)P =1[n] V1<i<d.

Proof :
Since pi"py* ... pg* and py are coprime then it exists two
integers K/, and Ky such as

\%

1= p§ Ky +pips® ... p§t Ky (%)

and therefore

z—1=pJ?AK) + p{"p5? .. ad AK,

with K, = ((z —1)/A)K, and Kq = ((z — 1)/A) K4
We have :

(x—pJlAKYP = (z— (v — 1)p3 K})P
a(l - dde)—l—pdde)

1, (X2

TPy P2 pgd Kq+ pgdKé)p

(
(
(
(952 ... 5" Ka)” + (0

P ... "]
= 1[p{'ps?...py%] from (x)
On the other hand
z—(x—1)p}K), = 1+ (z—1)(1—p5 K}
= 14

Thus (z — (z — l)psdf?&)p = 1[n] and consequently (1 +
\

Py py* * AKq)P = 1[n].
Suppose that it exists some integers Ky, Ko, ..., Ky and K]
such as :
x = 1—|—Zp1 po? pGlAK; + pit .. ptAK,
and
\
Q+pPps?...pf . pitAK)P =1[n] ViE<i<d

Let K, 1 and 1?271 be two integers such as
\o/¢ e (" >
L=pips® o py Koo + 90 Ky (%)
and therefore

\2
prpt AR = pit L pt eyt p AR+

Pyt .pg"’AKgf?;,l.

KL
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We have
(P pett Py AR + 1 — piyt L pAKIK, )P
= ((pt P AK] + 1)(1 - pit KL ) +
P )P

\

= (PPl . p AK, + 1)pps? . py Koy +

P?t ! 21)

= (P g AK PPt
(P K ) (o9 p5® - pi ]

however

v
(e D
Pty Kia)

(pf p?i? pS"AK'H)”

= x—Zpl ps?
P [Pi“ p5? .. piiit Al
1 [p{ps? ... piit Al

.. pgdAKi)p

and consequently

(PP piiyt . pgtAK{+1 —pityt L pit AKIK] )P
\/ ~
= (p(flp(;z- p?iil K 1)P +
(P Ky )P [ ps? . piiy]
= 1 [p"p5*.. pt‘ll] from ()

also it is clear that

(Pt py et S AR+ 1 — pitt L p AR K] )P =
Llpg...pi"A]
and so
(P pyctt ST AR+ 1 —pit L p T AK K] )P =1 [n]
That means

(14pS.. p?tll L PSTAKK, )P =1 [n).
We set ;1 = K’Kt_l and K| | = K{f({fl, we obtain so

r = 1+Zp§f‘1p§”... PSrAK, +
b4 (&3
pf“...pt’1 DYCAK 1+t AR,
= 1+ Z PP Pyt AK; +
1=t—1
prtt CDGLAK]
with

v
(I+pMps? ... pf L pGlAK)P =

Thus by induction, we obtain

1[n] Vt—1<i<d

i\

d
L+ > piips . pfe - PyrAK]

8
Il

. .psdAKi +p?l

d
L+ piips® .. pf L ptAK; [n]

\%
with (14+pps? ... pit . p?AK)P=1[n)V1<i<dM
Corollary 2.2: Any final p-th root of unity modulo n is
a product of d initial p-th roots associated respectively to
p1,p2 - .. and pg.

Proof :
From the precedent theorem, it exists some integers
K, Ks,...,Kg such as:
x—1+2p1 pa? ... pit . pgt AK;
and

v
(L+pitpe?...pf L pytAK))P =1[n] V1<i<d

\%
If we set z; = 14 p{'py? ... pi" .. .p*AK;, then z; is a
p-th root of unity modulo n also from the construction of K
in the preceding proof, K; is not divisible by p;. Thus z; is an
initial p-th root associated to p;. On the other hand we have

d
I -
i=1

d Vv
[T +pipse ... pe

i=1
1+ Zpi“p? »

Corollary 2.3: Every p-th root of unity modulo n is a
product of initial p-th roots.

pcdxd AKZ)

P pytAK; [n) =21

Proof :

Let « be a p-th root of unity modulo n, if this root is final,

then the result is immediate, otherwise there is z1,x2, ... and
t

x¢ such as x. Hml is final p-th root of unity modulo n and

i=1
from the precedent corollary there exists y1,ys2,... and yq4

initial p-th roots of unity modulo n associated respectively
t d

Hy,; and thus

i=1 i=1

to p1,p2... and pg such as xH:r,:

t d
H x; H y; and as the set of initial p-th roots of unity

=1
modulo n associated to p; form with 1 a group, then x can
d

be written like following z = H z; with z; is either 1 or an
i=1
initial p-th root associated to p;.H

Corollary 2.4: Gp(n) is generated by the initial p—th
roots of unity modulo n.

Remark :
As for each p; the set of initial p-th roots of unity modulo n
associated to p; form with 1 a cyclic group then

Gy(n)
with z; an initial p-th root of unity modulo n associated to
Di.

=<T1,T2,...,Tq >
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Theorem 2.4: The map
¢ : GPY(n) x GP2(n) ... x Ghi(n)

JXg) > T1.T2,...T4

—  Gp(n)
($1’$27 s

is an isomorphism of groups.

Proof :

We have shown that ¢ is a surjective morphism of groups,
remains to prove that it is injective.

We have ¢(z1,22,...,24) = 1 < z1.29,...24 = 1,
assume that there exists an integer ¢ such that x; # 1, then
we can easily verify that z;.z9,... 24— 1 is also not divisible
by p; but this is absurd, thus z; = 1 for all ¢ and hence ¢ is
injective.ll

From the previous theorem it is clear that
Card(Gp(n)) = p?, where d is a number of distinct
prime factors ¢ of n such that p divides ¢ — 1, that is to say
d = a,(n) and we obtain the following result :

Corollary 2.5:
Card(G,(n)) = p*»™.

Remark :
From the previous theorem we have

Gp(n) ={ H ikl

(i1,82,..,ia) ETY

,with 7 ={1,2,..,p}}

with x; is a generator of the cyclic group G5 (n).

We give now an algorithm written in Maple that allows us
from an integer n and an odd prime p, as described in this
foregoing, to give a generating set of G,(n).

Gene_p := proc(n,p) local LB,LD,i, LFact,GEN, P;
LD :=[];LB:=[];GEN :=[1];

LFact :=ifactors(n)[2];

for i from 1 to nops(LFact) do

if (LFact[i][1] — 1 mod p = 0) then

LD :=[op(LD), LF act[i]];

end :

end :

for i from 1 to nops(LD) do

P := convert(Berlekamp(a”p — 1,x) mod LDI[i|[1], list);
if(P[1] — x + 1 mod LDIJi][1] <> 0) then

f)B := Bezout(LDI[i][1],n/(LD[[1]"LD[i]|2]), P[] — = +
GEN = [op(GEN),((LD[i|[1]  LB[1] — (P[1] —
J:l) modn))& (LD[][1]"(LDIi][2] — 1)) mod n];

f)B := Bezout(LDIi][1],n/(LD[:][1]"LD[i][2]), P]2] — = +
GEN := [op(GEN), (LD[i][1]*LB[1]—(P[2]—x) modn)&"
(LD (LD~ 1) mod

end

if(GEN =[]) then

2517-9934
No:7, 2010

GEN :=[1];
end :
eval(GEN);

end :
Algorithm 2.2

A sample application :

Let n = 53 %« 79 % 131 %« 17 % 19 and p = 13, to find a
generating set of the group formed by the p-th roots of unity
modulo n, it suffices to use the previous algorithm with
the command line Gene_p(n,13). The displayed result is
[50140906, 174921943, 71677254], which represents the list
of generators of this group.

Remark :
In the case when this algorithm return [1], then this means
that Gp(n) = {1}.

Case 2 :a=1

Let n be an integer whose decomposition into prime factors
isn=pplpy?...p%m with p; # p for all ¢ and let = be a
p-th root of unity modulo n, the above results show that if p
does not divide p; — 1 then p7** divides = — 1, on the other
hand we have 2P = 1[n] implies that p divides (z — 1)(1 +
T+ .. + acpfl) and from the lemma 2.1 we obtain p divides
r—1land 14+ .. + 2P L
Also provided p divides A(n) implies that there exists at least
one integer ¢ such that p divides p; —1. For a fixed permutation
we can write n = pp{* ... p5?...p%m with p divides p; — 1
for all ¢ € {1,..,d} and does not divide p; — 1 for every i €
{d+1,..,m}. Assume for the following pji" ... pom = A.
We define in the same manner the initial p-th roots of unity
modulo n by replacing A with pA. The initial p-th roots of
unity modulo n associated to p;, i € {1,..,d} are the solutions

of the system :
\Y%
z—1=p"ps? ... pi" ... py'pAK

l+ao+a®+. +aP ! =pl K’

We show in the same manner that this system has exactly
p — 1 roots modulo n. Thus for all ¢ € {1,..,d} there are
p — 1 initial p-th roots associated to p;. We also show that
the initial p-th roots of unity modulo n associated to p; form
with 1 a cyclic subgroup of G,(n) of cardinality p and it is
denoted as Gh(n).

We define in the same way a final p-th root of unity and its
conjugate by replacing A by pA and we obtain the following
theorem :

Theorem 2.5: Let x be a final p-th root of unity modulo n,
then there exists integers K1, Ko, ..., K, such that :

d
v
r=1+ Zp‘flpg‘z Pt pyipAK;
i=1
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and

v
(L+pitps?...pt . pyipAK)P =1[n] V1<i<d.
Indeed to prove this result we can just proceed as above and
replacing A by pA.

We deduce that any final p-th root of unity modulo n is
the product of d initial p-th roots associated respectively to
p1,p2....and pg. Hence every p-th root of unity is the product
of initial p-th roots, and we can show that G,(n) is generated
by the initial p-th roots of unity and more precisely if we

denote z; an initial p-th root of unity associated to p;, then

Gp(n) =<z1,22,...,2q > .
Also we have the following results :
Theorem 2.6: The map
¢ :GPY(n) x GP2(n)... x GP(n) —  Gy(n)

(xla‘T?w"vxd) — I1.Z2,...Z4

is an isomorphism of groups.

Corollary 2.6:
Card(G,(n)) = p* ™.

Remark :
From the previous theorem we can easily show that

Gp(n) ={ H

(i1,2,..,5a) €14

ahal ol with T={1,2,.,p}}

with z; is a generator of the cyclic group Gbi(n).

Finally, note that Algorithm 2.2 remains valid in this
case.

Case 3:a>2

Let n be an integer whose decomposition into prime factors
isn = p*p{tpy? ... p% with p; # p for all ¢ and o > 2. The
fact that o > 2 ensures that G, (n) is not reduced to {1}.
Suppose that for every ¢, p does not divide p; — 1 and let z
be a p-th root of unity modulo n, then p{*p3? ... p%m divides
x—1 and by Proposition 2.2 it follows that p®~! divides = —1.

So z is a solution of the system

a—1, 01

z—1=p" pi'py* .o K

l+z4+a2+. +2P 1 =K

But this system has p solutions modulo n which are
1,1+n/p,142n/p,.. and 1 + (p — 1)n/p. Then we obtain
the following result:

Proposition 2.5: Let n = p*p{'p3?...p%» with o > 2

and p does not divide p; — 1 for all 4, then
Gy(n)={l+kn/p; 0<k<p-1}

Remark:
It is clear that G (n) is a cyclic group of order p.

2517-9934
No:7, 2010

We will now exclude this case from our study, that is, there
exists at least ¢ such that p divides p; — 1. For a fixed
permutation we can write n = p®p{* ...pg? ... pE with p
divides p; — 1 for all 7 € {1,..,d} and does not divide p; — 1

foralli € {d+1,..,m} and assume for the rest of this paper

Qdt1 QU —
Pl Py = A

Definition 2.5: Let x be a p-th root of unity modulo n, x
is said of class zero if x — 1 = p*~p{'ps? ... pJ? AK with
K an integer.

It is clear that there are p p-th roots of unity of class zero
which are {1+ kn/p; 0 <k <p— 1} and one can easily
verify that they form a cyclic group of order p denoted Gg(n).

Definition 2.6: Let x be a p-th root of unity modulo n, it
said initial root if every p;, ¢ € {1,..,d} divides  — 1 except
for only one p;. We said that this root is associated to p;. And
we write :

v
r—1=p* plipy?... p ..pgtAK.

with K an integer that is not divided by p;.

Theorem 2.7: There exists p? — p initial p-th roots of unity
associated to p; for all 1 <i <d.

Proof :
We may assume ¢ = 1, the initial p-th roots associated to p;
are the solutions of the system :

r—1=p*'p3?.. . pjtAK
(%)

l+z+22+. +a2Pt=p K

and we conclude with the following lemmas.ll

Lemma 2.5: The following systems have the same number

of solutions respectively modulo n and n/p{* .
z—1=p>1p32. . ptAK

(%)
l+z+22+.. . +2P~t=p K

z—1=p*1p3? . pJtAK
(x)

l+z+22+.. . +2P =p K’

Proof :
It is clear that any solution of (x) is a solution of
(%*). Reciprocally let = be a solution of (%), then

xP = 1[p“pips?...pg*A] that is to say 2P = 1 +
pep1ps? ... py* AK, and therefore
ap—1 aq—1
aP = (L4 ptpaph® . pgtAK P

p;y17171

I Corms (p1p5” . pyrAKy)!
=1

1

: oy —
(p*p1py? ... Py AK )P
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a1 —1

It is easily verified that all C;al,1 are divisible by p] and
1

p‘f“*l > «y, then ot =1 [r]. On the other hand

ay—1

ap—1
P = (1 —&—p"‘_lp‘;‘"...pZ"’AK)pl1
Pyl
= 1+ Z:C%ﬂ@”%?mﬁMKﬂ
i=1

1

+ (s p AR

And as C;al,l are divisible by p; and K is not divisible
1

by p1. then mpi’l"ll — 1 is divisible by all p; except ps.
Consequently 221 is a solution of ().
Let x and y be two solutions of (xx) such that

R yPrt 1[n] thus 27" = y”iﬂi1 [p1].
Hence © = y|[p1], on the other hand it is clear that
z = y[ps?...p5?A] therefore x = y[p1ps?...p5°A]l. We

conclude then that the systems (x) and (xx) have the same
number of solutions respectively modulo n and n/ p?l_l.l

Lemma 2.6: The following system have p? — p solutions
modulo n/p$* .

r—1 :p“*lng . 'p?r{"K

(%)
l+z4+224+.. . +2P  =p K’
Proof :
We know that »
XP—1=][(X-n)
i=1

and as 1 is a root of X? — 1 then we take ; = 1. Finally, we
obtain
P
1+ X+ X2+ xr =[x =)
i=2
and consequently (%*) is equivalent to the following systems :

r—1=p>1pd?. . pGtAK,

T —72 :leé

a—1, 02

z—1=p*"'py?...p*AK,

T =" ::plj{;
It is clear that for each one of these systems have p solutions
modulo n/pS* ', Since, the solutions of these systems are
distinct, we conclude that (%) have p(p — 1) solutions
modulo n/p¢* .M

Proposition 2.6: The set formed by the initial p-th roots
of unity modulo n associated to p; and by the elements of
G)(n) is a subgroup of G, (n) denoted G&(n) and we have
Card(Gbi(n)) = p*.

Proof :
Let x and y be two elements of G2 (n), there are three cases

to distinguish :

o If z and y are in GJ(n), then in this case zy belongs G} (n)

since the latter is a group and hence zy is in GF(n).

o If 2 and y are respectively in GEi(n)\ Gj(n) and GY(n),
v

then we have x—1 = p®~1p{ipy2 ... p .. . pJ?AK and y—

1=p>lpips? ... pJ¢ AK’ with K an integer not divisible

by p; thus

\Y%
wy =1+p* s p g AK + i K)

The term K + p{* K’ is not divided by p; and therefore zy is
a p-th root of unity associated to p;. Hence zy is in Gbr (n).
o If z and y are in GDi(n) \ S}g(n), then :

a—1, a1

x—1 = p*pMpy?... pt LpjtAK andy — 1 =

\
pTipipst . pft L pGPAK’ with K and K’ are two

integers not divided by p; therefore

a—1, oy

v

zy = 14+p“ pi'ps®...pit ..
v

+ 1)"71]0?1]9’212 cp ...pfl‘dAKK/)

PITA(K + K

\2

If the term K + K’ + p*~'pfips? ... pf ... pJtAKK' is
divided by p; then zy belongs to GY(n) C G&i(n), otherwise
xy is a p-th root associated to p; and consequently zy is in
GPi(n).

Thus GL (n) is stable for the product and as the inverse of
the element x is 27~ !, then GL(n) is stable by the inverse
operation which proves that GPi(n) is a subgroup of Gy (n).
Finally, we can see that G)(n) does not contain an initial
p-th root associated to p; which allows us to conclude that
Card(Ghi(n)) = (p* —p) +p=p*>. W

Definition 2.7: Let x be a p-th root, we said that z is of
the first class if p® divides x — 1, otherwise it said to be of
the second class.

Proposition 2.7: There are p — 1 initial p-th roots of unity
associated to p; which are of the first class.

Proof :
The initial p-th roots associated to p; which are of first class
are solutions of the system :

v
z—1=pplpy?. ... pf . pitAK

z+1=p"K'
And from the previous we know that this system has p — 1
solutions modulo 7.l

Let denote by Gb (n) the set formed by 1 and the initial
p-th roots of unity associated to p; that are of the first class

+
and we can easily verify that Gbi (n) is a cyclic subgroup of
G, (n) of cardinality p and we have the following result :

Proposition 2.8: The map

+
@GP (n) x Gg(n) —  GPi(n)
(zy) — @y
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is an isomorphism of groups.

Proof :
It is clear that ¢ is surjective morphism of groups. For the

+
injectivity, let us consider two elements x and y of GPt (n)
and GO( ) respectively such that z.y = 1, we have :
LpfAK andy — 1 =

Ol

mflzppp ..pii

P iplips? .. pyt AK', therefore

a—1_ o

ry =1+p* pi'py* pl Pt AK 4 pi K.
As z.y = 1, then the term K + pi" K’ is divided by p;*
therefore p;'* divides K, hence z =y = 1.0

Definition 2.8: Let x be a p-th root of unity modulo n,
we said z is final if all the p;, i € {1,..,d} does not divide
x — 1, which means z — 1 = p®* 1AK, with K an integer
not divisible by p;, ¢ € {1,..,d}.

Proposition 2.9: Any final p-th root of unity modulo n
can be written in a single manner as product of a final p-th
root of the first class by a class zero’s p-th root.

Proof :

Let x be a final p-th root of unity modulo n and let’s consider
an integer y of the form y = 1 + p® AK and z a class zero’s
p-th root. We have :

= = (1+p*AK)(1+p* 'pips>...pj A
— x—-1=p*AK +p~~ 1p(f1p‘2”. pGrAK’

r—1
oA =pK +pi"py* .. pg K’

T =1yYz

This equation has solutions K and K’, also
(1 + p>lpPips? ... pJtAK')P = 1, therefore
(1 + p*AK)? = 1 and as = — 1 is divisible by none
of the p; which implies that K is divisible by none of the
p;, this proves that (1 + p*AK) is a final p-th root of the
first class. Also it is clear that if we take K and K’ as other
solutions, then 1+ p*AK and 1+ p®~'p{ips?... pJeAK’
are the same modulo n.H

Remark :

If for all ¢ € {1,..,d} we take x; an initial p-th root of the
d

first class associated to p;, then Hm, is a final root of the

i=1
first class. The following theorem shows that any final root
of the first class is a product of this form.

Theorem 2.8: Any final p-th root of the first class is
product of d initial p-th roots of the first class associated
respectively to p1, pa, .. and py.

Proof :
Let = be a final p-th root of the first class, we know that there

exist K1, Ks,.. and Kd such that

m*l—i—Zpo‘ Fip

. .p;dAKi

and

\%
(L+ppltps® ... pft L pitAK;)P =1[n] V1<i<d.
v
If we set @; = 1+ p®p{tps®... pi" ... pJ* AK,, then z; is

an initial p-th root of the first class associated to p; and we
d

can easily verify that z = H x;.l
i=1
Definition 2.9: Let x and y be two p-th roots of unity
modulo n, we say y is a final conjugate root of z if x.y — 1
is divisible by none of the p;, i € {1,..,d}, that means z.y is
a final p-th root modulo n.

Proposition 2.10: Any p-th root of unity modulo n have a
final conjugate.

Proof :

Let 2 be a p-th root of unity modulo n, if z € GJ(n) or x
is a final p-th root then we have the expected result. When
d =1, a final p-th root is an initial p-th root associated to p;
and therefore any root that not belongs to Gg(n) are finals.
Assume that d > 2 and x — 1 is divisible by a nonempty
subfamily of p; of cardinality ¢ < d and for a permutation,
we can assume them pq, ps, ... and p;. Thus

PPt AK

a—1, oy

x—1=p*  pps?

K')

with K an integer not divisible by p;, ¢ € {¢t+1, .., d}. For all

i € {1,..,t}, let ; be an initial p-th associated to p; therefore
v,
i =1+p* plipy? ... p it PG AK;

with K; not divided by p;, whereof

¢ t v,
HI,- H(l +p pPps® L p

i=1 i=1

= 1+pIpt g AZpl 3 P Ki+K'n

but Z pyipy*

ie{l,.,

.. pt K; is divisible by none of the p;,

t
t}. Consequently y = H x; is a root which verify

i=1
y =1+ p* 1p?:{1 ...py*AM with M an integer that not
divided by p;, i € {1,..,t}. Thereby

TAM +pSt .. pit AK)

It is clear that (pf_ﬁl L pTAM +ptt LYt AK) is divisible
by none of the p;, i € {1,..,d}, hence the result.l

zy=1+ p”flA(p?fil Dy

Corollary 2.7: Every p-th root of unity is a product of a
first class initial p-th roots by a class zero’s p-th root.

.pgdAKi)
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Proof :

Let x be a p-th root modulo n, if z is final then we can write
it as a product of a final p-th root of unity of the first class by
a class zero’s p-th root and from the previous results this final
p-th root of the first class is product of d initial p-th roots
of the first class associated respectively to pi,p2,.. and pg,
hence the result. Now let us assume that x is not a final p-th
root so there exists x1,%2, .. and x; initial p-th roots such that
r122..2¢ 1s a final conjugate of x, then zzi29..2; is a final
p-th root, and we have :

TT1T2..T¢ = Y1Y2--YdYo

with y; is an initial p-th root of the first class associated to p;
and yo is a class zero’s p-th root.

From Proposition 2.8 any initial p-th root associated to p;
can be written uniquely as a product of an initial first class
p-th root associated to p; by class zero’s p-th root. Thereby

+ I s 0
r; =x; 2, with ;€GDt (n) and z; € G(n). So
+ 4+ 4 _
T =y1Y2..yd(T122 ... Ty) 1(2122‘..20 Lo

+
and as Gb' (n) and G)(n) are groups, then we obtain the
result.ll

Remark :
The previous result shows that G,(n) is generated by the
initial p-th roots of the first class and the class zero’s p-th

+
roots and as GY(n) and GB' (n) are cyclic groups, then
Gp(n) =< z1,29,...,%4,20 >

with z; is an initial p-th root of the first class associated to p;
and x( is a p-th root of the class zero distinct from 1. More
generally, we have the following result :

Theorem 2.9: The map

+ + + 0
o+ GP(n)x G (n)...x GP™ (n) x Gp(n) — Gy(n)

(T1,Z2, ..., Ty, Y) — T1.T2, ... Ty Y

is an isomorphism of groups.

Proof :
It is clear that ¢ is a surjective morphism of groups and we
show that it is injective as in the analogous previous results.ll

Corollary 2.8:
Card(Gp(n)) = po»M+1,

Remark :
From the previous theorem we have

Gy(n) ={ H

(1,i2,-,ia,4)ETITT

id .0

..z

7' Ty

with I = {1,2,..,p}, x; is one generator of the cyclic group
GPDi(n) for i # 0 and xq is a p-th root of the first class
different from 1.

We now give an algorithm in M APLE that allows us to
find a generating set of Gy(n). For the computing of z
it suffices to take o = 1 + n/p and for the others x;, we
proceed as above.

Gene_p := proc(n,p) local LB,LD,i, LFact,GEN, P;
LD :=[];LB:=[];GEN :=];

GEN := [op(GEN), 1 +n/p];

LFact := ifactors(n)[2];

for i from 1 to nops(LFact) do

if (LFact[i][1] — 1 mod p = 0) then

LD := [op(LD), LFact][i]];

end :

end :

for i from 1 to nops(LD) do

P := convert(Berlekamp(z"p — 1, ) mod LDI[i|[1],list);
if(P[1] — « + 1 mod LDIJi][1] <> 0) then

f)B := Bezout(LDI[i|[1],n/(LD[i][1]"LDIi][2]), P[1] — = +
GE :=  [op(GEN),((LD[][1] = LB[1] — (P[1] —
ml) modn))& (LD[][1]"(LDIi][2] — 1)) mod n];

f)B := Bezout(LDI[i|[1],n/(LD[i][1]"LDIi][2]), P[2] — = +
GEN = [op(GEN),(LD[i|[1] = LB[1] — (P[2] —
x) CTinod n)& (LDI[1]"(LDIi][2] — 1)) modn];

end :

if(GEN = []) then

GEN :=[1];

end;

eval(GEN);

end :

Algorithm 2.3

III. CONCLUSION

For the cardinality of G,(n), we can summarize it in the
following theorem :

Theorem 3.1: Let n > 3 be an integer and p be a prime
odd number which does not divide n, then :
o Card(G,(n)) = por(™
o Card(Gy(pn)) = po™
e Card(G,(p®n)) = prM+1 with o > 2

We will now give an algorithm which help us to find, from a
fixed integer n, a generating set of G (n).

Gene_p := proc(n,p) local LB, LD, i, LFact,GEN, P;
LD:=[]};LB:=[];GEN :=];

if (n mod p~2 =0) then

GEN := [op(GEN), 1+ n/p);

LFact := ifactors(n)[2];

for i from 1 to nops(LFact) do

if (LFact[i][1] — 1 mod p = 0) then
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LD := [op(LD), LFact][i]];

end :

end :

for i from 1 to nops(LD) do

P := convert(Berlekamp(x™p — 1,x) mod LDI[i][1],list);
if(P[1] — x + 1 mod LDIi][1] <> 0) then

f)B := Bezout(LDIi][1],n/(LD[:][1]"LD[i][2]), P[] — = +
GEN = [op(GEN),((LD[i|[1] = LB[] — (P[1] —
acl) modn))& (LD[i][1]"(LD[i][2] — 1)) mod n];

f)B := Bezout(LDIi][1],n/(LD[][1]"LD[i][2]), P[2] — = +
GEN = [op(GEN),(LD[i][1] = LB] — (P2] —
x) C7lnocl n)& (LD[i|[1]"(LDJ[i][2] — 1)) mod n];

end

else

LFact := ifactors(n)[2];

for i from 1 to nops(LFact) do

if (LFact[i][1] — 1 mod p = 0) then

LD := [op(LD), LFact[i]];

end :

end :

for i from 1 to nops(LD) do

P := convert(Berlekamp(x™p — 1, x) mod LDI[i][1],list);
if(P[1] — x + 1 mod LDIi][1] <> 0) then

f)B := Bezout(LDIi][1],n/(LD[:][1]"LD[i][2]), P[] — = +
G’EN := [op(GEN),((LD[{][1] * LB[l] — (P[1] —
xl) modn))& (LD[i][1]"(LD[i][2] — 1)) mod n];

f)B := Bezout(LDIi][1],n/(LD[:][1]"LD[i][2]), P[2] — = +
G’EN := [op(GEN),(LD[i][1] = LB[1] — (P[2] —
as)zinod n)& (LD[i|[1]"(LDIi][2] — 1)) mod n];

end

end :

if(GEN =1]) then

GEN :=[1];

end,

eval(GEN);

end :

Algorithm 2.4
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