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Abstract—In this paper, we have investigated the nonlinear
time-fractional hyperbolic partial differential equation (PDE) for
its symmetries and invariance properties. With the application of
this method, we have tried to reduce it to time-fractional ordinary
differential equation (ODE) which has been further studied for exact
solutions.
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I. PRELIMINARIES

PROBLEMS of physical interest are often translated in

terms of differential equations that may turn out to be

linear or nonlinear, ordinary or partial. Exact solutions of

these resulting equations are of much interest both from

mathematical and application points of view. On account of

their applications in the disciplines of mathematics, chemistry,

engineering and in almost all branches of theoretical physics,

differential equations and their symmetries have retained their

central role. One reason for the overall prominence of the

concept of symmetry is its nativeness and its simplicity.

Intuitively speaking, a symmetry is a transformation of an

object leaving this object invariant. Lie symmetry analysis

of differential equations provides a powerful and fundamental

framework to the exploitation of systematic procedures leading

to the integration by quadrature of ordinary differential

equations, to the determination of invariant solutions of initial

and boundary value problems, to the derivation of conservation

laws, to the construction of links between different differential

equations that turn out to be equivalent.

During the past three decades, Fractional Differential

Equations (FDEs) have gained considerable popularity and

importance and to solve such equations, the subject of

Fractional Calculus [1], [2] provides several potentially

useful tools. With the application of this subject, the earlier

differential equations of integer order can be generalized

to FDEs of non-integer order and such type of FDEs are

more beneficial in explanation of nonlinear phenomenon.

Inspite of this, FDEs are evolved in several scientific fields

such as Biology, Finance, Probability and Statistics, Chemical

Physics, Optics, Rheology, Viscoelasticity etc., so to sharpen

the concepts of such fields, it becomes quite important to
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solve such equations. In this direction, several numerical and

analytical methods have been proposed to solve such type

of FDEs. Among the various available different methods,

the Lie group method [3]-[5], which is based upon the

study of the invariance under one-parameter Lie group of

point transformations is one of the most powerful methods

to determine solutions of PDEs. In the recent past there

have been considerable developments in symmetry methods

for differential equations as is evident by the number of

research papers [13]-[17], books [3]-[5] but there is only few

development of this method for FDEs is available in literature

[6]-[12]. In this paper, our aim is to enhance this Lie symmetry

method by applying it to Nonlinear time-fractional Hyperbolic

PDE [7]:

∂αu

∂tα
=

∂

∂x
(u(x, t)

∂u

∂x
), t > 0, x ∈ R, 1 < α ≤ 2 (1)

In [7], Sumudu decomposition method has been developed

to solve this equation. We have studied (1) for for the exact

solutions using combination of Lie symmetry method and

several other methods.

The layout of paper is as follows. In Section II, we have

provided some definitions and basics of Fractional Calculus

which are required to obtain symmetries of (1). Section III

is devoted to the outline of Lie classical method to generate

various symmetries of (1) which in turn reduces (1) to

fractional ODE. Section IV contains the solution of reduced

ODE. Some concluding remarks are given in Section V.

II. DEFINITIONS

In this section, we are giving the definitions of

the Riemann-Liouville fractional integrals and fractional

derivatives on a finite interval of the real line (as available

in several books of Fractional Calculus [1], [2]).

Let Ω = [a, b] be a finite interval on the real axis R. The

Riemann-Liouville fractional integrals Iαa+f and Iαb−f of order

α ∈ C are defined by

(
Iαa+f

)
(x) =

1

Γα

∫ x

a

f(t) dt

(x− t)1−α
, (x > a;R(α) > 0) (2)

and

(
Iαb−f

)
(x) =

1

Γα

∫ b

x

f(t) dt

(t− x)1−α
, (x < b;R(α) > 0) (3)

where Γα is the Gamma function. These integrals are called

the left-sided and the right-sided fractional integrals.
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The Riemann-Liouville fractional derivatives Dα
a+y and

Dα
b−y of order α ∈ C are defined by(

Dα
a+(y)

)
(x) =

(
d
dx

)n (
In−α
a+ y

)
(x) =

1
Γn−α

(
d
dx

)n ∫ x

α

y(t) dt

(x− t)α−n+1

(4)

and

(
Dα

b−(y)
)
(x) =

1

Γn− α

(−d

dx

)n ∫ b

x

y(t) dt

(t− x)α−n+1
(5)

III. SYMMETRY ANALYSIS

In this section, we first determine the Lie point symmetries

of (1) and then use them to reduce the equation to lower

dimension equations. A Lie point symmetry of a differential

equation is an invertible transformation of the dependent

and independent variables that leave the equation unchanged.

Determining all the symmetries of a differential equation is

a formidable task. However, the Norwegian mathematician

Sophus Lie realized that if we restrict ourself to symmetries

that depend continuously on a small parameter and that form

a group (continuous one-parameter group of transformations),

one can linearize the symmetry conditions and end up with

an algorithm for calculating continuous symmetries. For a

detailed study of Lie group theory the interested reader is

referred to the well-known books [2]-[4]. Let us consider the

Lie group of point transformations as

u∗ = u+ εη(x, t, u) +O(ε2),
x∗ = x+ εξ(x, t, u) +O(ε2),
t∗ = t+ ετ(x, t, u) +O(ε2),

(6)

which leaves the system (1) invariant. In other words, the

transformations are such that if u is a solution of (1), then u∗

is also a solution. The method for determining the symmetry

group of (1) consists of finding the infinitesimals η, ξ and τ ,

which are functions of x, t, u. Assuming that the system (1) is

invariant under the transformations (6), we get the following

relation from the coefficients of the first order of ε:

η0α − 2uxη
x − ηxxu− ηuxx = 0, (7)

where η0α, η
x, ηxx are extended (prolonged) infinitesimals

acting on an enlarged space that includes all derivatives of

the dependent variables and are given as:

ηx = ηx + uxηu − (ξx + uxξu)ux − (τx + uxτu)ut,
ηxx = ηxx + uxηxx − (ξxx + uxξux)ux

−(τxx + uxτux)ut − 2(τx + uxτu)uxt

+(ηxu + uxηuu − (ξxu + uxξuu)ux − (τxu + uxτuu)ut)ux

+uxx(ηu − uxξu − utτu)− 2(ξx + uxξu)uxx,
η0α = ηαt + (ηu − α(τt + utτu))u

α
t − u(ηu)

α
t

−∑∞
n=1

(
α
n

)
Dn

t (ξ)D
α−n
t (ux)

+
∑∞

n=1

((
α
n

)
∂n
t ηu − (

α
n+1

)
Dn+1

t (τ)
)
Dα−n

t (u) + ...

(8)

Now using the above prolonged generalised vector fields in (7)

and by equating the coefficients of various derivative terms we

get a system of determining equations and on solving those

equations, we get

ξ = C1x+ C2,
τ = 2C1

α t,
η = 0,

(9)

where C1, C2 are arbitrary parameters. Using the characteristic

equations

dx

ξ
=

dt

τ
=

du

η
, (10)

we get the similarity transform and similarity variable as

u(x, t) = f(z), z = xt
−α
2 , (11)

which reduces (1) to the following ODE of fractional order

as:

(P 1−α,α
2
α

f)(z)− (
df

dz
)2 − f(z)

d2f(z)

dz2
= 0, (12)

where (P 1−α,α
2
α

f)(z) is the Erdélyi-Kober fractional

differential operator given in [18].

IV. SOME EXACT SOLUTIONS OF (1)

Inspite of symmetry analysis, we have also tried to furnish

exact solutions of (1) by certain transformations. For this, if

we consider

u(x, t) = f(z), z = x+
tα

Γ1 + α
, (13)

we get

Dα
t u = df

dz ,
∂u
∂x = df

dz ,
∂2u
∂x2 = d2f

dz2 , (14)

On substituting (13) and (14) in (1), we get

df

dz
−

( df

dz

)2

− f(z)
d2f

dz2
= 0, (15)

On solving above equation, we get the following solutions:

f(z) = z + C1,

f(z) = −C1

(
LambertW

(
−e−1

C1e
C2
C1 e

z
C1

)
+ 1

)
, (16)

where C1, C2 are arbitrary constants. Hence, corresponding to

the solutions (16), we get the following solutions of (1):

u(x, t) = x+ tα

Γ1+α + C1,

u(x, t) = −C1

(
LambertW

(
−e−1

C1e
C2
C1 e

x+ tα
Γ1+α
C1

)
+ 1

)
(17)

A. Analysis of Solutions

We have obtained such solutions so that one can choose

arbitrary constants C1, C2, α in suitable manner, to simulate

the physical solutions governed by (1). We have also plotted

the graphs of solution surfaces to understand solutions. As

shown in Figs. 1-4, certain kinky solutions are obtained

through (17). The behaviour of the solution has been shown

for different values of α in Figs. 5 and 6 that helps us to

understand more the physical situations of (1).
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Fig. 1 Solutions (17)(ii) when C1 = 1, C2 = 2, α = 2

Fig. 2 Solutions (17)(ii) when C1 = 1, C2 = 2, α = 3
2

Fig. 3 Solutions (17)(i) when C1 = 2, α = 3
2

Fig. 4 Solutions (17)(i) when C1 = 2, t = 5
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Fig. 5 Solutions (17)(i) when C1 = 7, t = 3, α = 1.6 (red), α = 1.7(blue)
and α = 1.8(green)

Fig. 6 Solutions (17)(ii) when C1 = 2, C2 = 3, t = 6, α = 1.6 (red),
α = 1.7(blue) and α = 1.8(green)

V. CONCLUSION AND DISCUSSIONS

In this paper, we have attempted to apply Lie Symmetry

method to fractional order nonlinear hyperbolic PDE. On

achieving the symmetries, equation (1) has been reduced to

ODE of fractional order. Finally, we furnished some exact

solutions of undergone equation including kinky solutions.

• Equation (1) has been reduced to ODE (12) by means of

the classical Lie group method using symmetries (9).

• The availability of mathematical computer software like

Maple facilitates the tedious algebraic calculations. It is

worth to mention here that the correctness of the solutions

has been checked with the aid of software Maple.
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