
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3000

Abstract—For complete support of Quality of Service, it is better
that environment itself predicts resource requirements of a job by
using special methods in the Grid computing. The exact and correct
prediction causes exact matching of required resources with available
resources. After the execution of each job, the used resources will be
saved in the active database named "History". At first some of the
attributes will be exploit from the main job and according to a
defined similarity algorithm the most similar executed job will be
exploited from "History" using statistic terms such as linear
regression or average, resource requirements will be predicted. The
new idea in this research is based on active database and centralized
history maintenance. Implementation and testing of the proposed
architecture results in accuracy percentage of 96.68% to predict CPU
usage of jobs and 91.29% of memory usage and 89.80% of the band
width usage.

Keywords—Active Database, Grid Computing, Resource
Requirement Prediction, Scheduling,

I. INTRODUCTION

N Grid systems, QOS1 is not limited to network bandwidth
but extends to the processing and storage capabilities of the

nodes. Thus the focus is on the degree a Grid can provide end-
to-end QOS rather than providing only QOS on the network.
When a Grid job has QOS requirements, it may be necessary
to negotiate a service level agreement (SLA) to enforce the
desired level of service. Resource reservation is one of the
ways of providing guaranteed QOS in a Grid with dedicated
resources. [6] One of the major issues in resource reservation
is correct matching of available resources with required
resources, this results effectively utilize various resources in
the system, such as CPU cycle, memory, communication
network, and data storage. [2] Correct matching operation
depends on percept job resource requirements. This can be
obtained by two methods. In the first method, environment can
ask resource requirements from user. This is not proper in
QOS. Another method is that architecture itself predicts
resource requirement. job resource requirements prediction
algorithms operate on the principle that jobs with similar
characteristics have similar resource requirements. Thus, we

M. Bohlouli is with the Department of Computer Engineering, Iran

University of Science and Technology (IUST) , Narmak SQ, Tehran , Iran.
Phone number: +98 - 914 – 3030160; fax number: +98 – 411 – 3808179;
e-mail: mbohlouli@comp.iust.ac.ir

M. Analoui, is with Department of Computer Engineering, IUST, Narmak
SQ, Tehran, Iran, Phone number: +98 – 21 - 73913329
e-mail: analoui@iust.ac.ir

1 Quality of Service

maintain a history of jobs that have executed along with their
respective resource requirements. [4] To estimate a given jobs'
resource requirements, we identify similar applications in the
history and then compute a statistical estimate (such as the
mean and linear regression) of their runtimes. We use this as
the predicted resource requirements.

Prediction can be done in different ways such as centralized
prediction and decentralized prediction. Also it can be done in
different locations such as system scheduler, resource manager
or gate keeper of each site in Grid computing. [3]

Prediction of job resource requirements is based on
decentralized method in most of the recent researches.
Decentralized methods have several disadvantages. The most
important disadvantages are:

Necessity of large number of interchange and
transmission of information for prediction between
sites and broker.
Increase of errors
Relatively longer time for prediction
Limitation of history in each site
Saving replica jobs in the sites and inability to
remove repeated jobs.

Saving executing information of sites in the scheduler will
increase accuracy percentage in finding the similar job,
because the number of available jobs in History will increase
accordingly. Therefore prediction will be more close to
actuality and it is not necessary to have large number of
transmission in the network. In the proposed method, we
consider that database will update with specific threshold.
Exactly similar jobs will be deleted from the history in
updating process. In proposed method active database is used.

II. PREDICTION SUPPLIES

In the proposed method we use Java language to implement
grid architecture. Also we use SQL-Server software to
implement database. The suggested architecture in this
research is named "Grid-HPA" 2 . The new idea which is
implemented in this research is that resources' attributes are
saved in an active database. Unlike the ordinary databases,
active databases are able to show reaction to environment and
do activities according to procedures and conditions.

In implemented active database, there is a table which is
specified to save users requests. This table does reaction
according to random events such as entry of a new request,

2 Grid History Based Prediction Architecture

Grid-HPA: Predicting Resource Requirements
of a Job in the Grid Computing Environment

M. Bohlouli, M. Analoui

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3001

On insert

 If have a job

 Then Match_Resouce (New_resource)

On delete

 If not finish job

 Then Match_Job (job)

On insert

 If have a free resource

 Then Match_Job (job)

On update

If have a result

Then return (result)

On delete_resource

If state=busy

Then Match_Job (job)

finishing a turned over job, introducing a new resource or
introducing available resource and acts as required. Therefore
by using active databases, match level is not necessary and
according to different events "Match Algorithm" will be
executed.

If a resource finishes executing a job it will return results to
broker again and the customer is not involved in this. After
receiving results, broker will send results to the customer.

This is true when the customer's job is not broken down into
sub jobs, otherwise it should wait until return of all of sub
jobs' result, then it sends total result to the customer. Since
broker is an interface between customers and resource, it can
break down job to sub jobs and turn over each sub job to one
resource. This is one of the most important advantages of this
method. After receiving all results of sub jobs, it will return
total result to the main customer. In fact different parts of a job
which can be executed separately execute in different sites,
therefore the result can be ready rapidly.

When a new resource is introduced, in fact it is inserted in
related database. Thus there should do activities to insert the
record. Since there is a new idle resource, the broker should
check the list of jobs to see if a job without a resource matches
this new idle resource. (Fig. 1)

Fig. 1 Connecting new resource semi code

When connection of a resource disconnects first it should be
distinguish that current job is finished or no. if it is not
finished it should be put in priority and find another
proportional resource as soon as possible; otherwise it just will
be removed from the list of resources. (Fig. 2)

Fig. 2 Disconnecting a resource semi code

When a job is entered, insert occurs in the database; if there
is a free resource, match algorithm should be executed until
distinguishing that is it possible to specify a job to resources or
not. (Fig. 3)

Fig. 3 Entering a new job semi code

When determination of a job is declared status of resource
should be changed from busy to free. So up-date event will

occur in the database and it should check that if a result
received it is sent to the customer. Return function will return
result to the related customer.(Fig. 4)

Fig. 4 Finishing a job semi code

When the main customer's job divides into several sub jobs,
divider will define a virtual customer into the broker until it
returns the result of a job to virtual customer, not actual
customer. Whenever virtual customer received all of subjects'
result it will send the total result to the main customer.

Also collapse of a resource deletes it from the list of the
resources. If the previous state was busy, the job of the
collapsed resource will be turned over to other appropriate
resource. (Fig. 5)

Fig. 5 Collapse of a resource semi code

In the proposed method we suppose that executed
information and used resources are saved in broker and are in
concentrated form. The act of prediction will be done in grid's
broker. In addition to execution time, band width and used
memory to execute the job will be predicted in this research.

III. THE PROPOSED METHOD ALGORITHM

For ease of use we have divided the attributes of each job
into two groups: the attributes that will predict are called
decision attributes and attributes that exploit about each job
and checks the similarity among jobs are named conditional
attributes. [4] Decision attributes include quantity of usage of
CPU, quantity of usage of memory and quantity of required
band width. Conditional attributes are consisting of size of
file, number of defined variables and their type and number of
repeated loops.

One of the steps is calculation of the degree of relationship
of the decision attributes to each of the conditional attributes.
This act is done according to several tests and specifies their
equation exactly. Suppose each of conditional is called Ci and
each of decided attributes is called Di. The primary saved
database for 5 jobs with 4 condition attributes and 3 decision
attributes is summarized in Table I. It should be mentioned
that the saved database is much larger than what is presented
in Table I as representative.

The proposed method algorithm is:

1. All of available numbers in history will be
normalized according to equation (1).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3002

TABLE I
A SAMPLE OF SAVED INFORMATION SYSTEM IN HISTORY

D3D2D1C4C3C2C1

9011102050351Job1

88121518902015Job2

781111161104010Job3

761511191233919Job4

781417291293020Job5

 (1)

In equation (1), Av is average of numbers and is
diversion. Both of these quantities calculate from
equation (2), (3), i denotes the column number i.e. a
attribute of the job and j denotes the row number or
the job itself. After implementation of step 1 the
table I will be changed to table II.

(2)

(3)

Variable n in equation (2) and (3) shows the number
of available jobs in the database. All of available
databases are normalize by the mentioned equation.

TABLE II
 CONCLUDED TABLE AFTER IMPLEMENTATION OF STEP 1 IN HISTORY

D3D2D1C4C3C2C1

2.23 -2.2-2.24-2.35-2.232.24 -2.23Job1

1.34 -0.81.38 -2.2-0.45-2.20.37 Job2

-0.83-1.53-1.01-2.10.41 1.08 -0.54Job3

-1.091.6 -0.85-0.640.89 0.86 0.97 Job4

-0.690.86 1.48 1.95 1.00 -0.171.00 Job5

2. We normalize the condition attributes of the current
job which we want to predict its decision attributes
using equations (1), (2) and (3).

3. To predict the required CPU for a job, first we should
know which condition attribute extracted for jobs can
affect the CPU performance. Based on carried out
experiments, it was indicated that these attributes are
the number of the existent loops in the program
codes, the number calls in the program codes and the
number of variables in the program codes. The
distance of the current job with all jobs in the
database should be found in order to calculate the
used CPU based on mentioned condition attributes.
Also the distance should be known for finding the
condition attributes saved capacity for jobs in the
History and for implementation in equation 4 and to
identify the condition attributes of the current job.

(4)

In equation (4) variable loops show the number of
available loops in job and calls show number of
available calls in job and variables show number of
available variables in the job and variables loops,
Calls and Variables denotes the current Job and j
starts from 1 to n (The number of jobs in database).

4. After calculating all of Dcpu, we sort them ascended
by Dcpu.

5. Among all of the available jobs in the sorted list, we
select n job from beginning of the list.

6. We consider average quantity of selected jobs in the
list for the jobi.

Prediction algorithm is like the one for used band width
with difference that in step 3 we are using equation (5) instead
of equation (4).

(5)

Also we use this method for prediction of required memory
with difference that equation (4) in step 3 will change to
equation (6)

(6)

Note that in predicting required Memory in step 4 of
mentioned algorithm we should sort the list ascended by
Dmem and for required Band width by Dbw. In mentioned
algorithm we suppose that database consists of n record
(n>=4). When the number of available record is increased
accuracy of prediction will increase too.

IV. IMPLEMENTATION AND TESTING

In implementation step, prediction engine is implemented in
the scheduler and database also holds the executed jobs in
scheduler.[4] When a job is given to broker for execution,
prediction engine will predict required resources of job such as
CPU, memory and Band width using similarity algorithm,
described in section 2 and available database in the scheduler.
Then based on the available resources’ database of the sites,
Match resource algorithm will be executed if there is free and
matched resource. After execution of a job in any site, the
result of execution and information about the used resources in
execution will be sent to the broker and the broker will give
the result to the user and also will save execution information
in History. In each saving time in History, database of
executed jobs will be updated and exact similar jobs will be
deleted from History and only one of them will be saved in
History. Also with specific threshold the broker connects the
sites and requests information about any changes in their

AvX
X

old
jiNew

ji
,

,

kj
n

X

Av

n

i
ij

...11

2

1
)(1 k

i
ij AvX

n

2

2

2

)(

)(

)(

j

j

j

cpu

VariablesVariables

CallsCalls

LoopsLoops

D
j

2)(jiBW FileSizeFileSizeD
j

2

2

)(

)(

ji

ji
Mem

FileSizeFileSize

VariableVariable
D

j

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3003

100)(
ActValue

PValueActValueAccrPer

resource abilities. Then with received information about
changed resources the broker updates available resources
database. Therefore every time the last and accurate
information about resources is in the broker’s database.

If the number of executed jobs saved in History increases,
the accuracy percentage of prediction will also increase in this
architecture. Obviously the number of the executed jobs
increases with very high rate in grid computing. Therefore in a
short time the predicted values get close considerably to the
actual values. If the exact similar jobs are not deleted from
History, the size of History will be enlarged with unused
information in a short time. The algorithm for deleting the
exactly similar jobs from History is as follows:

1. The value of the decision attributes in Table I should
be normalized using equation (1), (2) and (3). The
results of this step which is done using previous
algorithm in table II.

2. All three values of CPU, Memory and Band width
are summed for each job.

3. The jobs are sorted based on the results.
4. For two successive jobs in the History, the

differences of decision attributes are calculated and
add together. If the result is less than 5×10 5 two
jobs are exactly the same or are very similar.

5. The step 4 will be repeated for the condition
attributes. If the result is less than 5×10 5 two jobs
are the same and one should be deleted from History.
Otherwise nothing will happen.

From deleting the same jobs, it may seem that this is very
time consuming and it is repeating the same procedure, but
this is not true, because this will be done for each job only
once and only when it is inserted in the History a job is
investigated to sort it in the already determined list of jobs.
This algorithm is applied only for two prior and posterior jobs.
Therefore the date in the resulted History will be very brief
and useful.

V. CONCLUSION

The prediction accuracy for executed time in Caltech
group's method [3] (decentralized) is 86.47% while prediction
accuracy in this research for is 96.68%. In the proposed
method the numbers of jobs are 53. These standard jobs
includes the algorithm of calculation of , Nipper value,
Fibonacci series, factorial of large numbers and other
algorithms which in the testing of Alchemi are also used. [7]
Primitive jobs in the proposed method were tested upon
introduced algorithm in Caltech group conclude that accuracy
in decentralized method in this test is 80, 36% by used jobs
while accuracy of proposal method with same condition is
96.68%. Also the speed of finding answer in the centralized
method is faster than similar decentralized methods. With due
attention to result in same condition we conclude that
centralized method has more prediction accuracy and less
error and more speed than decentralized method.

Proposed prediction accuracy will be increased if available
jobs increase in history and also if more related attributes for
prediction used in equation (4), (5) and (6) will increase

prediction accuracy. The average prediction accuracy for used
CPU is 96. 68% and the average prediction accuracy for used
memory is 91.29% and the average prediction accuracy for
required band width is 89. 80%.

Figure (6) shows predicted values for required CPU in 20
samples of jobs and also values of used CPU after executing
20 jobs. Also figures (7) and (8) show these values for
Memory and Band width. Error percent is calculated for each
of 53 used job in this research. Then calculated error will is
used for calculating average error predictor. The average of
prediction engine error for predicting used CPU is 3.32% and
for used memory is 8.71% and required band width is 12.6%.
Accuracy percentage estimated by using equation (7) for each
job, then we should calculate the average of results.

 (7)

In equation (7) the ActValue variable shows acquired value
from act and PValue variable shows predicted value and
percent of error prediction is equal to AccPer.

Fig. 6 Actual & Predicted CPU for 20 test cases

Fig. 7 Actual & Predicted Memory for 20 test cases

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19

Actual Value Predicted Value

Jobs

Lo

g
of

 C
PU

 (S
ec

)

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

Actual Value Predicted Value

Jobs

 L
og

 o
f M

em
or

y
(B

yt
e)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3004

Fig. 8 Actual & Predicted Band width for 20 test cases

ACKNOWLEDGMENT

We would like to thank Prof. B. Schnor from Potsdam
University for her constructive comments on an earlier version
of this paper. Also we thank Dr. M. Moazzen from University
of Tabriz for his helps.

REFERENCES

[1] I. Foster, and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kafmann Publisher Inc., 1999.

[2] C. Weng, X. Lu, “Heuristic scheduling for bag-of-tasks applications in
combination with QoS in the Computational Grid”, Elsevier, Vol. 21
Pages 271-280, 2005.

[3] A. Ali, A. Anjum, J. Bunn, R. Cavanaugh, F. Lingen, R. McClatchey,
M. Mehmood, H. Newman, C. Steenberg, M. Thomas and I. Willers,
“Predicting the Resource Requirements of a Job Submission”,
Computing in High Energy Physics (CHEP04) , Switzerland, 2004.

[4] S. Krishnaswamy , S. Wai Loke and A. Zaslavsky “Estimating
Computation Times of Data-Intensive Applications” IEEE Distributed
Systems Online Vol. 5, No. 4, pp. 127-136, April 2004.

[5] P. Keyani, N. Sample and G. Wiederhold, “Scheduling Under
Uncertainty: Planning for the Ubiquitous Grid”, proc. of 5th international
conf. on coordination models and languages, pp. 300-316, 2002.

[6] K. Krauter, R. Buyya and M. Maheswaran, “A Taxonomy and survay of
Grid Resource management Systems”, Software- practice & experience,
vol. 32, pp. 135-164, 2002.

[7] A. Luther, R. Buyya, R. Ranjam. and S. Venugopal, “ Alchemi: A .Net-
based Grid Computing Framework and its Integration into Global
Grids”, Technical Report, GRIDS-TR-2003-8, Grid Computing and
Distributed Systems Laboratory, University of Melbourne, Australia,
December 2003.

[8] M. Roehrig, W. Ziegler and P. Wieder, “Grid Scheduling Dictionary of
Terms and Keywords”, Vol. GFD-I11 of global Grid Forum Documents,
Global Grid Forum, 2003.

[9] Y. Gao, H. Rong and J. Huang, “Adaptive grid Job scheduling with
Genetic Algorithms”, Future Generation Computer Systems, Vol. 21, pp.
151-161, Jan. 2005,

[10] R. Buyya, D. Abramson, and J. Giddy, “Nimrod-G: An Architecture for
a Resource Management and Scheduling System in a Global
Computational Grid,” Proc. Fourth Int’l Conf. High-Performance
Computing, Asia-Pacific Region, IEEE CS Press, Los Alamitos, Calif.,
2000.

[11] R. Buyya, D. Abramson, and J. Giddy, “Economy-Driven Resource
Management Architecture for Computational Power Grids,” Proc. Int’l
Conf. Parallel and Distributed Processing Techniques and Applications,
CSREA Press, 2000.

[12] R. Buyya et al., “Economic Models for Management of Resources in
Peer-to-Peer and Grid Computing,” Proc. SPIE Int’l Conf. Commercial
Applications for High-Performance Computing, SPIE, Bellingham,
Wash., 2001.

[13] O. Elgerd, Electric Energy Systems Theory: An Introduction, 2nd ed.,
McGraw Hill, New York, 1982.

[14] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” Int’l J. Supercomputer Applications, vol. 11, no. 2, 1997, pp.
115–128.

[15] H. Casanova and J. Dongarra, “NetSolve: A Network Server for Solving
Computational Science Problems,” Int’l J. Supercomputer Applications
and High Performance Computing, vol. 11, no. 3, Fall 1997.

[16] I. Foster et al., “A Security Architecture for Computational Grids,” Proc.
5th ACM Conf. Computer and Communications Security, ACM Press,
New York, 1998.

[17] R. Buyya, J. Giddy, and D. Abramson, “A Case for Economy Grid
Architecture for Service-Oriented Grid Computing,” 10th IEEE Int’l
Heterogeneous Computing Workshop, IEEE CS Press, Los Alamitos,
Calif., 2001.

M. Bohlouli was born October 21, 1979, at Marand, East
Azarbaijan, Iran. He received his early education at the
elementary and secondary schools in his home town and
from then on his life has been devoted to a search for
knowledge. He continued his studies at the Iran Islamic
Azad University, Qazvin Branch and gained a degree in
Computer hardware engineering there, in 2003. Then he
graduated with a M.Sc. in Computer Systems Archiectures
from Iran University of Science and Technology (IUST),
Tehran, Iran in 2007. His major research interests are

parallel and distributed systems, Grid computing and Robotics.
He is University Lecturer at Nabi Akram University, Tabriz, Iran. He is a
Visiting Lecturer at a few universities – Daneshvaran University, Islamic
Azad University of Iran, Traktorsazi University. He expects to be a Ph.D.
student at Potsdam University in the Fall of 2008.

0
1
2
3
4
5
6
7
8

1 3 5 7 9 11 13 15 17 19

Actual Value Predicted Value

Jobs

Lo
g

of
 B

an
d

W
id

th
 (M

bp
s)

