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Grid Computing for the Bi-CGSTAB applied to the
solution of the Modified Helmholtz Equation

E. N. Mathioudakis and E. P. Papadopoulou

Abstract— The problem addressed herein is the effi-
cient management of the Grid/Cluster intense computa-
tion involved, when the preconditioned Bi-CGSTAB Krylov
method is employed for the iterative solution of the large
and sparse linear system arising from the discretization of
the Modified Helmholtz-Dirichlet problem by the Hermite
Collocation method. Taking advantage of the Collocation ma-
trix’s red-black ordered structure we organize efficiently the
whole computation and map it on a pipeline architecture with
master-slave communication. Implementation, through MPI
programming tools, is realized on a SUN V240 cluster, inter-
connected through a 100Mbps and 1Gbps ethernet network,
and its performance is presented by speedup measurements
included.

Keywords— Collocation, Preconditioned Bi-CGSTAB,
MPI, Grid and DSM Systems.

I. INTRODUCTION

Hermite Collocation is a high order finite element
scheme used as a discretizer especially when conti-
nuous first derivatives are required. Among other pro-
perties, Collocation produces large and sparse systems
of equations which poses no pleasant properties (e.g.
symmetry). Memory requirements and performance
are two of the main factors suggesting the usage
of iterative methods on multiprocessor environments
[2]. This motivated relevant research in the areas of
iterative method analysis and parallel algorithm de-
velopment. Main issues addressed were concerning
both algorithmic (multi-color orderings, domain de-
composition/partitioning techniques, parallel precon-
ditioners, etc) and architectural (memory manage-
ment/distribution, processor architecture, etc) aspects.
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Particular results, in this direction, concerning the Col-
location method may be found in (e.g. [1],[3]-[5],[14]
and in our work in [6]-[11],[13]. In [11] we considered
the implementation of the SOR and the Bi-CGSTAB
iterative methods for solving the Collocation system
for elliptic problems on Distributed-Shared memory
(DSM) machines, improving the overall performance
by managing the whole computation in order to maxi-
mize locality and minimize communication among the
processing elements.
The work herein extends the results in [11] by consi-
dering :

• the Modified Helmoltz operator as our model
problem

• a Grid/Clustered computational environment, thus
introducing the additional parameter of intercon-
necting the processors through a common local
ethernet-type network.

This paper is organized as follows: In Sections 2 and
3 we briefly describe the structure of the collocation
system, the preconditioned Bi-CGSTAB [17] algorithm,
and the basic features of the parallel architecture used
to carry out the whole computation. In Section 4,
we present the performance measurements from the
implementation on a SUN V240 [16] clustered system
and, for comparison purposes, on a SGI Origin 350 [15]
DSM machine.

II. COLLOCATION FOR THE HELMHOLTZ BVP

To fix notation, consider the Modified Helmholtz
Dirichlet Boundary Value Problem (BVP):

{
∇2u(x, y)− λu(x, y) = f(x, y) , (x, y) ∈ Ω

u(x, y) = g(x, y) , (x, y) ∈ ∂Ω
(1)

with λ ≥ 0, on the rectangular domain Ω ≡ (0, 1) ×
(0, 1). Assuming a uniform partition of the interval
[0, 1] into ns = 2p subintervals, the Hermite Bi-Cubic
approximation seeks an approximate solution ũ(x, y)
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in the form

u(x, y) ∼ ũ(x, y) =
ñ∑

i=1

ñ∑
j=1

αi,jφi(x)φj(y) , (2)

where ñ = 2(ns+1) and the basis functions φi(x) and
φj(y) are the well known one dimensional piecewise
Hermite cubic polynomials. The collocation equations
needed for the determination of the n = 4n2

s unknowns
are constructed by forcing the approximate solution
ũ(x, y) to satisfy the BVP in n interior collocation
points. These are the four Gauss points in each of the
n2

s elements, a classical choice for orthogonal spline
Collocation. In doing so one obtains the n × n linear
system of equations

Ax = b , (3)

where A is the Collocation coefficient matrix and

x = [x1 x2 · · · xn]T ≡ [α1,1 · · · αñ,ñ]T

is the unknown vector. Collocation method possesses
no restrictions on how one orders or numbers the
equations and the unknowns for the construction of the
Collocation system. However, the block structure of the
collocation matrix depends directly on this numbering.
A particular Red-Black numbering, used also in [10]
(see also [9] for a complete description), leads to the
block structure of the Collocation matrix

A =

(
DR HB

HR DB

)
, (4)

where, the matrices DR,HB ,HR and DB have exactly
the same structure with the corresponding matrices
in [10],[11] with some certain deviations due to the
Helmholtz operator. That is to say,

DR = diag[A2 2A1 2A2 · · · 2A1 2A2 −A2︸ ︷︷ ︸
2p−blocks

] , (5)

DB = 2 diag[A1 A2 · · · A1 A2︸ ︷︷ ︸
2p−blocks

] (6)

HR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 R2

R3 R1 R2

. . . . . . . . .
. . . . . . . . .

R3 R1 R2

R3 R̂1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

HB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 B2

B3 B1 B2

. . . . . . . . .
. . . . . . . . .

B3 B1 B2

B3 B1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

where

R1 =

(
A4 A3

−A4 A3

)
, R̂1 =

(
A4 −A4

−A4 −A4

)
,

R2 = −
(

A4 0
A4 0

)
, R3 =

(
0 A3

0 −A3

)
,

and

B1 =

(
A3 −A4

A3 A4

)
,

B2 =

(
0 0

A3 −A4

)
, B3 = −

(
A3 A4

0 0

)
.

The 2ns× 2ns matrices A1, A2, A3 and A4 are banded
(with bandwidth 5) and their structure is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 a3 −a4 0 0 · · · 0 0 0 0 0
a4 a1 −a2 0 0 · · · 0 0 0 0 0
0 a1 a2 a3 −a4 · · · 0 0 0 0 0
0 a3 a4 a1 −a2 · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · a1 a2 a3 −a4 0
0 0 0 0 0 · · · a3 a4 a1 −a2 0
0 0 0 0 0 · · · 0 0 a1 a2 −a4

0 0 0 0 0 · · · 0 0 a3 a4 −a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the values of ai’s are defined by

a1 a2 a3 a4

A1 r+ s+ q t+

A2 s+ u+ t− ε

A3 q t− r− s−

A4 t+ ε s− u−

with
ε = − λ

24n2
s

, q = 24 + 22ε ,

r± = 86ε− 24± (48ε− 18)
√

3 ,

s± = 13ε− 12± (7ε− 8)
√

3 ,

t± = 5ε + 3± (ε + 1)
√

3 ,

u± = 2ε− 3± (ε− 2)
√

3.
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III. PARALLEL BI-CGSTAB FOR COLLOCATION

Consider the classical splitting of the matrix A in (4)
as

A = DA − LA − UA (9)

where
DA =

[
DR O

O DB

]
, LA =

[
O O

−HR O

]
(10)

and

UA =

[
O −HB

O O

]
. (11)

Then, the algorithm for the B-GS preconditioned Bi-
CGSTAB [17] method is described by :

Choose x(0)

r(0) = b−Ax(0)

Choose r̂ (usually r̂ = r(0))
for i = 1, 2, ...

ρi−1 = r̂T r(i−1)

if ρi−1 = 0 method fails
if i = 1

p(1) = r(0)

else
βi−1 = ρi−1

ρi−2

αi−1

ωi−1

p(i) = r(i−1) + βi−1(p
(i−1) − ωi−1 v(i−1))

endif
Solve M p̂ = p(i) ; v(i) = A p̂

αi = ρi−1

r̂
T

v(i)

s = r(i−1) − αi v(i)

if ‖ s ‖ is small enough then
x(i) = x(i−1) + αi p̂ and stop

Solve M z = s ; t = A z

ωi = sT t
tT t

x(i) = x(i−1) + αi p̂ + ωi z

Check for Convergence
if ωi = 0 stop
r(i) = s − ωi t

end
As in [10],[11], the preconditioner matrix M is the
splitting matrix of the Backward Gauss-Seidel method
(B-GS) defined by

M = DA − UA . (12)

Naturally, one now has to incorporate the particular
structures, of the matrices involved, into the algorithm
(see [11]. For example, in doing so for the computa-
tionally intense statement

Solve M z = s ; t = A z

we obtain:

Solve DB zB = sB

y = HB zB

Solve DR zR = sR − y

ŷ = HR zR

tR = sR

tB = sB + ŷ

Following the analysis in [11], our work in [8],[9],
and taking into consideration the essential factors of
(a) uniform load balancing, (b) minimal idle cycles of
processors, and (c) minimal communication cost, we
consider a pipelined architecture consisting of Pj , j =
1, · · · , N processors. Each processor is assigned to
execute the same instruction set which, for the above
mentioned computationally intense statement takes the
form [11]:

Black Cycle

do l = 2p + (j − 1)k + 1 to 2p + jk − 1 , 2

Solve 2A2z
(B)
l = s

(B)
l

yl−2p = A3z
(B)
l

Solve 2A1z
(B)
l+1 = s

(B)
l+1

yl+1−2p = A4z
(B)
l+1

enddo[
tc1

tc2

]
←Receive

[
y(j−1)k−1

y(j−1)k

]
from Pj−1

Send to Pj+1

[
yjk−1

yjk

]

Send to Pj−1

[
y(j−1)k+1

y(j−1)k+2

]
[

tc3

tc4

]
←Receive

[
yjk+1

yjk+2

]
from Pj+1

tm1 ← tc1 + tc2

tm2 ← y(j−1)k+1 − y(j−1)k+2

do l = (j − 1)k + 1 to jk − 3 , 2
tm3 ← yl

yl ← tm2 − tm1

tm1 ← yl+1 + tm3

tm2 ← yl+2 − yl+3

yl+1 ← tm1 + tm2

enddo
tm3 ← yjk−1 + yjk

yjk−1 ← tm2 − tm1

yjk ← tm3 + tc3 − tc4
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Red Cycle

do l = (j − 1)k + 1 to jk − 1 , 2

Solve 2A1z
(R)
l = s

(R)
l − yl

yl = A3z
(R)
l

Solve 2A2z
(R)
l+1 = s

(R)
l+1 − yl+1

yl+1 = A4z
(R)
l+1

enddo[
tc1

]
←Receive

[
y(j−1)k

]
from Pj−1

Send to Pj+1

[
yjk

]
Send to Pj−1

[
y(j−1)k+1

]
[

tc2

]
← Receive

[
yjk+1

]
from Pj+1

tm1 ← tc1

do l = (j − 1)k + 1 to jk − 3 , 2
tm2 ← yl + tm1

tm3 ← yl+1 − yl+2

yl ← tm2 + tm3

tm1 ← yl+1

yl+1 ← tm3 − tm2

enddo

tm2 ← yjk−1 + tm1

tm1 ← yjk − tc2

yjk−1 ← tm1 + tm2

yjk ← tm1 − tm2

We remark that one of the Processors, say P1, in
addition to the computational tasks assigned to each
processor, has been also assigned the tasks of gathering
partially processed data, assemble, in the sequel, the
final values for the inner products and other parameters
of the algorithm, and finally broadcast the results to all
other processors.

IV. REALIZATION ON A GRID/CLUSTERED SYSTEM

In this section we present the performance mea-
surements of the implementation of the above parallel
algorithm for the test Dirichlet Helmholtz problem
which accepts the following exact solution (Fig. 1)

u(x, y) = 10 φ(x) φ(y) , φ(x) = e−100(x−0.1)2 (x2−x).

This implementation was realized on a four-node SUN
V240z [16] cluster interconnected through a 100Mbps
and 1Gbps ethernet network. Each node consists of dual
1.5 GHz UltraSPARC IIIi processors with each having
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Fig. 1 : The exact solution u(x, y) of the test problem.

1MB L2 cache memory. The total memory of each
node is 2GB and the operating system is Solaris
10. The application is developed in double precision
Fortran code using the MPI [12] standard for SUN
Studio compiler version 10, which also incorporates
the scientific library LAPACK. The application is also
realized on a Distributed Shared memory machine SGI
origin 350 [15] for comparison purposes. SGI Origin
350 is a cache coherent - nonuniform memory access
(ccNUMA) architecture machine, consisting of eight
R16000@600MHz type processors with 4 MB L2
cache memory each. The total memory is 4 GB and
the operating system is IRIX version 6.5 with MipsPro
compilers version 7.4.

Tables T1-T3 below summarize the behavior of the
method for representative values of λ, namely λ =
0, 1 and 100, and for several discretization sizes from
ns = 16 up to ns = 512 subintervals. At this point we
remark that the Bi-CGSTAB converges fast for small
to medium values of the Helmholtz parameter λ, while
for large values of λ, where the part of the Helmholtz
operator involving λ takes over, the convergence rate of
the method improves significantly. Moreover, the num-
ber of iterations needed for convergence of the method
increases in complete analogy to the discretization
size characterized by the value of ns. The theoretical
support to these observations is beyond the scope of
this work and will be presented elsewhere.

Focusing now on the performance of our parallel
algorithm and its implementation on the given grid
environment, we note that it is sufficient to describe the
results for a typical case of the Helmholtz parameter λ

(we have chosen λ = 1) as they remain independent
from its specific values.
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T1 Preconditioned Bi-CGSTAB for λ = 0

ns Iterations Time ‖ u− x ‖∞ ‖ b−Ax ‖∞
16 15 0.009 6.08e-4 3.44e-6
32 27 0.066 3.35e-5 7.55e-7
64 57 0.604 2.02e-6 1.83e-7
128 110 5.751 1.41e-6 8.51e-8
256 216 53.56 2.93e-6 6.45e-8
512 393 415.6 5.07e-6 3.50e-8

T2 Preconditioned Bi-CGSTAB for λ = 1

ns Iterations Time ‖ u− x ‖∞ ‖ b−Ax ‖∞
16 15 0.009 6.08e-4 2.58e-6
32 27 0.066 3.36e-5 6.92e-7
64 56 0.601 2.23e-6 2.11e-7
128 109 5.811 1.59e-6 9.04e-8
256 206 52.14 2.88e-6 1.39e-7
512 402 431.7 1.39e-6 1.29e-8

T3 Preconditioned Bi-CGSTAB for λ = 100

ns Iterations Time ‖ u− x ‖∞ ‖ b−Ax ‖∞
16 9 0.006 5.99e-4 4.93e-6
32 16 0.040 3.37e-5 1.19e-6
64 31 0.341 2.01e-6 2.73e-7
128 56 2.987 2.59e-7 8.73e-8
256 108 27.42 4.67e-7 4.39e-8
512 233 249.8 4.47e-7 1.56e-7

The associated to the case of λ = 1 performance
results are summarized in Table T4 and Figures 2-
4. Table T4 contains the results pertaining to the
computation and communication time independently
for ns = 64, 256 and 512, while the case ns = 128
is graphically presented through Figures 2, 3 and 4
for the cases of 100Mbps, 1Gbps network connections
and the SGI Origin 350 DSM system respectively.
Inspecting Table T4 one may easily observe that the
implemented algorithm has efficiently partitioned the
whole computation involved such that the computation
time appears to decrease nearly exponentially with
respect to the number of processors. This is, of course,
independent of the network’s speed or the DSM system
involved in the implementation.

T4 100Mbps 1Gbps

ns Procs Tcomp Tcomm Tcomp Tcomp
2 0.267 0.007 0.267 0.007

64 4 0.157 0.247 0.149 0.148
8 0.074 0.339 0.074 0.219
2 30.23 0.156 30.23 0.156

256 4 13.09 2.375 13.05 0.825
8 6.312 2.579 6.306 1.517
2 279.0 0.371 279.0 0.371

512 4 136.8 2.175 136.7 1.078
8 58.93 11.34 58.92 6.842
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Fig. 2 : Time measurements for SUN V240/100Mbps cluster.
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Fig. 3 : Time measurements for SUN V240/1Gbps cluster.
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Fig. 4 : Time measurements for SGI Origin 350.

With respect, now, to the communication time we
would like at first to make the following general
remarks: (a) the time pertaining to the case of two
processors remains low in all cases as the processors
are on the same grid node, (b) the time increases as
the number of processors and the discretization size
increase. For slower, though, networks (column 4 of T4
and Fig. 2) and for small to medium discretization sizes
(cases of ns = 64 and 128) communication overtakes
computation effecting the overall performance of the
implementation. This fact is also shown in Figures 5



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:4, 2007

210

.

1 2 4 8
0

1

2

3

4

5

6

7

8

9

10

Number of Processors

S
U
N
 
V
2
4
0
 
w
i
t
h
 
1
0
0
M
b
i
t
 
S
p
e
e
d
u
p

Linear Speedup
n
s
 = 64

n
s
 = 128

n
s
 = 256

n
s
 = 512

Fig. 5 : Speedup measurements for SUN V240/100Mbps cluster.
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Fig. 6 : Speedup measurements for SUN V240/1Gbps cluster.
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Fig. 7 : Speedup measurements for SGI Origin 350.

and 6, where we present the speedup measurements.
It becomes apparent that faster networks yield bet-
ter performance. The implementation on SGI Origin
350 yields superlinear speedup as the discretization
becomes finer, as seen in Figure 7. This is attributed

to the fact of the high speed processor interconnection
and its associated cache memory.
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