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Abstract—A one-step conservative level set method, combinesblver for the boundary value heat and fluid flow problems
with a global mass correction method, is developed in thislysto  ysing GPU implementation. A Navier-Stokes flow solver for

simulate the incompressible two-phase_ flows. The presantdwork structured grids using GPU was also presented in [14]. Ha-
do not need to solve the conservative level set scheme at two

separated steps, and the global mass can be exactly cahs&he gen, Lie, _and Ngtvig (15] pr_esented the implt_amentations to
present method is then more efficient than two-step conteesvavel compressible fluid flows using GPU. Brandvik and Pullan

set scheme. The dispersion-relation-preserving schemneestitized [16] presented 2D and 3D Euler equations solvers on GPU
for the advection terms. The pressure Poisson equatiorersédv and focus on performance comparisons between GPU and
applied to GPU computation using te€DR library developed by cpyy codes based on considerable speed-ups using exgjusivel

National Center for High-Performance Computing, Taiwame BMP . . P
parallelization is used to accelerate the rest of calaati Three Structured grids. Corrigan, Camelli, Léhner, and Wallkv]

benchmark problems were done for the performance evatuaiood Presented a GPU solver for inviscid, compressible flows on
agreements with the referenced solutions are demonstiatedl the 3D unstructured grids. All the presneted resutls have shown

investigated problems. that considerably computational time can be reduced bygusin
Keywords—conservative level set method; two-phase flowthe GPU implementation.
dispersion-relation-preserving; Graphics Processingt UGPU); In this paper, we combine the GPU and multi-CPU cores
Multi-threading. to develop a global mass correction method based one-step
conservative level set method. Good performance can be
I. INTRODUCTION obtained by involving GPU to accelerate the Poisson solver

HE most common incompressib'e flow algorithms thd&“th USIng mul“-CPU cores fOI’ rest Of Ca|Cu|atI0nS
have been applied to track the air/water interfaces includeThis paper is organized as follows. Section Il presents

vortex method [1], boundary integral method [2], voluméhe derivation for the conservative level set method. This
of fluid (VOF) method [3], front tracking method [4], angis followed by the presentation of the differential equasio
level set method [5], [6]. The VOF method can conserve tfgoverning the motion of two fluids and the dispersion-refati
volume exactly, but the reconstruction of the interface is R{eserving schemes. Section IV and V present the simulated
main issue. The interface reconstruction is also the profite  results to show the applicability and efficiency for the pregd
the front tracking method. For the level set method, intafaframework. Finally, we draw some concluding remarks in
can be implicitly defined with the zero-contour of the levepection VL.
set function. However, how to obtain the mass-conserving
solutions are the main tasks. Il. CONSERVATIVE LEVEL SET EQUATION

Recently, the CLSVOF (coupled level set and volume-of- The conservative level set method is firstly proposed by
fluid) method [7], THINC (tangent of hyperbola for interfaceDlsson and Kreiss [11]. Instead of using sign distance fanct
capturing) method [8], [9], VOSET (volume-of-fluid and léve[5], they proposed the following smoothed heaviside step
set) method [10], and conservative level set method [11&hafunction ® in their previous work:
been proposed to resolve the problems arisen from the VOF 1
or/and level set method. These schemes are can obtain the o= H—T(—s/a) 1)
mass-conserving and accurate-interface solutions.

There were many applications using GPU implementation By solving the following two equations, the interface presil
computational fluid dynamics (CFD). Kriiger and Westermarfi@n be tracked by the conservative level set method:

[12] proposed a framework for the implementation of direct D

solvers for sparse matrices, and applied to 2D wave equation 5 TH uP)=0 )
and the incompressible Navier-Stokes equations. Gootlnigh 1)

Woolley, Lewin, Luebke and Humphreys [13] presented the s 0-(®(1—-®)n) =l (UP) (3)
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sharp interface. These two equations can be seen as the fiesttor fieldg can be represented by the incompressible flow

step (advection step) and second step (re-initializatiep)s equations given below:

for the original level set method [5]. Note that theoretigal

we need to solve Eq. (3) until the steady state is reached. ou
The conservative level set method is known to have a ot

better mass conservation, as shown by Olsson and Kre\i\_ﬁ?erep is the density, is the viscosity,D is the rate of
[11]. Moreover, the total mass can be exactly Conserveddfaformation,p is the pressure, and ths is the surface
one uses a conservative discretization. However, The dec?@nsion force which is denoted & — oKan. In present

step equation is computational intensive, due to the faatt thy 4y the surface tension force is approximated using the
we need to solve it until steady-state is reached. Althouglyninyum surface force model (CSF) of Brackbill et al. [19]

only few time steps are sufficient in practice [11], [18], thgg F. = okJ®. The above equations can be casted in the
computational cost is still high. This motivated us to Pre®0 yimensionless equations as

a one-step conservative level set method.

+(Q.D)g:%(-Dp—i—D-(ZuQ)%—Eﬁ-pQ) (7)

du 1 1 1 1
5 T Du= o (—DP+ R—eD'(ZHQ)‘i‘VTeE) +52%

8

The idea for the one-step conservative level set method is
to combine the advection step (Eq. (2)) and the compressigfhere Re= _PrYJ:Lr is the Reynolds numbekVe= _p'\grsz is
diffusion step (Eqg. (3)) into one equation. This will Ieac«lath,[he Weber number and ther — %

A. One-step conservative level set equation

is the Froude number.

: i : T »

following one-step conservative level set equation : The density and viscosity are approximatecbas pa. -+ (1—
0o peL)® andp= pgL + (1 — peL)®P, wherepgL andpg, are the
ot +0-(u®) =0 (®(1- ®)n—elP) 4 ratios for the density and viscosity.

where introduced is the reinitialization parameter coefficient.

In the present study, andy are chosen asf.MX and M: It A Semi-implicit Gear scheme and projection method

can be expected that the present method is more efficient than ' o .
the original conservative level set method due to the faat th In present study, the two phase flow equations is discretized

the proposed method is a one-step method. by the Gear scheme as:
39n+l,* _ 4gn + Qn—l " -

B. Global mass correction method 2Nt = —2[(u- D)+ [(u- D)y

Even we uses a conservative discretization for the coq—z%[im.(zt@_[ﬁg)}n_%[ig.(zi@_gm)]nfl
servative level set method, the truncation errors will make P"~ Re - P Re -
the total mass change with small magnitude. In order to (Ao +—D2u+iF)+— 1
conserve the global mass exactly, we propose a global mass (p P Re — ' We= Fr2§g
correction method in present study. The idea is to re-istei 9)

the summation of the loss/increase values in the transition o ) )
region. Here is the summary for the global mass correctid#¢ above equation is then solved by the standard iterative

method. scheme such as successive overrelaxation (SOR) method. No
(i)compute the total mashl at present time; non-linear iteration is needed for the present semi-intplic
i scheme.
M :/ ddQ (5) The intermediate velocity™ % is generally not divergence-
Q

free. It is then needed to solve correct the velocity and thie ¢
(ilcompute the differenc& for the mass between the initialresponding pressure to satisfy the divergence-free dondit
time top and present timé

3(9n+1_gn+1.*) _ 1 ,
G=My—M (6) —on —EDP (10)
prit=prtiap (11)

whereMg = [ ®|t = 0dQ is the total mass at initial time).
(iii) uniformly distributed G at Ng meshes a$5/Ng, where
Ng is the total numbers cells of the transition regiorD@L <
® < 0.999).

By using the above procedures, the total mass can then
exactly conserved.

wherep' is the pressure correction. Take the divergence on Eq.
(20), the following Poisson equation for the pressure aioa
Gan be derived

3(0- U

1, _
D'(BBP)— AT

(12)

. TWO-PHASE FLOW SOLVER After solving Eq. (12), one can get the corrected velocity

For the two immiscible and incompressible fluids, thén+1(29n+l’*—%At(lﬁﬂp')), and the corresponding corrected
,*+ p/

equations of motion for this two-phase fluids in a gravitaslb pressurep" (= p™* ).
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B. Multi-dimensional advection scheme for advection termseight(2L) of the water column are 0.146 m and 0.292 m,
In this subsection we show the way of approximatinffSPectively. The liquid densitp, = 10° kg/n, VISCOSity H

u,, which can accommodate the dispersion-relation-presgrvi- 0'_5 Pa s, background gas de_nspty: 1.0 kg/n¥, viscosity

property, under the uniform griéAx = Ay = h). Referring to M6 = 0-5% 193_ Pa s, gravityg = 9.8 m/$ and the surface

Fig. 1, u, at the nodal poinfi, j) is assumed to the expresse&ens'on coefficient = 0.0755 N/m. By choosing the reference

as velocity asy/g(2L), it will lead to Re= 493954, Fr = 1.414,
1 We= 5533690, pg. = 0.001 andpg. = 0.001. 40x 40 and
Uy (X,y) =~ n (diy g q+dol; 1 +d3Uqj 4 80x 80 meshes are used for the calculations. Good agreements

q q q with the experimental results given in [25] and numerical
04U+ 05 j+ 0 Uisy results given in [10] are clearly demonstrated in Fig. 3 for
+d7Ui_qji1+ 08U jiq+doUiygjiq the predicted front location.

+d10U; j_p+d11U; j12+ 012l ) (13)

Substitution of the Taylor series expansions or, j, U; , j, B. Raylglgh-Téylor instability pro_blem ) )
Uiji1s Ui jios Uisg 41 iNto the above equation, we are led to FIOW_Instablllty of thg Rayleigh-Taylor type is associ-
derive the resulting modified equation fag. The derivation ated with the penetration of a heavy fluid into a light
is followed by eliminating eleven leading error terms tolgie fluid in the direction of gravity. The interface is given by
a system of eleven algebraic equations. One more equatih®) = (2D +0.1D cog2mx/D)) in the rectangular domain
has to be derived so as to be able to uniquely determiffeD] x [0,4D]. The Reynolds numbeRe under investigation

the dispersion-relation-preserving equation [20], we@atain NUMberAt = (pL — ps/pL + pg) = 0.5 and the viscosity ratio
the following coefficientsd; = d3 =d; = dg =0, dp = dg = IS 1. Surface tension force is ignored for this problem. The

1m@Bn-10) 4 1 ge— 1 go— i3m-lom24 4 o predicted interface profiles with 160400 meshes are given
ydpg=—-1,ds =3, ds = , dio=an1 =
o 53’:[(3?[_10) 3 7S 76 @y in Fig 4(a)-(d). We also compare the top of the rising fluid and

T 36 (3n-8) ° anddip = %' u, is also shqwn to hgye a Spat',alth_e bottom of the falling fluid with the solutions of Guermond
accu?cy orde;soft(gtm% by theh{esultlnghsmomﬁed equatiog; 4. [26] and Ding et al. [27]. From the Fig. 4(e), The
Uy > T3 Yoot T8 (12—6mr8) Yyyy ~ 30000 72 Yoot *+ - present method is justified by the good agreements between
HOT. Noted that the fifth order dispersion-relation-presey our solutions and previous studies obtained by [26] and.[27]
dual-compact scheme is used for approximating the advectio |n order to validate the mass conservations, the ratio of the
terms shown in the conservative level set equation. For thfal mass against time for the above two problems are plotte
details of derivations, the reader can refer to [21] and.[22] in Fig. 5. It can can be seen that the total masses are exactly

conserved for all the investigated problems.
C. Velocity-pressure coupling

When solving the incompressible flow equation with primC. Bubble merging problem
itive variable form, special care must be taken for the cou- The bubble merging problems with coaxial coalescence is
pling between velocity and pressure. When use the natensidered here. There are two bubble with raduim the
staggered grids, simply use the standard central differersubic domain|0,4R] x [0,4R] x [0,8R]. The upper bubble is
for approximating pressure gradient will lead to a unphgisciat (2R 2R,2.5R) and the lower bubble is at R2R,1R). The
distribution for the pressure field, known as the odd-everptyos number Ko = %) is 16, and the Morten number

decoupling [23]. While the the odd-even decoupling proble gy 4 i
can be eliminated on the staggered grid [23], the resultiKMO_ o7) 15 2> 1077 This will lead that Reynolds number

Pr
programming complexity is still a main task. In the prese "'?g 67.27, Weber number is 16, and the Froude number is
study, a semi-staggered grid is used for coupling the vigloci " The ratios for density and viscosity ape. = 0.001 and

and pressure [24]. The velocity vectors are stored at tHe Ggf-, - 0.01, respectively. The time-history solutions obtained
edge, and the pressure and other scalar fields are store Y 80> 80 160 meshes for different physical time are plotted

the cell center, as shown in Fig. 2. For this grid system, i, Fig. 6. The agreement with the experimental observations

programming is much simpler than staggered grid systerl%y Brereton and Korotney [29] can be shown for the present

. . lutions.
and the coupling between velocity and pressure can be easi yUt ons

achieved if one employs a pressure interpolation from cell

center to cell edge. V. PARALLELIZATION

For the two-phase flow problem, it is essential to get the
high quality solution. For example, if the gird size is not
fine enough, we can not see the real topology change of the
bubble or droplet. However, it will cost a lot of computing

The dam break problem has been frequently employedtime and resources. In order to accelerate the calculations
validate the code for predicting free surface hydrodynamiave use the SMP parallelization and also implement GPU
In the current calculation, the fluid properties is the samme acceleration in this study. We evaluate the performance by
Martin and Moyce [25]. The initially prescribed width(L) dn solving the 3D coaxial coalescence bubble problem which

IV. NUMERICAL RESULTS
A. Dam-break problem
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TABLE |
DETAILS OF COMPUTER HARDWARE USED TO RUN THE SIMULATIONS

Hardware Details

12 MB

CPU Intel Xeon Processor X5472
Frequency of processor cores
L2 cache size
# of Processor Cores 4
GPU NVIDIA Tesla C1060

Frequency of processor cores

RAM

4GB DDR3

# of Streaming Processor Cores

TABLE Il

TOTAL ELAPSED TIME AND SPEED UP IN THE PRESENT STUDY CASE

Mesh size Sequential 8 cores+GPU
160x 320x 160 6.89 hr 0.89 hr
1 1 1 1
| | i | |
Y Y I R
| | | |
| | | |
| | | |
| |
e -1
:
|
—(12 4 5 6

Fig. 1.  Schematic of the stencil points invoked in the pregoswo-

dimensional DRP convection scheme.
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Fig. 2. Schematic for the present semi-stagger grid sysi@n.two-
dimensional; (b) three-dimensional.

(b)

data [25] and the numerical results [10].

Fig. 3. Calculated results for the dam-break problem. éjthe-history front
profile; (b)Comparisons of the predicted front locationshvthe experimental
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(b)
Fig. 4. The results for the Rayleigh-Taylor problem at thigedent time. (a)

the interface profiles; (e) comparisons of the top of thengdiuid and the Fig. 5
bottom of the falling fluid with the present results and thevjmus results. o

(b)

The predicted total mass ratios against time for thestigated
problems. (a) the dam-break problem; (b) Rayleigh-Tayistability problem.
Note thatM = [, @dQ means the total mass aMdy = [ P|—odQ means
the total mass at=0.
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Fig. 8. Speed up ratio for the present study with differensimsize. (a)4&
40x 80; (b)80x 80x 160. Note that '8+GPU’ means that we solve the problem

Fig.
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with 8 CPU cores and one GPU card.

Fig. 6. Comparisons of the bubble shapes for the presentochetind
experimental results (time difference between subseclestographs is 0.03
s). (&) t = 0.0s; (b) t = 0.03s; (c) t = 0.06s; (d) t = 0.09s; (e)Q.£2s; () t
= 0.15s; (g) experimental results by Brereton and Korotr&g).[
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