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Abstract—GMDH algorithm can well describe the internal 

structure of objects. In the process of modeling, automatic screening of 
model structure and variables ensure the convergence rate.This paper 
studied a new GMDH model based on polynomial spline estimation. 
The polynomial spline function was used to instead of the transfer 
function of GMDH to characterize the relationship between the input 
variables and output variables. It has proved that the algorithm has the 
optimal convergence rate under some conditions. The empirical 
results show that the algorithm can well forecast Consumer Price 
Index (CPI). 
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I. INTRODUCTION 
HE Group Method of Data Handling (GMDH) algorithm 
is a multivariate analysis method for modeling and 

identifying uncertainty on linear or nonlinearity systems. This 
algorithm was first introduced by A.G. Ivakhnenko in 1967[1]. 
The GMDH algorithm uses advantages of both self-organizing 
principle and multilayer neural networks to select best 
relationships between variables. First, the GMDH algorithm 
can automatically find interrelations between variables and 
chooses the optimal model to fit data. Second, the GMDH 
algorithm is similar to the neural network, combine with the 
ideas of black-box, biological neuron method, inductive 
method, probability theory, and many other methods. The 
GMDH algorithm unifies automatic control and pattern 
recognition to reduce human involvement in the process of 
understanding behavior, and it is objective and impartial 
[2]-[3]. 

The main idea of GMDH is the use of feed-forward networks 
based on short-term polynomial transfer functions whose 
coefficients are obtained using regression combined with 
emulation of the self-organizing activity behind NN structural 
learning (Farlow, 1984). To improve the performance of the 
GMDH algorithm, Barron (1988) gave a comprehensive 
overview of some early developments of network, and 
introduced the Polynomial Network Training algorithm 
(PNETTR). Elder (1996) proposed Synthesis of Polynomial 
Network (ASPN) algorithm to improve the GMDH algorithm. 
 

LI qiu-min is with the School of management and Economics, University of 
Electronic Science and Technology of China, Chengdu610054, China. 
(corresponding author to provide phone:86-13550061776; e-mail: qiuminlee@ 
hotmail.com).  

TIAN yi-xiang is with the School of management and Economics, 
University of Electronic Science and Technology of China, Chengdu610054, 
China. (e-mail: tianyx@uestc.edu.cn). 

ZHANG gao-xun is with the School of management and Economics, 
University of Electronic Science and Technology of China, Chengdu610054, 
China. 

J.A.Muller and Frank Lemke (2000) developed and improved 
self-organizing data mining algorithms on the basis of the 
above results in 1990s [4]. Further enhancements of the GMDH 
algorithm have been realized in the “KnowledgeMiner” 
software. The GMDH algorithm has gradually become an 
effective tool for modeling, forecasting, and decision support 
and pattern recognition of complex systems. There are 
processes for which it is needed to know their future or to 
analyze inter-relations. The GMDH method has been 
successfully applied in economy, climate, finance, ecology, 
medicine, manufacturing and military systems. 

Although GMDH provides for a systematic procedure of 
system modeling and prediction, it also has a number of 
shortcomings.The traditional GMDH algorithm used 
Kolmogorov-Gabor polynomial function as the transfer 
function to create the initial model. When dealing with highly 
nonlinear systems, it will produce a overly complex network 
owing to its limited transfer function. Following studies 
focused on the improvement of the GMDH.  

Godfrey C. Onwubolu (2008) using differential evolution in 
the selection process of the GMDH algorithm, the model 
building process is free to explore a more complex universe of 
data permutations [5]. Petr Buryana and Godfrey C. Onwubolu 
(2011) present an enhanced multilayered iterative 
algorithm-group method of data handling (MIA-GMDH)-type 
network [6]. Several specific features such as thresholding 
schemes and semi-randomised selection approach are used to 
improving self-organising polynomial GMDH. Tian Y X and 
Tan D J (2008) used a method of Local Linear Kernel 
Estimation to improve GMDH modeling for Forecasting [7]. 
Meysam Shaverdi, Saeed Fallahi, Vahhab Bashiri (2012) 
presented a GMDH type-neural network based on Genetic 
algorithm, and used to predict stock price index which are 
inherently noisy and non-stationary [8].  

In this paper we improve GMDH algorithm by incorporating 
the non-parametric polynomial spline estimation. The proposed 
non-parametric method does not require any specific 
assumptions of the relationship between variables, and the 
results have a good robustness. The polynomial spline function, 
instead of the Kolmogorov-Gabor polynomial function, is used 
as the transfer function of GMDH to build up the relationship 
between input and output variables.   

II. THE FUNDAMENTAL OF GROUP METHOD OF DATA HANDLING 
(GMDH) MODEL 

The GMDH was first introduced by Ivakhnenko in the 1960s 
as a means of identifying nonlinear relations between input and 
output variables. GMDH has since been applied to a host of 
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practical situations which showed that this class of multilayered 
polynomial networks has proved effective for both modelling 
and prediction.  

The specific steps involved in the conventional GMDH 
modeling are:  

(1) The sample data set can be divided into the training data 
set and testing data set.  

(2) All possible combinations of the n  inputs are 
generated to create the transfer function )(Xf  of the  
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 neurons.The general relationship between input and 

output variables can be found in the form of a support 
functional. 
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The traditional GMDH algorithm used Kolmogorov-Gabor 

polynomial function as the transfer function to create the initial 
model. The Kolmogorov-Gabor polynomial function is 
expressed by: 

 

L++++= ∑∑∑∑∑∑
= ≥ ≥= ≥=

kjiijk

n

i

m

ij

m

jk
jiij

n

i

m

ij
ii

n

i
xxxaxxaxaay

111
0  

（2） 

where y  is the output variables and ),,,( 21 nxxxX L  is the 

vector of input variables, ),,,( 21 naaaA L  is the vector of the 
summand coefficients. 

(3) The next step is to select an external criterion as the 
objective function. The GMDH method allows choosing a 
number of selection criteria, such as the mean root square error 
criterion. The procedure of inheritance, mutation and selection 
stop automatically if a new generation of models does not bring 
any further improvements.  
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neurons of the second layer. 
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(5) Repeat the steps 2 to 4. When the errors of the test data in 

each layer stop decreasing, the iterative computation is 
terminated. 

The aforementioned steps of the GMDH algorithm are 
executed iteratively until there is no improvement based on the 
external criterion. The optimal model parameters and model 

structure will be obtained through pushing back along the last 
layer. 

As mentioned earlier, the traditional GMDH algorithm used 
Kolmogorov-Gabor polynomial function as the transfer 
function to create the initial model. A pre-specified relationship 
between the variables may cause a huge bias and further lead to 
human error. This paper studies a new GMDH algorithm which 
is improved by incorporating the polynomial spline estimation. 
The prediction of the model achieves the desired effect. 

III. THE POLYNOMIAL SPLINE ESTIMATION 
Non-parametric regression method assumes that the 

relationship between economic variables is unknown; use 
historical data to estimate the entire regression function [9]. 
"Spline" comes from the exterior design of the hull and aircraft 
in engineering. In order to connect the specified sample points 
into a smooth curve, the spline (i.e. flexible thin strips of wood 
or thin steel bars) is fixed in the sample points, and then it will 
be bending freely in other parts. When the curve expressed by 
spline, called a spline curve or spline function, the sample 
points called nodes. In mathematics, it is similar to a piecewise 
cubic polynomial, with first-order and second-order continuous 
derivative at nodes [10]-[13]. 

Polynomial spline estimation means that spline function is 
used to fit the model. The method is a global estimation. It gives 
a simple explicit expression of the model, and can predict the 
regression function value of the data outside the region. 

Non-parametric model: 
 
                     niuXmY iii ,,2,1,)( L=+=   （3） 

 
where Xi is observed value, )( iXm  is an unknown function 
indicating the complicated underlying relation between inputs 
and outputs and iu  is the random error.  

Suppose Mttt ,,, 21 L  is fixed sequence of nodes. 

+∞<<<<<∞− Mttt L21 . The basis function of spline 
function is 
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Polynomial spline function is 
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The polynomial spline estimation of nonparametric 

regression function )( iXm is  
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In polynomial spline estimation, the choice of nodes is very 

important. The more the node number, the better the fitting 
degree of model, the lower the smoothness of the curve. In 
order to coordinate the trade-off, we should select the 
appropriate number of nodes. Three common choices for 
choice of nodes are: Akaike information criterion (AIC), 
Bayesian information criterion (BIC), and Modified 
cross-validation criteria (MCV). This paper uses AIC. 

 
nKnRSSAIC /*2)/log( +=  

 
where K is the number of parameters to be estimated, RSS is 
the residual sum of squares of the formula (5). AIC means that 
the number of node is automatically selected by minimizing the 
value of AIC. 

IV. GMDH MODELING BASED ON POLYNOMIAL SPLINE 
ESTIMATION (SP-GMDH) 

This paper uses a non-parametric method to estimate the 
model instead of pre-specifying a form of the model so as to 
avoid the possible error during the modeling process. In this 
paper, the polynomial spline estimation function is used to 
instead the transfer function of GMDH to build up the 
relationship between input and output variables. It means that 
Eq. (3) is used to estimate the model.  

The specific steps involved in the k-NN-GMDH model are:  
(1) The sample data set W  can be divided into the training 

data set A  and testing data set B . y  is the output variables 

and ),,,( 21 nxxxX L  is the vector of input variables. 

(2) In the first layer, the n  inputs are generated to all 

possible combinations l
n
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transfer function )(xm . 
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(3) The screened criterions: Threshold is set to root mean 

square error (RMSE).  
(4)  
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In Equation (8), iy  are forecasted values at data point i , io  

are observed values at data point i . When the value RMSE is 
smallest, the saved variables as new inputs are constructed the 
transfer function )(xm , continually generate the output 
variable of the next layer. The process will repeat iteratively 
until the value RMSE in each layer stop decreasing. The 
iterative computation is terminated, and the optimal model 
parameters and model structure will be obtained through 
pushing back along the last layer. 

The performance of the proposed GMDH model based on 
polynomial spline estimation will be improved in terms of 
having a better predictive capability than traditional methods. 

Assumptions. 
A1. The function )(⋅m  has first-order and second-order 

continuously derivatives. 
A2. 1++= lMK , M is the number of the nodes, l is the 

order of the polynomial, K is the dimension of the polynomial 
spline space. 

A3. G is the polynomial spline function space in compact set. 

2, ||||inf mgGgjn −= ∈ρ , 

jnKin ,},,2,1{max ρρ L∈=  

A4. The eigenvalues of  )( TXXE  constant is positive and 
uniformly bounded. 

Lemma 1.  Assume that the conditions A1-A4 hold, then 

nj
n
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2 L=+=− ρ  

 
where 1++= lMK , M is the number of the nodes, l is the 
order of the polynomial.  
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)1(on =ρ , then m̂  is the consistent estimation of m. That is, 
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Proof [14]. 
Lemma 2. Assume that the conditions A1-A4 hold, if )(xm  

has lst-order continuously derivatives, and )( )12/(1 += lnOK , 
then 

 
njnOmm ll

pjj ,,2,1),(||ˆ|| )12/(
2 L==− +− ． 

 
Proof [15]. 
Theorem 1. Assume that the conditions A1-A4 hold, the 

estimators of polynomial spline  function )(xm  can achieve 
the global optimal convergence rate. 

Proof. When 2=l , 
 

 njnOmm pjj ,,2,1),(||ˆ|| 5/2
2 L==− − . 

 
The global optimal convergence rate is )( 5/2−nOp  

[16]-[18]. That is the polynomial spline estimation can achieve 
the global optimal convergence rate )( 5/2−nOp . This rate is 

faster than the convergence rate )( 5/4−nOp  in the external 

point of the Kernel estimation. 
When 3=l , it is the usual cubic spline function estimation, 
 

njnOmm pjj ,,2,1),(||ˆ|| 7/3
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This rate is slower than the convergence rate )( 7/3−nOp  in 

the interior point of the Kernel estimation, but faster than the 
convergence rate )( 5/4−nOp  in the external point of the 

Kernel estimation. And this rate maintain globally consistent. 
Therefore polynomial spline estimation has been proved 
consistent. 

V. AN ILLUSTRATIVE CASE  
The consumer price index (CPI) is the index of price 

changes in the price level of consumer goods and services 
purchased by households. The CPI reflects the trend and 
extent of the consumer price changes in a certain period. 
The CPI is affected by various society economic factors, 
including monetary policy, exchange rate, fixed-asset 
investment, industrial producer prices, agricultural product 
prices, etc.  

A. Selecting Samples   
In order to compare the forecasting performances of the 

proposed model with traditional methods, various economic 
and financial data collected from February 2001 to December 
2011 is used as the sample, and the months which data is not 
complete are excluded. The full samples are divided into a 
training set (from February 2001 to December 2010), and a 
testing set (from February 2011 to December 2011). 

B. Selecting Variables 
The CPI is chosen as the dependent variable. Consider the 

various factors affecting the consumer price; this paper selects 
the follow seven major variables: X1, the disposable income of 
residents; X2, fixed asset investment; X3, products price index; 
X4, price index of agricultural production; X5, money supply; 
X6, bank interest rates (personal current interest rates); X7, 
exchange rate (the RMB against the U.S. dollar) [19]. In order 
to unify the dimensionless, these variables are unified to “rate” 
to measure their magnitude. In addition, considering the 
hysteresis characteristics of the price index, the lag order is set 
to 2, plus two lagged variables: X8, the first-order lag of CPI; 
X9, the second-order lag of CPI. 

C. Selecting an External Criterion 
Minimum of the estimated residual is selected as external 

criterion. 

])ˆ(min[ 2

1
ii

n

i
yy −∑
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The sample is analyzed by GMDH method and the GMDH 
modeling based on polynomial spline estimation. The eleven 
months CPI of the testing set are forecasted and tabulated in 
Table I, and are shown in Fig. 1. 

TABLE I 
CPI, FORECAST RESULTS AND RELATIVE ERROR (2010.7-2011.6) 

Month CPI GMDH 
forecasting 

Relative 
error (%) 

PS-GMDH 
forecasting 

Relativ
e error 

(%) 
July 103.3041 103.2011 -0.0997 103.2896 -0.0140 

Aug 103.4794 103.5066 0.0262 103.4937 0.0138 

Sept 103.6056 103.6668 0.0591 103.6074 0.0017 

Oct 104.3655 103.7729 -0.5678 104.6152 0.2393 

Nov 105.1192 104.5364 -0.5544 105.4548 0.3192 

Dec 104.5859 105.3122 0.6944 104.6833 0.0931 

Jan 104.9000 104.8640 -0.0343 104.9250 0.0238 

Feb 104.9443 105.0886 0.1375 105.0149 0.0673 

Mar 105.3830 105.4090 0.0247 105.3895 0.0062 

Apr 105.3000 105.9617 0.6284 105.5815 0.2673 

May 105.5000 106.0960 0.5649 105.9036 0.3826 

June 106.3553 106.6087 0.2383 106.4780 0.1154 
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Fig. 1 Comparison of the forecasted results of GMDH, SP-GLSSVM 

models for CPI. 
 

As shown in Fig. 1, the relative error of SP-GMDH is 
smaller than the GMDH models. It is evident that the 
SP-GMDH model performed better than the GMDH models in 
the testing process. 

VI. CONCLUSIONS  
The GMDH algorithm can fully exploit the real internal 

structure of the studied object. Layers automatically screening 
of the model structure and variables in the modeling process 
can ensure the convergence speed of computation. 
Non-parametric method does not require pre-specifying the 
functional relationship between the variables. It greatly reduces 
the influence of subjective factors. Polynomial spline 
estimation used the spline function to simulate the variation 
between the variables. The method predicts the value of the 
variable, and the convergence speed can reach the global 
optimum. In this paper the polynomial spline function used to 
instead the transfer function of GMDH to characterize the 
relationship between the input variables and output variables. It 
has proved that the estimators of spline function achieved the 
global optimal convergence rate. This rate is faster than the 
convergence rate in the external point of the Kernel estimation. 
And this rate maintain globally consistent. Therefore 
polynomial spline estimation has better fitting results and 
forecasting functions than the non-parametric kernel 
estimation.The results from the illustrative case show that the 
new method can forecast CPI in more accurate matter. 
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