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Abstract—In this paper, the non-linear free axisymmetric 

vibration of a thin annular plate made of functionally graded material 
(FGM) has been studied by using the energy method and a 
multimode approach. FGM properties vary continuously as well as 
non-homogeneity through the thickness direction of the plate. The 
theoretical model is based on the classical plate theory and the Von 
Kármán geometrical non-linearity assumptions. An approximation 
has been adopted in the present work consisting of neglecting the in-
plane deformation in the formulation. Hamilton’s principle is used to 
derive the governing equation of motion. The problem is solved by a 
numerical iterative procedure in order to obtain more accurate results 
for vibration amplitudes up to 1.5 times the plate thickness. The 
numerical results are given for the first axisymmetric non-linear 
mode shape for a wide range of vibration amplitudes and they are 
presented either in tabular form or in graphical form to show the 
effect that the vibration amplitude and the variation in material 
properties have significant effects on the frequencies and the bending 
stresses in large amplitude vibration of the functionally graded 
annular plate. 

 
Keywords—Non-linear vibrations. Annular plates. Large 

amplitudes. FGM. 

I. INTRODUCTION 
UNCTIONALLY graded materials (FGMs) are the new 
microscopic inhomogeneous composite materials. These 

Materials are usually made of a combination of ceramic and 
metal such that the material properties vary smoothly and 
continuously in appropriate direction(s). The continuity in the 
material properties of these new materials provides better 
mechanical behavior in comparison with the fiber-reinforced 
composites. A combination of the properties of the metal and 
ceramic can be achieved by the composition of them. These 
properties that consist of high-temperature resistance due to 
low thermal conductivity, wear and oxidation resistance for 
ceramics and the high toughness, high strength, mach inability 
and bonding capability for metals, cause that FGMs can resist 
high-temperature conditions while their toughness maintains. 

Because of these good characteristics, FGMs have 
extensively used in various industries such as space structures, 
turbo machinery, nuclear and chemical industries, defense 
mechanisms, energy conversion systems.  

Due to this widespread applicability, FGMs have been 
extensively studied by researchers in recent years, particularly 
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the vibration analyses of functionally graded structures like as 
plates are carried out by many researchers. 

For example, Reddy and Cheng [5] studied the harmonic 
vibration problem of functionally graded plates by means of a 
three-dimensional asymptotic theory formulated in terms of 
transfer matrix. Allahverdizadeh and Naei [3] studied 
nonlinear free and forced vibration analysis of thin circular 
functionally graded plates and investigated the amplitude and 
thermal effects on the nonlinear behavior of those plates. They 
also studied the effects of large vibration amplitudes on the 
stresses of thin circular functionally graded plates. Chen [4] 
analyzed the nonlinear vibration of a shear deformable 
functionally graded plate by using the equations that include 
the effects of transverse shear deformable and rotary inertia. 
Amini et al. [1] studied stress analysis for thick annular 
functionally graded plate. They used first order shear 
deformation plate and von Kármán type equation. 

Their results revealed that vibration amplitude and volume 
fraction have significant effect on resultant stresses in large 
amplitude vibration of functionally graded thick plate. 

The aim of this paper is to study nonlinear free vibration of 
thin annular functionally graded plates. Material properties are 
assumed to be graded in the thickness direction according to a 
simple power law distribution in terms of the volume fractions 
of the constituents. The formulations are based on Classic 
Plate Theory and von Kármán-type equation. 

In the present work, axisymmetric free large vibration 
amplitudes of thin functionally graded annular plates are 
investigated by using and adapting the model applied 
successfully to geometrically non-linear free and forced 
vibrations of various structures such as simply supported and 
clamped–clamped beams, homogeneous and composite 
rectangular plates, and shells [6], [7], [9], [12]. By supposing 
harmonic motion and expanding the transverse displacement 
in the form of finite series of basic functions, the linear free 
vibration modes of an annular plate have both edges clamped, 
obtained in terms of Bessel’s functions, the discretized 
expressions for the total strain energy and kinetic energy have 
been derived. Hamilton’s principle is used to reduce the large 
amplitude free vibration problem to a set of non-linear 
algebraic equations, which have been solved by a numerical 
iterative procedure. 

Numerical results are presented in both dimensionless 
tabular and graphical forms, and highlight the influence of 
material composition on induced bending stress in large 
amplitude vibration of thin annular functionally graded plates. 
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II. GENERAL FORMULATION 

A. Problem Definition 
Consider a functionally annular plate of thin uniform 

thickness ݄ ൌ 0.01 with outer radius ܽ ൌ 0.5, inner radius ܾ ൌ
0.05, as depicted in Fig. 1. The annular plate geometry and 
dimensions are defined in the cylindrical coordinates ሺݎ, ,ߠ  .ሻݖ
The FGM plate material is made of a combination of ceramic 
and metal. The top surface ሺݖ ൌ ݄ 2⁄ ሻ of the plate is ceramic-
rich whereas the bottom surface ሺݖ ൌ െ݄ 2⁄ ሻ is metal-rich. 

 

 
Fig. 1 Annular plate geometry, dimensions and notation 

 
In the case of large amplitude axisymmetric vibrations of 

the annular plate, the radial displacement ݑ௥ and the transverse 
displacement ݑ௭ show the displacement of the point with 
,ݎሺܯ  ,ሻ coordinate. By using the Kirchhoff plate theoryݖ
 :௭ are expressed asݑ ௥ andݑ

 
,ݎ௥ሺݑ ,ݖ ሻݐ ൌ ,ݎሺݑ ሻݐ െ ݖ ,ݎሺݓ߲ ሻݐ ሺ߲ݎሻ⁄     (1) 

 
,ݎ௭ሺݑ ሻݐ ൌ ,ݎሺݓ  ሻ    (2)ݐ

 
where ݑሺݎ, ,ݎሺݓ ሻ andݐ  ሻ are the radial and transverseݐ
displacements of the point on the middle surface of the plate 
respectively, and t is the time variable. 

On the basis of geometric non-linear theory of thin plates in 
von Karman's sense, one obtains the strain-displacement 
relations: 

 
௥ߝ ൌ ሺ߲ݑ ⁄ݎ߲ ሻ ൅ ሺ1 2⁄ ሻሺ߲ݓ ⁄ݎ߲ ሻଶ െ ݓሺ߲ଶ ݖ ⁄ଶݎ߲ ሻ   (3) 

 
ఏߝ ൌ ሺݑ ⁄ݎ ሻ െ ቀ௭

௥
ቁ ሺ߲ݓ ⁄ݎ߲ ሻ   (4) 

 
where ߝ௥ and ߝఏ are the radial and tangential strains, 
respectively. 

B. Total Strain and Kinetic Energies Expressions 
By using Hooke’s law, the radial and circumferential 

stresses are given by: 

௥ߪ  ൌ ாሺ௭ሻ
ሺଵିజమሻ

ሺߝ௥ ൅  ఏሻ      (5)ߝ߭

  
ఏߪ  ൌ ாሺ௭ሻ

ሺଵିజమሻ
ሺߝఏ ൅  ௥ሻ     (6)ߝ߭

 
The total strain energy is expressed as: 

 
ܸ ൌ  ଵ

ଶ ׮ ௜௝ߪ  ,  ݒ௜௝݀ߝ ݒ݀ ൌ  (7)   ݖ݀ ߠ݀ݎ݀ݎ
 
which can be written as: 
 

ܸ ൌ  ଵ
ଶ ׬ ׬ ׬ ሺ ߪ௥ߝ௥

௛ ଶ⁄
ି௛ ଶ⁄

ଶగ
଴

௔
௕ ൅  (8)     ݖ݀ ߠ݀ݎ݀ݎఏሻߝఏߪ 

 
or like the sum of the strain energy due to bending ௕ܸ and the 
membrane strain energy induced by large deflections ௠ܸ 
 

ܸ ൌ ௕ܸ ൅ ௠ܸ     (9) 
 

The bending strain energy is given by: 
 

௕ܸ ൌ െܤߨଵଵ නሾሺ߲ݓ ⁄ݎ߲ ሻଶሺ߲ଶݓ ⁄ଶሻݎ߲ ሿݎ݀ݎ 
௔

௕

െ ଵଶܤߨ නሾሺ1 ⁄ሻݎ ሺ߲ݓ ⁄ݎ߲ ሻሺ߲ݓ ⁄ݎ߲ ሻଶሿݎ݀ݎ 
௔

௕

൅ ଵଵܦߨ නሾሺ߲ଶݓ ⁄ଶݎ߲ ሻଶ ൅ ሺ1 ⁄ଶሻݎ ሺ߲ݓ ⁄ݎ߲ ሻଶ

௔

௕

ሿ ݎ݀ݎ 

൅ ଵଶܦߨ 2   නሾሺ1 ⁄ݎ ሻሺ߲ݓ ⁄ݎ߲ ሻሺ߲ଶݓ ⁄ଶݎ߲ ሻሿ
௔

௕

  ݎ݀ݎ 

(10) 
 
By neglecting the axial motion, the membrane strain energy 

induced by large deflections of the annular plate can be 
written as: 

 
V୫ ൌ ሺπAଵଵ 4⁄ ሻ ׬ ሺ∂w ∂r⁄ ሻସrdr ୟ

ୠ    (11) 
 

where ܣଵଵ, ܤଵଵ and ܦଵଵ are the extension-extension, bending-
extension, bending-bending coupling coefficients respectively, 
and can be evaluated as follows, 
 

ሺܣଵଵ, ,ଵଵܤ ଵଵሻܦ ൌ ׬    ாሺ௭ሻ
ଵିణమ  ሺ1, ,ݖ ௛/ଶ ݖ݀ ଶሻݖ

ି௛/ଶ    (12) 
 

ଵଶܤ ൌ , ଵଵܤ߭ ଵଶܦ ൌ  ଵଵ     (13)ܦ߭
 

By neglecting the rotary inertia, the kinetic energy of the 
annular plate can be written as: 

 

ܶ ൌ  ଵ
ଶ ׬ ቀడ௪

డ௧
ቁ

ଶ 
݀݉ , ݀݉ ൌ  (14)    ݖ݀ݎ݀ߠ݀ݎሻݖሺߩ

 

ܶ ൌ  ଵ
ଶ ׬ ׬ ݖሻ݀ݖሺߩ ߠ݀ ׬ ቀడ௪

డ௧
ቁ

ଶ ௔
௕

ଶగ
଴

௛ ଶ⁄
ି௛ ଶ⁄  (15)    ݎ݀ݎ
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ܶ ൌ ଴ܫ ߨ  ׬  ቀడ௪
డ௧

ቁ
ଶ ௔

௕  (16)     ݎ݀ݎ
 
where 

଴ܫ ൌ ׬ ௛/ଶݖ݀ ሻݖሺߩ  
ି௛/ଶ     (17) 

C. Discretization of the Total and Kinetic Energies 
Expressions 

 The transverse displacement function is expanded as a 
series of space functions and the time function. These 
functions are supposed to be separable, and the transverse 
displacement can be written as: 

 
,ݎሺݓ ሻݐ ൌ .ሻݎሺݓ    ሻ    (18)ݐሺݍ

 
The space function ݓሺݎሻ is expanded in the form of finite 

series of ݊ basic functions ݓ௜ሺݎሻ as: 
 

.ሻݎሺݓ ൌ  ܽ௜ݓ௜ሺݎሻ      (19) 
 

If harmonic motion is assumed the time function can be 
written as: 
 

ሻݐሺݍ ൌ  ሻ            (20)ݐሺ߱݊݅ݏ
 

By using the summation convention for repeated indices 
over the range (ሾ1, … , ݊ሿ, the expression for transverse 
displacement is then given by: 
 

,ݎሺݓ ሻݐ ൌ   ܽ௜ݓ௜ሺݎሻ݊݅ݏሺ߱ݐሻ       (21) 
 

Substituting the expression given in (21) into (10), (11) and 
(16), one obtains: 

 
௠ܸ  ൌ ሺ1 2⁄ ሻሺܣߨଵଵ 2⁄ ሻܽ௜ ௝ܽܽ௞ܽ௟݊݅ݏସሺ߱ݐሻ 

׬   ሺ߲ݓ௜ ⁄ݎ߲ ሻ൫߲ݓ௝ ⁄ݎ߲ ൯ሺ߲ݓ௞ ⁄ݎ߲ ሻሺ߲ݓ௟ ⁄ݎ߲ ሻݎ݀ݎ௔
௕   (22) 

 
௠ܸ ൌ ሺ1 2⁄ ሻܽ௜ ௝ܽܽ௞ܽ௟ሺܣߨଵଵ 2⁄ ሻܾ௜௝௞௟݊݅ݏସሺ߱ݐሻ   (23) 

 
where ܾ௜௝௞௟ is the non-linearity tensor, given by: 
 

ܾ௜௝௞௟ ൌ ׬ ሺ߲ݓ௜ ⁄ݎ߲ ሻ൫߲ݓ௝ ⁄ݎ߲ ൯ሺ߲ݓ௞ ⁄ݎ߲ ሻሺ߲ݓ௟ ⁄ݎ߲ ሻݎ݀ݎ௔
௕    (24) 

 
௕ܸ

ൌ
1
2

ଵଵܽ௜ܦߨ2  ௝ܽ݊݅ݏଶሺ߱ݐሻ නሺ߲ଶݓ௜ ⁄ଶݎ߲ ሻ൫߲ଶݓ௝ ⁄ଶݎ߲ ൯ ݎ݀ݎ
௔

௕

൅ 
1
2

ଵଵܽ௜ܦߨ2 ௝ܽ݊݅ݏଶሺ߱ݐሻ නሺ1 ⁄ଶݎ ሻ ሺ߲ݓ௜ ⁄ݎ߲ ሻ൫߲ݓ௝ ⁄ݎ߲ ൯ݎ݀ݎ
௔

௕

   

െ
1
2

ଵଵܽ௜ܤߨ2 ௝ܽܽ௞݊݅ݏଶሺ߱ݐሻ න  ሺ߲ଶݓ௜ ⁄ଶݎ߲ ሻሺ߲ݓ௜ ⁄ݎ߲ ሻሺ߲ݓ௜ ⁄ݎ߲ ሻ
௔

௕

ݎ݀ݎ

െ
1
2

ଵଵܽ௜ܤߨ2  ௝ܽܽ௞݊݅ݏଶሺ߱ݐሻ න  
௔

௕

ሺ߭ ⁄ݎ ሻ ሺ߲ݓ௜ ⁄ݎ߲ ሻ൫߲ݓ௝ ⁄ݎ߲ ൯ሺ߲ݓ௜ ⁄ݎ߲ ሻ ݎ݀ݎ 

(25) 
௕ܸ ൌ ଵ

ଶ
ܽ௜ ௝ܽ2ܦߨଵଵ݇௜௝݊݅ݏଶሺ߱ݐሻ ൅ ଵ

ଶ
ܽ௜ ௝ܽܽ௞2ܤߨଵଵܿ௜௝௞݊݅ݏଷሺ߱ݐሻ (26) 

ܸ ൌ
1
2

ܽ௜ ௝ܽ2ܦߨଵଵ݇௜௝݊݅ݏଶሺ߱ݐሻ ൅
1
2

ܽ௜ ௝ܽܽ௞2ܤߨଵଵܿ௜௝௞݊݅ݏଷሺ߱ݐሻ

൅
1
2 ܽ௜ ௝ܽܽ௞ܽ௟ሺܣߨଵଵ 2⁄ ሻܾ௜௝௞௟݊݅ݏସሺ߱ݐሻ 

(27) 
 

where ݇௜௝and 
 
ܿ௜௝௞ are the rigidity tensor  and  the coupling 

tensor, respectively, and given by: 
 

݇௜௝ ൌ ׬  ሺ߲ଶݓ௜ ⁄ଶݎ߲ ሻ൫߲ଶݓ௝ ⁄ଶݎ߲ ൯ ݎ݀ݎ௔
௕ ൅ ׬ 1 ⁄ଶݎ  ሺ߲ݓ௜ ⁄ݎ߲ ሻ൫߲ݓ௝ ⁄ݎ߲ ൯ݎ݀ݎ௔

௕  (28) 
ܿ௜௝௞

ൌ  െ න  ሺ߲ଶݓ௜ ⁄ଶݎ߲ ሻሺ߲ݓ௜ ⁄ݎ߲ ሻሺ߲ݓ௜ ⁄ݎ߲ ሻ
௔

௕

නሺ߭ ݎ݀ݎ ⁄ݎ ሻ ሺ߲ݓ௜ ⁄ݎ߲ ሻ൫߲ݓ௝ ⁄ݎ߲ ൯ሺ߲ݓ௜ ⁄ݎ߲ ሻ
௔

௕

  ݎ݀ݎ

(29) 
ܶ ൌ ଵ

ଶ
଴ ߱ଶܽ௜ܫߨ2  ௝ܽܿݏ݋ଶሺ߱ݐሻ ׬ ௔ݎ݀ݎ ௝ݓ௜ݓ

௕    (30) 
 

ܶ ൌ ଵ
ଶ

 ߱ଶܽ௜ ௝ܽ2ܫߨ଴݉௜௝ܿݏ݋ଶሺ߱ݐሻ   (31) 
 
where ݉௜௝ is the mass tensor, given by: 
 

݉௜௝ ൌ ׬ ௔ݎ݀ݎ ௝ݓ௜ݓ
௕      (32) 

D. Governing Equations 
A Hamilton’s principle applied in the present work for 

study the dynamic behavior of the plate, is symbolically 
written as: 

 
߲ ׬  ሺܸ െ ܶሻ݀ݐ ൌ 0ଶగ ఠ⁄

଴          (33) 
 

In which ߲ indicates the variation of the integral. 
Introducing the (27) and (31) into the energy condition (33) 

via reduces the problem to that of finding the minimum of the 
function ߮ given by: 

 

߮ ൌ
1
2 ܽ௜ ௝ܽ2ܦߨଵଵ݇௜௝ න ሻݐଶሺ߱݊݅ݏ

ଶగ ఠ⁄

଴

൅ ݐ݀
1
2 ܽ௜ ௝ܽܽ௞ܽ௟ሺܣߨଵଵ 2⁄ ሻ ௜ܾ௝௞௟ න ሻݐସሺ߱݊݅ݏ

ଶగ ఠ⁄

଴

 ݐ݀

൅
1
2 ܽ௜ ௝ܽܽ௞2ܤߨଵଵܿ௜௝௞ න ሻݐଷሺ߱݊݅ݏ

ଶగ ఠ⁄

଴

 ݐ݀

െ
1
2 ߱ଶܽ௜ ௝ܽ2ܫߨ଴݉௜௝ න ሻݐଶሺ߱ݏ݋ܿ

ଶగ ఠ⁄

଴

 ݐ݀

(34) 
 

With respect to the undetermined constant ܽ௜.Integrating the 
trigonometric functions sinଶሺ߱ݐሻ, sinଷሺ߱ݐሻ , sinସሺ߱ݐሻ and 
 cosଶሺ߱ݐሻ over the range [0, 2π/ω] leads to the following 
expression: 

 
߮ ൌ  ሺߨ ⁄ 4߱ሻܽ௜ ௝ܽ݇௜௝ ൅ ሺ3ߨ ⁄ 16߱ሻ ߞ ܽ௜ ௝ܽܽ௞ܽ௟ܾ௜௝௞௟

൅ ሺ2ߚ ⁄ 3߱ሻܽ௜ ௝ܽܽ௞ܿ௜௝௞ െ ሺߛߨ ⁄ 2߱ሻܽ௜ ௝ܽ ݉௜௝ 
(35) 

 
where, 

ߞ   ൌ ሺܣଵଵ ⁄ଵଵܦ 4 ሻ, ߚ ൌ ሺെ11ܤ ⁄11ܦ ሻ , ߛ ൌ ሺܫ଴ ⁄ଵଵܦ ሻ  (36) 
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In this expression, ߮ appears as a function of only the 
undetermined constant ܽ௜. ݅ ൌ  1, … . , ݊ 

Equation (33) reduces to: 
 

߲߮ ߲ܽ௥⁄ ൌ  0 , ݎ ൌ 1, … . , ݊        (37) 
 

Generally, the tensors ݉௜௝ and ݇௜௝are symmetric, the 
tensors  ௜ܾ௝௞௟  and  ܿ௜௝௞ are such that: 
 

ܾ௜௝௞௟ ൌ ܾ௞௝௜௝  ;  ܾ௜௝௞௟ ൌ ௝ܾ௜௟௞         (38) 
 

ܿ௜௝௞
௦ ൌ ሺ1 3⁄ ሻ൫ܿ௜௝௞ ൅ ܿ௜௝௞ ൅ ܿ௜௝௞ ൯          (39) 

 
Taking into account these properties of symmetry, it 

appears that (37) are equivalent to the following set of 
nonlinear algebraic equations: 

 
ܽ௜݇௜௥ ൅ ଷ

ଶ
௜ܽߞ ௝ܽܽ௞ ௜ܾ௝௞௥ ൅ ସ

గ
௜ܽߚ ௝ܽܿ௜௝௥

௦ െ ଶܽ௜݉௜௥߱ߛ ൌ 0 (40) 
ݎ   ൌ 1, … … , ݊   

 
Equation (40) represents a set of  ݊  non-linear algebraic 

equations relating the ݊ coefficients ܽ௜ and the frequency  ߱.  
 

߱ଶ ൌ
௔೔௔ೕ௞೔ೕାሺଷ ଶ⁄ ሻ఍௔೔௔ೕ௔ೖ௔೗௕೔ೕೖ೗ାሺସ గ⁄ ሻఉ௔೔௔ೕ௖೔ೕೖ

ೞ

ఊ௔೔௔ೕ௠೔ೕ
    (41) 

 
which has to be substituted in (40) to obtain a system of  ݊ 
non-linear algebraic equations’ leading to the ݊ contribution 
coefficients  ܽ௜ ; ݅ ൌ 1, … … , ݊ . 

Adopting the solution procedure used in [1]-[4], the 
contribution coefficient  ܽ௥଴   of the basic function 
corresponding to the desired mode (the first mode is 
considered in this paper)  ݎ଴  is first fixed, and the other basic 
function contribution coefficients are calculated via numerical 
solution of the remaining  ሺ݊ െ 1ሻ non-linear algebraic 
equations  ሺ40ሻ for ݎ ്  ଴ݎ 

 
ܽ௜݇௜௥ ൅ ଷ

ଶ
௜ܽߞ ௝ܽܽ௞ ௜ܾ௝௞௥ ൅ ସ

గ
௜ܽߚ ௝ܽܿ௜௝௥

௦ െ ଶܽ௜݉௜௥߱ߛ ൌ 0  (42) 
 
The values obtained for ܽ௜ , for ݅ ്  ଴, are then substitutedݎ 

into (41) to obtain the corresponding value of ߱௥଴
ଶ . 

To obtain non-dimensional parameters, we put: 
 

ሻݎ௜ሺݓ ൌ ௜ݓ݄
;ሻכݎሺכ ߙ  ൌ ܾ ܽ⁄ ; ݎ  ൌ   כݎܽ

 
݉௜௝ ݉௜௝

⁄כ ൌ   ܽଶ݄ଶ ;   ݇௜௝ ݇௜௝
⁄כ ൌ   ݄ଶ ܽଶ⁄          (43) 

 
ܾ௜௝௞௟ ܾ௜௝௞௟

⁄כ ൌ   ݄ସ ܽଶ⁄ ; ܿ௜௝௞ ܿ௜௝௞
⁄כ ൌ   ݄ଷ ܽଶ⁄    

 
݉௜௝

௜௝݇ ,כ
and ܿ௜௝௞ כ

and ܾ௜௝௞௟כ
 are non dimensional tensorsכ

given by: 
 

݉௜௝
כ ൌ ׬  ௜ݓ 

௝ݓכ
ଵכݎ݀כݎכ

ఈ          (44) 
 

݇௜௝
כ ൌ ׬   ሺ߲ଶݓ௜

כ ⁄ଶכݎ߲ ሻ൫߲ଶݓ௝
כ ⁄ଶכݎ߲ ൯ଵ

ఈ כݎ݀כݎ  ൅ ׬ ሺ1 ⁄ଶכݎ ሻሺ ߲ݓ௜
כ ⁄כݎ߲ ሻ൫߲ݓ௝

כ ⁄כݎ߲ ൯ଵ
ఈ     כݎ݀כݎ 

(45) 
 

ܿ௜௝௞
כ ൌ  െ න  ሺ߲ଶݓ௜

כ ⁄ଶכݎ߲ ሻ൫ ߲ݓ௝
כ ⁄כݎ߲ ൯ሺ ߲ݓ௞

כ ⁄כݎ߲ ሻ
ଵ

ఈ

כݎ݀כݎ

െ නሺ߭ ⁄ݎ ሻ ሺ ߲ݓ௜
כ ⁄כݎ߲ ሻ൫ ߲ݓ௝

כ ⁄כݎ߲ ൯ሺ ߲ݓ௞
כ ⁄כݎ߲ ሻ

ଵ

ఈ

 כݎ݀כݎ

(46) 
 

௜ܾ௝௞௟
כ ൌ ׬  ሺ߲ݓ௜

כ ⁄כݎ߲ ௝ݓ߲
כ ⁄כݎ߲ ௞ݓ߲

כ ⁄כݎ߲ ௟ݓ߲
כ ⁄כݎ߲ ሻכݎ݀כݎଵ

ఈ  (47) 
 
Substituting these equations into (40) and (41) leads to: 
 
ܽ௜݇௜௥

כ ൅ ଷ
ଶ

௜ܽߞ ௝ܽܽ௞ܾ௜௝௞௥
כ ൅ ସ

గ
௜ܽߚ ௝ܽܿ௜௝௥

௦כ െ ଶܽ௜݉௜௥߱ߛ
כ ൌ 0  (48) 

 

ଶכ߱ ൌ
௔೔௔ೕ௞೔ೕ

כ ାሺଷ ଶ⁄ ሻ఍௔೔௔ೕ௔ೖ௔೗௕೔ೕೖ೗
כ ାሺସ గ⁄ ሻఉ௔೔௔ೕ௖೔ೕೖ

ೞכ

ఊ௔೔௔ೕ௠೔ೕ
כ   (49) 

 
The set of non-linear algebraic equations (40) can be 

written in a matrix form as: 
 

ሾכ݈ܭ ൅ ሽܣሿሼכ݈݊ܭ െ ሽܣሿሼכܯଶሾכ߱ ൌ ሼ0ሽ     (50) 
 

where ሾכܯሿ; ሾכ݈ܭሿ and ሾכ݈݊ܭሿ are the non-dimensional mass 
matrix, the non dimensional linear stiffness matrix and the 
non-dimensional non-linear geometrical stiffness matrix, 
respectively. Each term of the matrix ሾכ݈݊ܭሿ is a quadratic 
function of the column matrix of coefficient  
ሼܣሽ ൌ ሾܽଵ, ܽଶ, ܽଷ … . . , ܽ௡ሿ்; and is given by: 
 

௜௝݈݊ܭ
כ ൌ ሺ3 2⁄ ሻܽߞ௜ ௝ܽܽ௞ܽ௟ܾ௜௝௞௟

כ ൅ ሺ4 ⁄ߨ ሻܽߚ௜ ௝ܽܿ௜௝௞
௦כ     (51) 

 
It can be seen that when the non-linear term is neglected, 

the nonlinear eigenvalue problem (50) reduces to the classical 
eigenvalue problem which is the Rayleigh–Ritz formulation of 
the linear vibration problem. 

 
ሾכ݈ܭሿሼܣሽ െ ߱ଶሾכܯሿሼܣሽ ൌ ሼ0ሽ   (52) 

 
In the linear case, the eigenvalue equation (52) leads to a 

series of eigenvalues and corresponding eigenvectors. 
 In the non-linear case, the solution of (50) should lead to a 

set of amplitude-dependent eigenvectors, with their amplitude 
dependent associated eigenvalues. In the present work, the 
iterative method of solution is used for to solve the non-linear 
eigenvalue problem (50).  

E. Stress Expressions 
The bending strains ߝ௕௥ and ߝ௕ఏ are given by:  
 
ሻݖ௕௥ሺߝ ൌ െݖሺ݀ଶݓ ⁄ଶݎ݀ ሻ ; ሻݖ௕ఏሺߝ ൌ െሺݎ ݖ⁄ ሻ ሺ݀ݓ ⁄ݎ݀ ሻ (53) 

 
The in-plane membrane strains ߝ௠௥ and ߝ௠ఏ are given by:  

 
ሻݖ௠௥ሺߝ ൌ  ሺ݀ݑ ⁄ݎ݀ ሻ ൅ ሺ1 2⁄ ሻሺ݀ݓ ⁄ݎ݀ ሻ2, ሻݖሺߠ݉ߝ ൌ ݑ  ⁄ݎ    (54) 
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By using the classical thin plate assumption of plane stress 
and Hooke’s law, the radial and circumferential bending 
stresses are given by: 

 
௕௥ߪ ൌ െ ௭ாሺ௭ሻ

ሺଵିఔమሻ
ሾሺ݀ଶݓ ⁄ଶሻݎ݀ ൅ ሺ߭ ⁄ݎ ሻ ሺ݀ݓ ⁄ݎ݀ ሻሿ  (55) 

 
௕ఏߪ ൌ െ ௭ாሺ௭ሻ

ሺଵିఔమሻ
ሾሺ1 ⁄ݎ ሻሺ݀ݓ ⁄ݎ݀ ሻ ൅ ߭ ሺ݀ଶݓ ⁄ଶሻݎ݀ ሿ  (56) 

 
and the radial and circumferential membrane stresses are 
given by: 
 

௠௥ߪ ൌ ாሺ௭ሻ
ሺଵିఔమሻ

ሾሺ݀ݑ ⁄ݎ݀ ሻ ൅ ሺ1 2⁄ ሻሺ݀ݓ ⁄ݎ݀ ሻଶ ൅ ߭ሺݑ ⁄ݎ ሻሿ (57) 
 

௠ఏߪ ൌ ாሺ௭ሻ
ሺଵିఔమሻ

ሾሺݑ ⁄ݎ ሻ ൅ ߭ሺሺ݀ݑ ⁄ݎ݀ ሻ ൅ ሺ1 2⁄ ሻሺ݀ݓ ⁄ݎ݀ ሻଶሻሿ  (58) 
 

By neglecting the in-plane displacement ݑ, the membrane 
stresses are negligible. 

In terms of the non-dimensional parameters defined in the 
previous section, the radial and circumferential bending 
stresses ߪ௕௥ and ߪ௕ఏ can be defined by: 

 
௕௥ߪ ൌ െ ௭ாሺ௭ሻ௛

ሺଵିఔమሻ௔మ ቂௗమ௪כ

ௗ௥כమ ൅ జ
௥כ

ௗ௪כ

ௗ௥כ ቃ   (59) 
 

௕ఏߪ   ൌ െ ௭ாሺ௭ሻ௛
ሺଵିఔమሻ௔మ ቂ ଵ

௥כ
ௗכݓ

ௗ௥כ ൅ ߭ ௗమכݓ

ௗ௥כమቃ    (60) 

F. Properties of Functionally Graded Material 
The material properties  ܲ of the FG plate are assumed to 

vary continuously through the thickness of the plate as a 
function of the volume fraction ௜ܸand the properties of 
constituent materials ௜ܲ. These properties can be determined 
by the simple rule of mixture as [2]-[11].  

 
ܲ ൌ ∑ ௜ܲ ௜ܸ

௡
௜ୀଵ               ܲ ൌ , ܧ  , ߩ ߭ , ..     (61) 

 
where  ௜ܲ and ௜ܸ are the material properties and volume 
fraction respectively of the constituent material ݅ and  ݊ is 
number of the constituent material.  

 
TABLE I 

MATERIAL PROPERTIES OF METAL AND CERAMIC CONSTITUENTS OF AN 
ANNULAR FGM PLATE [9] 

Materials      EሺGPa ) ߥ 
Ceramic (Zirconia) 110.25 0.288 
Metal (Aluminum) 278.41 0.288 

E: Young’s modulus 
߭: Poisson’s ratio 
:ߩ Mass density 

 
It is clear that the sum of volume fractions of the constituent 

materials should be: 
 

∑ ௜ܸ
௡
௜ୀଵ ൌ 1     (62) 

 

A simple power law distribution [10] is used for the volume 
fraction of the constituents’ material across the thickness of 
the plate. This is defined as: 

 

௜ܸሺzሻ ൌ ቀ௭
௛

൅ ଵ
ଶ
ቁ

ே
    (63) 

 
௜ܸሺzሻ denote the volume fraction of constituent material ݅ ; ݖ  

is the thickness coordinate (െ݄ 2 ⁄  ൑ ݖ ൑ ݄ 2 ⁄ ሻ and ܰ is the 
volume fraction index which takes values greater than or equal 
to zero ሺ0 ൑  ܰ ൑  ∞ሻ.  

Here, the FGM is combined of metal and ceramic ݊ ൌ 2 
 ܲ ൌ , ܧ   The variation of Poisson’s ratio ߭ is generally . ߩ
small and it is assumed to be a constant for convenience. The 
detail of this FGM is presented in Table I. 

From ሺ61ሻ to ሺ63ሻ one has: 
 

ܲሺݖሻ ൌ ௠ܲ ௠ܸ ൅ ௖ܲ ௖ܸ        (64) 
 

௠ܸ ൅ ௖ܸ ൌ 1     (65) 
 

௖ܸሺzሻ ൌ ቀ௭
௛

൅ ଵ
ଶ
ቁ

ே
, ௠ܸሺzሻ ൌ 1 െ ቀ௭

௛
൅ ଵ

ଶ
ቁ

ே
        (66) 

 
௖ܸሺzሻ and  ௠ܸሺzሻ denote the volume fraction of ceramic and 

metal,  respectively. 
The value of ሺNሻ equal to zero represents the fully metal, 

and for  ሺNሻ equal to infinity represents the fully ceramic .For  
ሺN ൌ 1ሻ there is a linear variation of the composition of 
constituents. 

 
ሻݖሺܧ ൌ ௖ܧ ௖ܸ ൅ ௠ܧ  ௠ܸ   , ሻݖሺߩ ൌ ௖ߩ   ௖ܸ ൅ ௠ߩ  ௠ܸ      (67) 

 
Introduction of ሺ66ሻ into ሺ64ሻ leads to the material 

properties of the FGM plate as: 
 

ሻݖሺܧ ൌ  ሺܧ௖ െ ௠ሻ ቀ௭ܧ 
௛

൅ ଵ
ଶ
ቁ

ே
൅ ܧ௠   (68) 

 

ሻݖሺߩ ൌ  ሺߩ௖ െ ߩ௠ሻ ቀ௭
௛

൅ ଵ
ଶ
ቁ

ே
൅  ௠   (69)ߩ 

 

 
Fig. 2 Variation of ceramic volume fraction through the 

dimensionless thickness for different values of volume fraction index 
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Fig. 3 Variation of metal volume fraction through the dimensionless 

thickness for different values of volume fraction index 
 

 
Fig. 4 Variation of Young’s modulus of FG plate through the 

dimensionless thickness for different values of volume fraction index 

G. Determination of the Non- Linear Mode Shapes of Thin 
Isotropic Annular Plate Having Both Edges Clamped 

In this work, the Rayleigh method is used to analyze the 
free vibrations and determine the fundamental linear 
frequencies. The method is taken from [8]-[13]. Numerical 
results thus obtained are summarized in Table II with 
comparing results with those in the literature.  

 
TABLE II 

DIMENSIONLESS FREQUENCY PARAMETERS FOR THE ANNULAR PLATE WITH CLAMPED OUTER AND INNER EDGE (C-C) ሺ߭ ൌ 0.3ሻ 

Results 
 Mode b/a 
(m, n) 0.1 0.3 0.5 0.7 

 Leissa [13] 
(0, 1) 

27.3000 45.2000 89.2000 248.0000 
Vera and Febbo[8] 27.2800 45.3460 89.2500 248.4020 

Present study 27.2805 45.3462 89.2508 248.4021 
Leissa [13] 

(1, 1) 
28.4000 46.6000 90.2000 249.0000 

Vera and Febbo[8] 28.9150 46.6430 90.2300 249.1640 
Present study 28.9158 46.6435 90.2303 249.1639 
Leissa [13] 

(2, 1) 
36.7000 51.0000 93.3000 251.0000 

Vera and Febbo[8] 36.6170 51.1380 93.3210 251.4800 
Present study 36.6173 51.1388 93.3212 251.4806 
Leissa [13] (3, 1) 

 
51.2000 60.0000 99.0000 256.0000 

Present study 51.2188 60.0335 98.9280 255.4438 

 
To obtain the fundamental non-linear mode shapes, the first 

six axisymmetric linear mode shapes were used. The 
corresponding non-dimensional linear frequencies ሺΩL

 ሻIכ
i ൌ 1, … ,6 are given in Table III and the corresponding curves 
are plotted in Fig. 5. 

 
TABLE III 

NON-DIMENSIONAL LINEAR FREQUENCIESሺΩL
כ ሻ௜; ASSOCIATED WITH THE 

AXISYMMETRIC LINEAR MODES OF A THIN ANNULAR PLATE HAVING BOTH 
EDGES CLAMPED ሺߙ ൌ 0.1ሻ  FOR ݅ ൌ 1, . . ,6 

 6 5 4 3 2 1 ࢏
 

ሺષۺ
כ ሻ࢏ 
 

27.280 75.366 148.213 245.484 367.175 513.268 

 
 

Fig. 5 Non-dimensional axiymmetric linear modes shape ݓ௜
 ሻ ofכݎሺ כ

free vibration for an annular plate having both edges clamped       
  ሺߙ ൌ 0.1ሻ  for  ݅ ൌ 1, … ,6 
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III. NUMERICAL RESULTS AND DISCUSSIONS 
In order to determine the results of the present study, the 

non-linear vibration of an annular FGM plate having both 
edges has been solved using the iterative method of solution 

The first non-linear normalized axisymmetric mode shape 
for various values of ሺNሻ is plotted in Fig. 6. It may be seen 
that the effect of various values of ሺNሻ on this mode shape is 
negligible.  

 

 
Fig. 6 First non-linear normalized axiymmetric mode shape of free an 
annular plate having both edges clamped for different values of ሺNሻ 

 
The variation of non-dimensional frequency ratio with 

dimensionless maximum vibration amplitude associated with 
the first non-linear axisymmetric mode shape of an annular FG 
plate having both edges clamped for different values of ሺNሻ is 
plotted in Fig. 7.  

At a given amplitude the frequencies increase legerment 
relative to those of an annular isotropic plate ሺN ൌ 0, N ൌ ∞ሻ 
for values of ሺNሻ varying from 0 to 0.5 and decreases 
legerment for values of volume fraction index ሺNሻ varying 
from 2 to 10.This variation increases with the amplitude but it 
remains low. 

 

 
Fig. 7 Variation of non-dimensional frequency ratio with 

dimensionless maximum vibration amplitude associated with the first 
non-linear axisymmetric mode shape of an annular FG plate having 

both edges clamped for different values of ሺNሻ 

In Figs. 8 and 11 are plotted the variation of the radial and 
circumferential stresses with dimensionless radius from a 
surface to another for ሺN ൌ 0.5ሻ to see the variation of the 
bending stresses with dimensionless radius from a rich-metal 
surface to rich-ceramic surface. 

In Figs. 9, 10, 12 and 13 are plotted the variation of radial 
and circumferential stresses with dimensionless maximum 
vibration amplitude on different surfaces for ሺN ൌ 0.5ሻ at the 
inner and outre edges of annular FG plate, for defining the 
most stressed surface. 

From these figures, it is observed that the bending stresses 
at the geometrical middle surface ሺݖ ݄⁄ ൌ 0ሻ remain 
unchanged and the most stressed area is rich ceramic surface. 

 

 
Fig. 8 Variation of radial stress with dimensionless radius on 

different surfaces for N ൌ 0.5 
 

 

Fig. 9 Variation of radial stress with dimensionless maximum 
vibration amplitude on different surfaces for N ൌ 0.5 

at the inner  edge 
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Fig. 10 Variation of radial stress with dimensionless maximum 

vibration amplitude on different surfaces for N ൌ 0.5 
at the outre edge 

 

 
Fig. 11 Variation of circumferential stress with dimensionless radius 

on different surfaces for N ൌ 0.5 
 

 
Fig. 12 Variation of circumferential stress with dimensionless 

maximum vibration amplitude on different surfaces for N ൌ 0.5 at the 
inner edge 

 
Fig. 13 Variation of circumferential stress with dimensionless 

maximum vibration amplitude on different surfaces for N ൌ 0.5 at 
the outre edge 

 
Fig. 14 demonstrates the variation of the radial bending 

stress at the inner edge of FG annular plate through the 
dimensionless thickness for N ൌ 0.5. It shows that the radial 
stress is maximum on rich-ceramic surface ሺݖ ݄⁄ ൌ 0.5ሻand it 
is zero on neutral surface ሺݖ ݄⁄ ൌ 0ሻ. 

In Figs. 15 to 18 are plotted the variation of the bending 
stresses at the inner and outre edge of FG annular plate 
through the dimensionless thickness for different values of 
volume fraction index N.  

From these figures, it is observed that that in the case of an 
isotropic material (plate made completely of metal and plate 
made completely of ceramic) the bending stresses distribution 
through the thickness of the plate at the clamped edges is 
linear and symmetric, but in the case of FG materials this 
distribution is non-linear, asymmetric and varies with (N) 
between the two lines representing the two linear cases which 
are confused with the two cases N ൌ 0 (Ceramic) and N ൌ ∞ 
(Metal). 

 

 
Fig. 14 Variation of the radial stress at the inner edge of FG annular 

plate through the dimensionless thickness for N ൌ 0.5 
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Fig. 15 Variation of the radial stress at the inner edge of FG annular 

plate through the dimensionless thickness for different values of 
volume fraction index N 

 

 
Fig. 16 Variation of the radial stress at the outre edge of FG annular 

plate through the dimensionless thickness for different values of 
volume fraction index N 

 

 

Fig. 17 Variation of the circumferential stress at the inner edge of FG 
annular plate through the dimensionless thickness for different values 

of volume fraction index N 
 

 

Fig. 18 Variation of the circumferential stress at the outre edge of FG 
annular plate through the dimensionless thickness for different values 

of volume fraction index N 

VI. CONCLUSION 
In order to investigate the effect of the volume fraction on 

the vibration behavior at large amplitude of a thin annular 
functionally graded plate, the theoretical model based on the 
classical plate theory and the Von Kármán geometrical non-
linearity assumptions is used in this paper. For the low 
vibration amplitudes, the effect of volume fraction index on 
the frequencies is negligible, but he has considerable effect on 
the stresses in high vibration amplitudes. 
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