
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3563

Abstract—Automated discovery of hierarchical structures in

large data sets has been an active research area in the recent past.
This paper focuses on the issue of mining generalized rules with crisp
hierarchical structure using Genetic Programming (GP) approach to
knowledge discovery. The post-processing scheme presented in this
work uses flat rules as initial individuals of GP and discovers
hierarchical structure. Suitable genetic operators are proposed for the
suggested encoding. Based on the Subsumption Matrix(SM), an
appropriate fitness function is suggested. Finally, Hierarchical
Production Rules (HPRs) are generated from the discovered
hierarchy. Experimental results are presented to demonstrate the
performance of the proposed algorithm.

Keywords—Genetic Programming, Hierarchy, Knowledge

Discovery in Database, Subsumption Matrix.

I. INTRODUCTION

NOWLEDGE Discovery in Database (KDD) can be
defined as the nontrivial process of identifying valid,

novel, potentially useful, and ultimately understandable
patterns in data [16].

The most predominant representation of the discovered
knowledge is the standard production rules in the form If P
Then D. As the number of rules becomes significant, they are
not comprehensible to people as meaningful knowledge, from
which they can gain insight into the basis of decision-making.
Much world knowledge is best expressed in the form of
hierarchies. Hierarchies give comprehensible knowledge
structure that allows us to manage the complexity of
knowledge, to view the knowledge at different levels of
details, and to focus our attention on the interesting aspects.
Several efforts have been made in the recent past towards
automated discovery of hierarchical structure in large data
bases [3]-[9].

There has been increasing interest in applying evolutionary
computation methods [11]-[15] as data mining tasks to KDD.
In Genetic Programming (GP) [10],[14], the basic idea is the
evolution of a population of “program”, i.e., candidate
solutions to the target problem. A program (an individual of
the population) is usually represented as a tree, where the

Basheer Mohamad Al-Maqaleh is a Ph.D scholar at School of Computer

and Systems Sciences (SC&SS), Jawaharlal Nehru University (JNU), New
Delhi, India, on leave from Thamar University, Republic of Yemen. Mobile
+91-9811515462; (e-mail: bmaa100@yahoo.com).

Kamal K. Bharadwaj, is a professor at the SC&SS, JNU, New Delhi,
India.(e-mail: kbharadwaj@gmail.com).

internal nodes are the functions (operators) and the leaf nodes
are terminal symbols. Both the function set and terminal set
must include symbols suitable for the target problem. Each
individual of the population is assessed regarding its ability to
solve the target problem. This evaluation is conducted by a
fitness function, which is problem-dependent. Individuals
undergo the action of genetic operators such as reproduction,
crossover and mutation. Once genetic operators have been
applied to the population based on given probabilities, a new
generation of individuals is created. These newly created
individuals are evaluated by the fitness function. The whole
process is repeated iteratively for a fixed number of
generations or until other termination criterion is met. The
result of GP (the best solution found) is usually the fittest
individual created along all the generations [14].

In the present work, a post-processing scheme based on GP
is presented that takes flat rules as input and discovers crisp
hierarchical structure. Further, Hierarchical Production
Rules(HPRs)[2], are generated using the discovered hierarchy.
A concept of Subsumption Matrix (SM) is used to summarize
the relationship between the classes.

An appropriate encoding, suitable genetic operators and
effective fitness function are suggested for the proposed
scheme.

II. BACKGROUND
 Bharadwaj and Jain [1]-[2] introduced the concept of

Hierarchical Censored Production Rules (HCPRs) by
augmenting Censored Production Rules (CPRs) with
specificity and generality information. The general form of the
HCPR is given as:

 Decision If <condition>
 Unless <censor>
 Generality <general info>
 Specificity <specific info>.
These are used to handle trade-off between the precision of

an inference and its computational efficiency leading to trade-
off between the certainty of a conclusion and its specificity.

As a special case (dropping the Unless operator) HPR takes
the form:

 Decision If <condition>
 Generality <general info>
 Specificity < specific info>

Genetic Programming Approach to Hierarchical
Production Rule Discovery

Basheer M. Al-Maqaleh, and Kamal K. Bharadwaj

K

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3564

As an example, consider the following HPRs [1]:
level 0
change_car_status If [obstacle_ahead]
 Generality []
 Specificity [use_breaks, turn_off_road]
level 1
use_breaks If [speed_distance_ratio_high]
 Generality [change_car_status]
 Specificity []
turn_off_road If [not_on_bridge]
 Generality [change_car_status]
 Specificity [].
The above related HPRs form a tree (called HPR-tree)

giving the following hierarchical structure Fig.1.

III. SUBSUMPTION MATRIX
A class Di can be defined by set of properties (values of

distinct attributes), class_prop(Di). Let Di and Dj be any two
classes with the set of properties class_prop(Di) and
class_prop(Dj), respectively.

We can define the degree of subsumption (deg_sub(Di, Dj))
as follows:

(Di)class_prop

(Dj) class_prop(Di) class_prop
Dj),deg_sub(Di

I
= (1)

where deg_sub(Di, Dj) ∈ [0,1].
A SM that summarizes the relationship between the classes,

D1, D2,…….,Dn is an n × n matrix defined as under:

⎪
⎩

⎪
⎨

⎧
⊆

=

=

 otherwise 0

Dj Di i.e.,

1 Dj),deg_sub(Di if 1

 Dj]SM[Di, (2)

IV. GENETIC PROGRAMMING APPROACH
As a post-processing scheme, we are using GP to discover

crisp hierarchical production rules from the flat rules as input.
The details of encoding, genetic operators and the fitness
function for the proposed scheme are discussed in the
following subsection:

A. Encoding
A hierarchical structure is encoded as list representing a

general tree:
Tree: (Root (sub-tree 1) (sub-tree 2)…… (sub-tree i)……

(sub-tree k)), where sub-tree i is either empty or has the same
structure as Tree. For example the hierarchy in Fig.2.

would be encoded as (A (F) (E (B) (D) (K))).
An individual, as hierarchy must satisfy the following

condition: Di I Dj = Ø for any two classes Di and Dj at the
same level in the hierarchy. During crossover/mutation
operators, if any of the offspring or mutated individuals does
not satisfy the above condition, then it will be rejected as an
illegal individual.

B. Genetic Operators
The new elements in the population are generated by means

of three operators: reproduction, crossover and mutation.

a) Reproduction
The reproduction operator selects one individual of the

present population in proportion to its fitness value, so that the
fitter an individual is the higher the probability that it will take
part in the next generation of individuals. After selection, the
individual is copied into the new generation without any
modifications. Reproduction reflects the principle of natural
selection and survival of the fittest [14].

b) Crossover
The crossover operator replaces a randomly selected sub-

tree of an individual with a randomly chosen sub-tree from
another individual and creates new offspring by exchanging
sub-trees (i.e., sub-lists) between the two parents. The
crossover point was chosen at random for both parents. For
example, consider the following two individuals as parents
(the “crossover point” is indicated by a tilted line and the sub-
trees swapped by crossover are shown in bold):

Parent 1: (A (B) (C (H) (N)))
Parent 2: (A (F) (E (B) (D) (K)))
with corresponding hierarchical structure is given in Fig.3.

 Fig. 1 HPR-tree (Hierarchy)

 Fig. 2 Hierarchy

Fig.3 Two parents before crossover

 change_car_status

 use_breaks turn_off_road

B

E

A

D K

F

A

CB

H N B

EF

A

KD

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3565

The two offspring resulting from crossover are:
Offspring 1: (A (E (B) (D) (K)) (C (H) (N))) and
Offspring 2: (A (F) (B)) are shown below in Fig.4.

c) Mutation
For the tree mutation a sub-tree/leaf is replaced by

randomly chosen sub-tree/ leaf.

C. Fitness Function
The fitness function evaluates the quality of an individual in

the population. For the proposed algorithm, the fitness
measure of an individual is defined as:

 []∑

∀
=

DjDi,
DjDi,SMfitness (3)

The wining individual has the highest fitness such that

Dj.
1

 Di ji, →∀

V. EXPERIMENTAL RESULTS
Each GP run consisted of a population of 20 individuals

evolving over generations. The probability of crossover,
reproduction and mutation set to 0.8, 0.1 and 0.1, respectively,
and the selection method used for both parents was fitness
proportionate. For the practical reason of avoiding the
expenditure of large amounts of computer time on occasional
oversized programs, the depth of initial programs was limited
to 6 and during the run the maximum tree depth was set to 10.

Example 1: consider the following five flat rules as input

for the proposed algorithm:
If x _lives_in_city _y Then x_is_ in_city_y
If x_ lives_in_city_ y ∧ time(night) Then x_is_at_home
If x_ lives_in_city_ y ∧ time(day) Then x_is_

outside_home
If x_lives_in_city_y ∧ time(day) ∧ day(working) Then
x_is_ working_outdoor
If x_lives_in_city_y ∧ time(day) ∧ day(Sunday) Then
x_is_ entertaining_outdoor.

Using (1) and (2) the SM is constructed for the five classes
D1=x_is_in_city_y ; D2=x_is_at_home ;

D3=x_is_outside_home ; D4=x_is_working_outdoor ;
D5=x_is_entertaining_outdoor , as shown below (see TABLE
I).

The proposed algorithm produced the following individual

with the highest fitness = 4 :
(D1(D2)(D3(D4)(D5))).

The corresponding hierarchy is shown in Fig.5.

From the discovered hierarchy shown in Fig.5, the

following HPRs are generated:

Example 2: suppose we have 10 flat rules with 10 different

classes as follows:
If P1 ∧ P2 ∧ P5 Then D1
If P1 ∧ P2 ∧ P4 ∧ P7 Then D2
If P1 ∧ P2 ∧ P4 Then D3

Fig. 4 Two offspring produced by crossover

TABLE I
SUBSUMPTION MATRIX (5 × 5)

 D1 D2 D3 D4 D5

D1 1 1 1 1 1

D2 0 1 0 0 0

D3 0 0 1 1 1

D4 0 0 0 1 0

D5 0 0 0 0 1

Fig. 5 Hierarchy-the individual with the highest fitness=4

level 0
D1 If [x_lives_in_city_y]
 Generality []
 Specificity [D2,D3]

level 1
D2 If [time (night)]
 Generality [D1]
 Specificity []
D3 If [time (day)]
 Generality [D1]
 Specificity [D4 ,D5]

level 2
D4 If [day (working)]
 Generality [D3]
 Specificity []
D5 If [day (Sunday)]
 Generality [D3]
 Specificity []

1 1

1 1

 D2 [time(night)] D3 [time(day)]

 D4 [day(working)] D5 [day(Sunday)]

 D1 [x_lives_in_city_y]

H N

C

B D K

E

A

BF

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3566

If P1 ∧ P2 Then D4
If P1 ∧ P2 ∧ P5 ∧ P6 Then D5
If P1 ∧ P2 ∧ P3 Then D6
If P1 ∧ P2 ∧ P4 ∧ P8 ∧ P11 ∧ P12 Then D7
If P1 ∧ P2 ∧ P4 ∧ P8 ∧ P9 ∧ P10 Then D8
If P1 ∧ P2 ∧ P4 ∧ P8 Then D9
If P1 ∧ P2 ∧ P4 ∧ P8 ∧ P13 ∧ P14 ∧ P15 Then D10.

Finally, the proposed algorithm produced the following

individual with the highest fitness = 9:
(D4(D6)(D3(D2)(D9(D7)(D8)(D10)))(D1(D5))).

The corresponding hierarchy is shown in Fig.6.

 From the discovered hierarchy shown in Fig.6, the

following HPRs are generated:

VI. CONCLUSION
As an attempt towards automated generation of hierarchies,

a GP approach is proposed to organize, summarize and

present the discovered rules in the form of HPRs. Suitable
genetic operators are proposed for the suggested encoding.
Based on the SM, an appropriate fitness function is suggested.
Performance of the proposed algorithm is demonstrated
through experimental results, which are quite encouraging.

Development of a GP based algorithm for the automated
discovery of Production Rules with Fuzzy Hierarchy is under
progress. One of the most important future research directions
would be the discovery of HPRs with exceptions from large
databases using GP approach.

REFERENCES
[1] K. K. Bharadwaj and R. Varshneya, “Parallelization of hierarchical

censored production rules,” Information and Software Technology, 37,
1995, pp.453-460.

[2] K. K. Bharadwaj and N. K. Jain, “Hierarchical censored production
rules (HCPRs) systems,” Data and Knowledge Engineering, North
Holland, vol. 8, 1992, pp.19-34.

[3] S. Levachkine and A. Guzman-Arenas, “Hierarchies measuring
qualitative variables,” Springer-Verlag Berlin Heidelberg 2004, A.
Gelbukh (Ed.):CICLing 2004,2004,pp.262-274.

[4] J. Han, and Y. FU, “Dynamic generation and refinement of concept
hierarchies for knowledge discovery in databases,” AAAI’94 Workshop
Knowledge in Databases (KDD’94), Seattle, WA, July 1994, pp. 157-
168.

[5] H. Surynato and P. Compton, “Learning classification taxonomies from
a classification knowledge based system,” Proceedings the First
Workshop on Ontology Learning in Conjunction with ECAI-2000,
Berlin, pp.1-6.

[6] B. Liu, M. Hu, and W. Hsu, “Multi-level organization and
summarization of the discovered rules,” Boston, USA, SIGKDD-2000,
Aug 20-23, 2000.

[7] D. Richards and U. Malik, “Multi-level rule discovery from
propositional knowledge bases,” International Workshop on Knowledge
Discovery in Multimedia and Complex Data (KDMCD’02), Taipei,
Taiwan, May 2002, pp.11-19.

[8] R. Srikant, Q. Vu and R. Agrawal, “Mining association rules with item
constraints,” in Proc of the 3rd International Conf on Knowledge
Discovery and Data Mining (KDD’97), 1997, pp.67-73.

[9] M. Suan, “Semi-Automatic taxonomy for efficient information
searching,” Proceeding of the 2nd International Conference on
Information Technology for Application (ICITA-2004), 2004.

[10] J. R. Koza, “Genetic programming: on the programming of computers
by means of natural selection,” MIT Press, 1994.

[11] A. A. Freitas, “A survey of evolutionary algorithms for data mining and
knowledge discovery,” In: A. Ghosh, and S. Tsutsui (Eds.) Advances in
Evolutionary Computation, Springer-Verlag, 2002.

[12] I. De Falco, A. Della Cioppa, and E. Tarantiono, “Discovering
interesting classification rules with genetic programming,” Applied Soft
Computing, 1, 2002, pp.257-269.

[13] M. V. Fidelis, H. S. Lopes, and A. A. Freitas, “Discovering
comprehensible classification rules with a genetic algorithm,” Proc.
Congress on Evolutionary Computation-2000 (CEC’2000), La Jolla, CA,
USA,IEEE, July 2000, pp.805-810.

[14] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “ Genetic programming
for knowledge discovery in chest pain diagnosis,” IEEE Engineering in
Medical and Biology magazine-special issue on data mining and
knowledge discovery, 19(4), July/Aug 2000,pp.38-44.

[15] M. C. J. Bot and W. B. Langdon, “ Application of genetic programming
to induction of linear classification trees,” Genetic Programming:
Proceedings of the 3rd European Conference (EuroCP’2000), Lecture
Notes in Computer Science 1802, Springer, 2000, pp.247-258.

[16] U.M. Fayyad, G.P. Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Communication of
ACM. Nov, 1996, vol. 39 (11), pp.27-34.

 Fig.6 Hierarchy-the individual with the highest fitness=9

level 0
D4 If [P1, P2]
 Generality []
 Specificity[D6,D3, D1]

level 1
 D6 If [P3]
 Generality [D4]
 Specificity []
 D3 If [P4]
 Generality [D4]
 Specificity [D2, D9]
 D1 If [P5]
 Generality [D4]
 Specificity [D5]

level 2
 D2 If [P7]
 Generality [D3]
 Specificity []

D9 If [P8]
 Generality [D3]
 Specificity[D7,D8,D10]
D5 If [P6]
 Generality [D1]
 Specificity []

level 3
 D7 If [P11, P12]
 Generality [D9]
 Specificity []
 D8 If [P9, P10]
 Generality [D9]
 Specificity []
 D10 If [P13, P14, P15]
 Generality [D9]
 Specificity []

 D7[P11,P12]

1

1

1 1

 D10[P13,P14,P15] D8[P9,P10]

 D2[P7] D9[P8] D5[P6]

 D6[P3] D3[P4] D1[P5]

 D4[P1,P2]

1 1

1 1 1

