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Abstract—Automated discovery of hierarchical structures in 

large data sets has been an active research area in the recent past. 
This paper focuses on the issue of mining generalized rules with crisp 
hierarchical structure using Genetic Programming (GP) approach to 
knowledge discovery. The post-processing scheme presented in this 
work uses flat rules as initial individuals of GP and discovers 
hierarchical structure. Suitable genetic operators are proposed for the 
suggested encoding. Based on the Subsumption Matrix(SM), an 
appropriate fitness function is suggested. Finally, Hierarchical 
Production Rules (HPRs) are generated from the discovered 
hierarchy. Experimental results are presented to demonstrate the 
performance of the proposed algorithm.   
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I. INTRODUCTION 

NOWLEDGE Discovery in Database (KDD) can be 
defined as the nontrivial process of identifying valid, 

novel, potentially useful, and ultimately understandable 
patterns in data [16]. 

The most predominant representation of the discovered 
knowledge is the standard production rules in the form If P 
Then D. As the number of rules becomes significant, they are 
not comprehensible to people as meaningful knowledge, from 
which they can gain insight into the basis of decision-making. 
Much world knowledge is best expressed in the form of 
hierarchies. Hierarchies give comprehensible knowledge 
structure that allows us to manage the complexity of 
knowledge, to view the knowledge at different levels of 
details, and to focus our attention on the interesting aspects. 
Several efforts have been made in the recent past towards 
automated discovery of hierarchical structure in large data 
bases [3]-[9]. 

There has been increasing interest in applying evolutionary 
computation methods [11]-[15] as data mining tasks to KDD. 
In Genetic Programming (GP) [10],[14], the basic idea is the 
evolution of a population of “program”, i.e., candidate 
solutions to the target problem. A program (an individual of 
the population) is usually represented as a tree, where the 
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internal nodes are the functions (operators) and the leaf nodes 
are terminal symbols. Both the function set and terminal set 
must include symbols suitable for the target problem. Each 
individual of the population is assessed regarding its ability to 
solve the target problem. This evaluation is conducted by a 
fitness function, which is problem-dependent. Individuals 
undergo the action of genetic operators such as reproduction, 
crossover and mutation. Once genetic operators have been 
applied to the population based on given probabilities, a new 
generation of individuals is created. These newly created 
individuals are evaluated by the fitness function. The whole 
process is repeated iteratively for a fixed number of 
generations or until other termination criterion is met. The 
result of GP (the best solution found) is usually the fittest 
individual created along all the generations [14]. 

In the present work, a post-processing scheme based on GP 
is presented that takes flat rules as input and discovers crisp 
hierarchical structure. Further, Hierarchical Production 
Rules(HPRs)[2], are generated using the discovered hierarchy. 
A concept of Subsumption Matrix (SM) is used to summarize 
the relationship between the classes.  

An appropriate encoding, suitable genetic operators and 
effective fitness function are suggested for the proposed 
scheme.   

II. BACKGROUND 
 Bharadwaj and Jain [1]-[2] introduced the concept of 

Hierarchical Censored Production Rules (HCPRs) by 
augmenting Censored Production Rules (CPRs) with 
specificity and generality information. The general form of the 
HCPR is given as: 

 
            Decision If <condition>                              
                              Unless <censor> 
                              Generality <general info>             
                              Specificity <specific info>. 
These are used to handle trade-off between the precision of 

an inference and its computational efficiency leading to trade-
off between the certainty of a conclusion and its specificity. 

As a special case (dropping the Unless operator) HPR takes 
the form: 

            Decision If <condition>                     
                              Generality <general info> 
                              Specificity < specific info> 
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As an example, consider the following HPRs [1]: 
level 0 
change_car_status If [obstacle_ahead] 
                              Generality [ ] 
                              Specificity [use_breaks, turn_off_road] 
level 1 
use_breaks If [speed_distance_ratio_high] 
                  Generality [change_car_status] 
                  Specificity [ ] 
turn_off_road If [not_on_bridge] 
                       Generality [change_car_status] 
                       Specificity [ ]. 
The above related HPRs form a tree (called HPR-tree) 

giving the following hierarchical structure Fig.1. 
 
 
 
 
 
 
 
 
 

III. SUBSUMPTION MATRIX 
A class Di can be defined by set of properties (values of 

distinct attributes), class_prop(Di). Let Di and Dj be any two 
classes with the set of properties class_prop(Di) and 
class_prop(Dj), respectively. 

We can define the degree of subsumption (deg_sub(Di, Dj)) 
as follows: 

 

(Di)class_prop

(Dj) class_prop(Di) class_prop
Dj),deg_sub(Di

I
=       (1) 

 
where deg_sub(Di, Dj) ∈ [0,1]. 
A SM that summarizes the relationship between the classes, 

D1, D2,…….,Dn is an n × n matrix defined as under: 
 

⎪
⎩

⎪
⎨

⎧
⊆

=

=

    otherwise   0

Dj Di i.e.,           

1  Dj),deg_sub(Di if   1

 Dj]SM[Di,                  (2) 

IV. GENETIC PROGRAMMING APPROACH 
As a post-processing scheme, we are using GP to discover 

crisp hierarchical production rules from the flat rules as input. 
The details of encoding, genetic operators and the fitness 
function for the proposed scheme are discussed in the 
following subsection:  

A. Encoding 
A hierarchical structure is encoded as list representing a 

general tree: 
Tree: ( Root (sub-tree 1) (sub-tree 2)…… (sub-tree i)…… 

(sub-tree k)),  where sub-tree i is either empty or has the same 
structure as Tree. For example the hierarchy in Fig.2. 

 

 
 

 
 
 
 

would be encoded as  (A (F) (E (B) (D) (K))). 
An individual, as hierarchy must satisfy the following 

condition:  Di I Dj = Ø for any two classes Di and Dj at the 
same level in the hierarchy. During crossover/mutation 
operators, if any of the offspring or mutated individuals does 
not satisfy the above condition, then it will be rejected as an 
illegal individual. 

B.   Genetic Operators 
The new elements in the population are generated by means 

of three operators: reproduction, crossover and mutation. 

a) Reproduction 
The reproduction operator selects one individual of the 

present population in proportion to its fitness value, so that the 
fitter an individual is the higher the probability that it will take 
part in the next generation of individuals. After selection, the 
individual is copied into the new generation without any 
modifications. Reproduction reflects the principle of natural 
selection and survival of the fittest [14]. 

b) Crossover 
The crossover operator replaces a randomly selected sub-

tree of an individual with a randomly chosen sub-tree from 
another individual and creates new offspring by exchanging 
sub-trees (i.e., sub-lists) between the two parents. The 
crossover point was chosen at random for both parents. For 
example, consider the following two individuals as parents 
(the “crossover point” is indicated by a tilted line and the sub-
trees swapped by crossover are shown in bold): 

Parent 1:  (A (B) (C (H) (N))) 
Parent 2:  (A (F) (E (B) (D) (K))) 
with corresponding hierarchical structure is given in Fig.3. 
 
 

 
 
 
 
 
 

 
 

  Fig. 1 HPR-tree (Hierarchy)  

                Fig. 2  Hierarchy      

Fig.3 Two parents before crossover 
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The two offspring resulting from crossover are: 
Offspring 1: ( A (E (B) (D) (K)) (C (H) (N))) and 
Offspring 2: (A (F) (B)) are shown below in Fig.4. 

 
 
 
 
 
 
 
 
 
 

c) Mutation 
For the tree mutation a sub-tree/leaf is replaced by 

randomly chosen sub-tree/ leaf. 

C. Fitness Function 
The fitness function evaluates the quality of an individual in 

the population. For the proposed algorithm, the fitness 
measure of an individual is defined as: 

 
          [ ]∑

∀
=

DjDi,
DjDi,SMfitness               (3) 

The wining individual has the highest fitness such that 

Dj. 
1

 Di   ji, →∀   

V. EXPERIMENTAL RESULTS 
Each GP run consisted of a population of 20 individuals 

evolving over generations. The probability of crossover, 
reproduction and mutation set to 0.8, 0.1 and 0.1, respectively, 
and the selection method used for both parents was fitness 
proportionate. For the practical reason of avoiding the 
expenditure of large amounts of computer time on occasional 
oversized programs, the depth of initial programs was limited 
to 6 and during the run the maximum tree depth was set to 10. 

 
Example 1:  consider the following five flat rules as input   

for the proposed algorithm: 
If x _lives_in_city _y Then x_is_ in_city_y 
If x_ lives_in_city_ y ∧  time(night) Then x_is_at_home 
If x_ lives_in_city_ y ∧ time(day) Then x_is_ 

outside_home 
If x_lives_in_city_y ∧ time(day) ∧ day(working) Then  
x_is_ working_outdoor 
If x_lives_in_city_y ∧ time(day) ∧ day(Sunday) Then  
x_is_ entertaining_outdoor. 
 
Using (1) and (2) the SM is constructed for the five classes  
D1=x_is_in_city_y  ; D2=x_is_at_home  ; 

D3=x_is_outside_home    ;  D4=x_is_working_outdoor ; 
D5=x_is_entertaining_outdoor , as shown below (see TABLE 
I). 

 
 
 
 
 
 
 
 
 
 
 
The proposed algorithm produced the following individual 

with the highest  fitness =  4 : 
(D1(D2)(D3(D4)(D5))). 
 
The corresponding hierarchy is shown in Fig.5. 
 
 
 
 
 
 
 
 
 
 
 
 
From the discovered hierarchy shown in Fig.5, the 

following HPRs are generated: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Example 2: suppose we have 10 flat rules with 10 different 

classes as follows: 
If P1 ∧ P2 ∧ P5 Then D1 
If P1 ∧ P2 ∧ P4 ∧ P7 Then D2 
If P1 ∧ P2 ∧ P4 Then D3 

Fig. 4 Two offspring produced by crossover 

TABLE I 
SUBSUMPTION MATRIX (5 × 5)  

 D1 D2 D3 D4 D5 

D1 1 1 1 1 1 

D2 0 1 0 0 0 

D3 0 0 1 1 1 

D4 0 0 0 1 0 

D5 0 0 0 0 1 

Fig. 5 Hierarchy-the individual with the highest fitness=4 

level 0 
D1 If [x_lives_in_city_y] 
      Generality [ ] 
      Specificity [D2,D3 ] 
 
level 1 
D2 If [time (night)] 
      Generality [D1] 
       Specificity [ ] 
D3 If [time (day)] 
      Generality [D1] 
      Specificity [D4 ,D5] 
 
level 2 
D4 If [day (working)] 
      Generality [D3] 
      Specificity [ ] 
D5 If [day (Sunday)] 
      Generality [D3] 
      Specificity [ ] 
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If P1 ∧ P2 Then D4 
If P1 ∧ P2 ∧ P5 ∧ P6 Then D5 
If P1 ∧ P2 ∧ P3 Then D6 
If P1 ∧ P2 ∧ P4 ∧ P8 ∧ P11 ∧ P12 Then D7 
If P1 ∧ P2 ∧ P4 ∧ P8 ∧ P9 ∧ P10 Then D8 
If P1 ∧ P2 ∧ P4 ∧ P8 Then D9 
If P1 ∧ P2 ∧ P4 ∧ P8 ∧ P13 ∧ P14 ∧ P15 Then D10. 
 
Finally, the proposed algorithm produced the following 

individual with the highest fitness = 9: 
(D4(D6)(D3(D2)(D9(D7)(D8)(D10)))(D1(D5))). 

 
The corresponding hierarchy is shown in Fig.6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 From the discovered hierarchy shown in Fig.6, the 

following HPRs are generated: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

VI. CONCLUSION 
As an attempt towards automated generation of hierarchies, 

a GP approach is proposed to organize, summarize and 

present the discovered rules in the form of HPRs. Suitable 
genetic operators are proposed for the suggested encoding. 
Based on the SM, an appropriate fitness function is suggested. 
Performance of the proposed algorithm is demonstrated 
through experimental results, which are quite encouraging. 

Development of a GP based algorithm for the automated 
discovery of Production Rules with Fuzzy Hierarchy is under 
progress. One of the most important future research directions 
would be the discovery of HPRs with exceptions from large 
databases using GP approach. 
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  Fig.6 Hierarchy-the individual with the highest fitness=9 

level 0 
D4 If [P1, P2] 
    Generality [ ]                  
   Specificity[D6,D3, D1]   
                 
level 1                                     
 D6 If [P3]                              
       Generality [D4]              
       Specificity [ ] 
 D3 If [P4] 
       Generality [D4] 
       Specificity [D2, D9] 
 D1 If [P5] 
       Generality [D4] 
       Specificity [D5] 
 
level 2 
  D2 If [P7]      
     Generality [D3] 
        Specificity [ ] 

D9 If [P8] 
      Generality [D3] 
      Specificity[D7,D8,D10] 
D5 If [P6] 
       Generality [D1] 
       Specificity [ ] 
 
level 3                                     
  D7 If [P11, P12]                   
        Generality [D9] 
        Specificity [ ] 
  D8 If [P9, P10] 
        Generality [D9] 
        Specificity [ ]                 
 D10 If [P13, P14, P15] 
         Generality [D9]           
         Specificity [ ]  
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