
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1986

Abstract—By introducing the concept of Oracle we propose an

approach for improving the performance of genetic algorithms for
large-scale asymmetric Traveling Salesman Problems. The results
have shown that the proposed approach allows overcoming some
traditional problems for creating efficient genetic algorithms.

Keywords—Genetic algorithms, Traveling Salesman Problem,
optimal decision distribution, Oracle.

I. INTRODUCTION
HE Traveling Salesman Problem (TSP) was formulated in
the 30th year of the 20th century and till now it is one of

the most popular and important combinatorial problems.
The TSP is stated as follows:
Given a finite number of “cities” along with the cost of

travel between each pair of them, find the cheapest way of
visiting all cities and returning to the starting point [7].

Although it seems to be quite simple, solving it is very
computationally expensive. As no polynomial time algorithm
has been discovered, the only way to obtain the best solution
is by calculating all possible routes. If we have a map with N
cities, the number of possible routes will be N!. For example
solving the problem for 30 cities, using a computer with 109
adds per second, would take over 8 × 1015 years.

The reason for TSP’s popularity is its practical and
theoretical importance. Classical TSP applications include
areas such as transportation logistics, PCB drilling, and X-rays
analysis. Modern TSP applications include DNA/genome
sequencing, bio-informatics, statistical physics, astronomy,
etc. TSP belongs to the class of NP-complete problems. It is
known [2] that all NP-complete problems could be
transformed one to another in polynomial time, so the decision
of TSP is also of great theoretical interest.
There are two types of TSP: symmetric and asymmetric [5].
For the symmetric TSP the cost of traveling from city A to
city B is the same as the cost of traveling from B to A. For
asymmetric TSP these costs can be different.

Manuscript received July 15, 2005.
R. Gremlich received his M. Sc. in Computer Science in 2004 from the

University of Zurich, Zurich, Switzerland (email: gremlich@gmx.ch).
A. Hamfelt is a professor of the Department of Information Sciences in

Uppsala University, Uppsala, Sweden (phone: +46-18-4711037, e-mail:
andreas.hamfelt@dis.uu.se).

H. de Pereda was a Computer Science student in Uppsala University,
Uppsala, Sweden. He is now with AtosOrigin, Madrid, Spain (email:
hector.depereda@atosorigin.com).

V. Valkovsky is an associate professor of the Department of Information
Sciences in Uppsala University, Uppsala, Sweden (phone: +46-18-4711041,
e-mail: vladislav.valkovsky@dis.uu.se).

Research dedicated to solving the symmetric TSP abounds.
For practical applications, currently the large-scale
asymmetric TSP is starting to be extremely important (e.g.
DNA/genome sequencing). However, concerning the
asymmetric TSP there has been far less research. It appears to
be a more difficult problem, both with respect to optimization
and approximation [4]. Whereas the TSPLIB library of the
best-known TSP decisions [3] contains symmetric TSP
instances with as many as 85900 cities, its largest asymmetric
TSP instance has only 443 cities and over half of its
asymmetric TSP instances have fewer than 100 cities [4].
Computational complexity of the TSP was the main reason for
creating the great number of heuristic algorithms to get
approximate TSP decisions in polynomial time [5]. One of the
most efficient heuristic approaches is the class of genetic
algorithms. Genetic algorithms are general-purpose searching
techniques based on the Darwinian Principle of Natural
Selection [6]. Genetic algorithms combine selection, crossover
and mutation operations with the goal of finding the best
solution of a problem. Genetic algorithms search for this
solution until a specified termination criterion is met. One of
the main problems of genetic algorithms is local minimums
[8]. It is very common that genetic algorithm converge to a
solution that might be the best among the ones close/similar to
it, but it could be far from the best solution we can get.
Another duty is generating the initial population [6]. Starting
from a sufficiently good initial population can save a lot of
evolution time, as well as facilitating the genetic algorithm to
deliver better quality solutions. To overcome the above-
mentioned problems we propose a concept that we call
“Oracle.” Thanks to information provided by Oracle it is
possible to avoid local minimums and generate good quality
initial populations.

II. ORACLE
The approach for finding the optimal decision distributions

for large-scale asymmetric TSP was proposed in [1].
For light left tail TSP weight matrixes distributions it will

be Rayleigh distribution:

2

2

2
2)(σ

σ
⋅

−
⋅=

x

exxp (1)

For heavy left tail TSP weight matrixes distributions the

optimal decision distribution will be γ-distribution:

Genetic Algorithms with Oracle for the
Traveling Salesman Problem

Robin Gremlich, Andreas Hamfelt, Héctor de Pereda, and Vladislav Valkovsky

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1987

βα
αβα

x

exxp
−

+
⋅⋅

⋅+Γ
= 1)1(

1)(

5.0=α (2)

Methods for finding parameters of these distributions by a

given asymmetric TSP weight matrix, calculating a prediction
of the optimal tour length and its variance are also presented in
[1]. The result of this research provides an opportunity to
reduce drastically the search space for solving the asymmetric
TSP. For example, for the dimension of the problem n = 1000
we can delete nearly 99% of the elements of the TSP weight
matrix as irrelevant for the optimal decision. For the
dimension n = 10000 nearly 99.9 % of the elements can be
deleted, etc. After such pruning according to the predicted
optimal decision distribution, we can determine the probability
for the remaining elements of the weight matrix to be included
in the optimal decision to support finding an optimal TSP
solution.

We will call information provided by this approach
“Oracle” and will use it to improve the performance of genetic
algorithms for the asymmetric TSP.

III. CLASSICAL GENETIC ALGORITHMS FOR TSP
If we want to solve TSP using genetic algorithms, we have

to consider some facts. An appropriate way of encoding the
tours that the salesman can choose is by assigning every city a
different number and representing tours as a list of these
numbers in the order they must be visited. Every city/number
is intended to be a gene of a full chromosome. Tours/lists
represent chromosomes. Lists must have the same length as
the number of cities in the TSP and no city can appear twice in
the same list. The initial set of solutions can be created either
by randomizing the list of cities or creating tours using
heuristic algorithms. A simple evaluation function could just
calculate the total distance of the tour represented by each list.
In this way, lower values will mean routes are closer to the
optimum solution. Reproduction can be done by crossover and
mutation or by combining both techniques. There is a wide
range of mutations to be applied to the members of a
population of TSP solutions. Choosing the most appropriate
one will determine in some way the success of the algorithm.
We analyzed the performance of the six different mutations:
swap adjacent nodes mutation, swap nodes mutation, move
node mutation, relocate mutation, invert mutation and permute
mutation.

All the mutation functions have at least one randomized
factor, which makes them more efficient when trying to
emulate a specie evolution. The more randomized these
functions are, the more possibilities of evolution we will have.
Swap adjacent nodes mutation turned out to be quite
inappropriate for our goal, due to its limited range of
variations. On the other hand, invert mutation provided us
with best results. This mutation also came out as the less prone
to get stuck in local minimums. Fig. 1 shows an example of
the rd100 TSP instance from TSPLIB being solved by means
of the six different mutations during a certain number of

generations. We can appreciate how swap adjacent gets
quickly stuck in a local minimum, whereas invert mutation is
the one that faster gets close to the optimum solution.

0

10000

20000

30000

40000

50000

0 4000 8000 12000 16000 20000

Time (s)

 Swap_Adjacent mutation Swap_Nodes mutation
 M ove_Nodes mutation Relocate mutation

 Invert mutation Permute mutation

Fig. 1 Performance of mutations for 'rd100.tsp' from TSP-LIB

To continue the analysis, we need large-scale asymmetric
TSP instances, but as it was mentioned above, TSPLIB has not
appropriate ones. Because of this fact we will continue our
investigation by using generated large-scale instances. Further
we will use asymmetric TSP instances up to 500-nodes with
elements of weight matrixes generated randomly on the
interval [0, 1] according to distribution density f(x) = 2x
(triangle distribution).

Fig. 2 demonstrates the length of the solutions found for a
500-node generated asymmetric TSP instance in relation with
the time elapsed until these solutions were reached. The
average length of the solutions found so far is also showed.

The expected length for the optimal solution delivered by
Oracle is around 30.46 (+/- 0.45). It is possible to see that, in
average, the later the algorithm gets stuck in a local minimum,
the closer the solution found is to the optimal path length.
However, the length of the best solution found is 57.69. This
means that the solutions found are still quite far from the
optimal one.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1988

20

35

50

65

1000 1500 2000 2500 3000
Time (s) Solution found

 Average
 Expected length of optimal road

Fig. 2 Solutions found for a 500-node TSP

Fig. 3 demonstrates expected distribution density of the

optimal decision, delivered by Oracle, and distribution density
of the decision delivered by the classical genetic algorithm for
a 500-nodes generated asymmetric TSP instance, which shows
poor preliminary precision. In the successive results we should
try to get a distribution density much closer to the expected
one, which will mean better solutions for the TSP.

0

3

6

9

12

0 0,1 0,2 0,3 0,4 0,5
Distance

 Classical genetic algorithms

 Expected distribution density

Fig. 3 Distribution density for classical genetic algorithms

IV. LOCAL MINIMUMS PROBLEM
As it was mentioned above, local minimums are one of the

main problems of genetic algorithms. So, detecting and
avoiding local minimums is the first goal of our investigation.
By Oracle it is possible to know the expected length of the
optimal route and its variance. This information can be used
for evaluating whether we have found an appropriate solution
or have to keep on searching. Local minimums are detected by
counting the number of generations that have been created
without improving a best solution, which is sufficiently far
from the one predicted by Oracle. When this number reaches a
certain quantity, it means that we are in a local minimum and
we have to act accordingly.

The way of skipping a local minimum is going back in the
evolution and trying to evolve in a different direction. This is
accomplished by mutating a whole population enough so it
does not get back to the same solution we had in the local

minimum, but not so much that we loose all the evolution we
had already performed. A lot of combinations have been tested
in the quest for the most suitable way of skipping a local
minimum. The best way we have found to manage this
problem is by applying several single-node oriented
mutations. We have used a combination of swap node and
move node mutations, each of them used twice, alternatively.
This technique means an improvement in the algorithm
performance. Fig. 4 shows the performance improvement
regarding the quality of the solution for a 500-nodes TSP
instance.

0

10

20

30

40

50

60

500-node TSP

 Classical genetic algorithms

 Avoiding local minimums

 Expected length of optimal road

Fig. 4 Average solutions length for a 500-node TSP

However, this increase in the precision of the algorithm

causes a significant increase of the time needed too, as we can
see in Fig. 5.

2169

4430

0

1000

2000

3000

4000

500-node TSP

 Classical genetic algorithms

 Avoiding local minimums

Fig. 5 Average time spent for a 500-node TSP

Consequently, the distribution density improves the one we

got for the results of classical genetic algorithms and gets
closer to the expected optimal one, as we can see in Fig. 6.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1989

0

3

6

9

12

0 0,1 0,2 0,3 0,4 0,5
Distance

 Avoiding local minimums

 Expected distribution density

Fig. 6 Distribution density avoiding local minimums

V. GENERATION OF INITIAL POPULATION
Starting from a sufficiently good initial population can save

a lot of evolution time, as well as facilitating the genetic
algorithm to deliver better quality solutions. Our task now is to
create an efficient and quick way to create initial population
members. We will use “predicted by Oracle optimal decision
distribution” as a guide that can lead us to solutions looking
quite similar to the optimal path.

We came up with the idea of sorting each node’s neighbors
by “predicted Oracle distance density distribution.” Then,
when it comes to choose the next node in the path, we pick an
unvisited neighbor with a probability that is directly
proportional to its distance expected density. In this way,
distances with an insignificant density will not be picked
unless the rest of the neighbors have been visited already. This
method reminds of the nearest-neighbor algorithm [9], but
introduces a pseudo-random factor and considers the expected
distance density in the final path instead of the distance itself.
From now on, we will call this method most-probable-
neighbor algorithm. Fig. 7 represents the outstanding
performance of the new algorithm, which, in addition, was not
as time consuming as preliminary attempts. For each TSP size
from 10 to 500, we calculated the average total length of the
initial population members, both generated randomly and
using the most-probable-neighbor algorithm. As we can see,
the members of initial populations generated by this new
method are much closer to the optimal route than the solutions
provided by genetic algorithms before implementing this
improvement, even after performing genetic algorithms’
evolution through a huge number of generations. This will
allow us to start the evolution process from a point where it
would have taken an enormous amount of time to get to
applying mutations.

Another fact we can extract from the graph is that when
possible solutions are generated randomly, their length differs
from the optimal route length more and more as the number of
nodes of TSP instance increases. However the length of
solutions generated by the most–probable-neighbor algorithm
remains somehow constant in relation to the expected length
of the optimal route, as we can see in Fig. 8.

0

50

100

150

200

250

300

350

10 90 170 250 330 410 490
TSP size

 Random
 M ost-probable-neighbor algorithm

 Expected length of optimal road

Fig. 7 Average length of initial population members

1131%

165%

0%

200%

400%

600%

800%

1000%

1200%

10 70 130 190 250 310 370 430 490

TSP size
 Random
 M ost-probable-neighbor algorithm
 Expected length of optimal road

Fig. 8 Percentage length difference of initial population members

with expected optimal road

The members of the initial population generated by the
most-probable-neighbor algorithm are high quality solutions
for the TSP to start the evolution process from. However, it
would take too long to generate the entire set of initial
population members using this technique. Instead, we generate
a few members and mutate them to fill up the entire
population.

If we take a look at the distribution density for the members
of the initial population generated by the most-probable-
neighbor algorithm (Fig. 9), we will appreciate how the curve
is much closer to the expected optimal decision distribution.

0

3

6

9

12

0 0,1 0,2 0,3 0,4 0,5
Distance

 M ost-probable-neighbor algorithm

 Expected distribution density

Fig. 9 Distribution density for most-probable-neighbor algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1990

As these solutions are not generated completely randomly,

it was our task to find out an appropriate way to mutate them.
By analyzing the paths created by the most-probable-neighbor
algorithm we developed a mutation function, which tries to
find the place in the path where the last node could be placed
in order to decrease the total path length. If it does not find a
better place for the last node, it continues with the preceding
one, and so on.

VI. FINAL RESULTS
Now it is time to merge all the improvements we have

developed and check how they work all together.
The final algorithm works as follows:
1. The initial population is created using the

most-probable-neighbor algorithm we have implemented (or
by mutating members created by it, in case the process is too
slow).

2. Then, the specific mutation that we have
created places the last nodes of the path in more proper places
in order to make the path more homogeneous.

3. Finally, the genetic algorithm starts working
in the quest for the expected optimal route length. It will
detect whether we have reached a good solution for the TSP,
or are just in a local minimum. For the second case, the
algorithm tries to skip the local minimum and lets the
evolution go on.

The distribution density for the solution provided looks very
similar to that predicted by Oracle, as we can see in Fig. 10.

0

3

6

9

12

0 0,1 0,2 0,3 0,4 0,5
Distance Final results

 Expected distribution density

Fig. 10 Distribution density for final results

We now have to evaluate how accurate and efficient our
new algorithm is in order to decide whether the improvements
done to the classical genetic algorithms are worth applying.
We can compare the solutions provided by the algorithm by
placing all the solutions obtained in a chart. The Y axe of the
chart will represent the length of the solution and the X axe
will represent the amount of time spent to deliver that solution.
The solutions with shorter paths will be at the bottom and
those, which have been delivered in less time, will be shown at
the left. In this way, solutions placed at the bottom-left corner
will be considered better solutions than those in the upper-
right corner (Fig. 11).

41,98
44,21

50,88

61,56

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000
Time (s) Final algorithm

 Expected length of optimal road
 M ost-probable-neighbor algorithm
 Avoiding local minimums
 Classical genetic algorithms

Fig. 11 Examples of evolutions for a 500-node TSP

It is obvious that the resulting algorithm delivers better

solutions in less time than the classical genetic algorithms, but
on the other hand, it spends a considerable amount of time
after generating the initial population which does not result in
a great improvement of the solutions delivered by the most-
probable-neighbor algorithm.

If we take a look at the different distribution densities we
have obtained, we will be able to notice how each time they
get closer to the “predicted by Oracle optimal distribution
density,” as showed in Fig. 12.

0

3

6

9

12

0 0,1 0,2 0,3 0,4 0,5
Distance Classical genetic algorithms

 Expected distribution density

 Avoiding local minimums

 M ost-probable-neighbor algorithm

 Final results

Fig. 12 Distribution density

VII. CONCLUSION
The presented results confirm that the concept of Oracle is

an efficient means for improving the performance of genetic
algorithms.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1991

REFERENCES
[1] Robin Gremlich, Andreas Hamfelt, and Vladislav Valkovsky,

“Prediction of the Optimal Decision Distribution for the Traveling
Salesman Problem”, Proceedings of IPSI International Conf., Sveti
Stefan, Montenegro, 2004.

[2] Papadimitriou C.H., Steiglitz K. Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice Hall, 1982.

[3] http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
[4] Gutin, Punnen (eds.), The Travelling Salesman Problem and its

Variations, Kluwer Academic Publishers, 2002.
[5] http://www.tsp.gatech.edu/
[6] http://en.wikipedia.org/wiki/Genetic_algorithm
[7] http://tracer.ull.es/academic/Travelling_Salesman_Problem.html
[8] http://en.wikipedia.org/wiki/Local_optimum
[9] http://en.wikipedia.org/wiki/Nearest_neighbour_algorithm

