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Abstract—By introducing the concept of Oracle we propose an 

approach for improving the performance of genetic algorithms for 
large-scale asymmetric Traveling Salesman Problems. The results 
have shown that the proposed approach allows overcoming some 
traditional problems for creating efficient genetic algorithms. 
 

Keywords—Genetic algorithms, Traveling Salesman Problem, 
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I. INTRODUCTION 
HE Traveling Salesman Problem (TSP) was formulated in 
the 30th year of the 20th century and till now it is one of 

the most popular and important combinatorial problems.  
The TSP is stated as follows:  
Given a finite number of “cities” along with the cost of 

travel between each pair of them, find the cheapest way of 
visiting all cities and returning to the starting point [7].  

Although it seems to be quite simple, solving it is very 
computationally expensive. As no polynomial time algorithm 
has been discovered, the only way to obtain the best solution 
is by calculating all possible routes. If we have a map with N 
cities, the number of possible routes will be N!. For example 
solving the problem for 30 cities, using a computer with 109 
adds per second, would take over 8 × 1015 years.   

The reason for TSP’s popularity is its practical and 
theoretical importance. Classical TSP applications include 
areas such as transportation logistics, PCB drilling, and X-rays 
analysis. Modern TSP applications include DNA/genome 
sequencing, bio-informatics, statistical physics, astronomy, 
etc. TSP belongs to the class of NP-complete problems. It is 
known [2] that all NP-complete problems could be 
transformed one to another in polynomial time, so the decision 
of TSP is also of great theoretical interest. 
There are two types of TSP: symmetric and asymmetric [5]. 
For the symmetric TSP the cost of traveling from city A to 
city B is the same as the cost of traveling from B to A. For 
asymmetric TSP these costs can be different. 
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Research dedicated to solving the symmetric TSP abounds. 
For practical applications, currently the large-scale 
asymmetric TSP is starting to be extremely important (e.g. 
DNA/genome sequencing). However, concerning the 
asymmetric TSP there has been far less research. It appears to 
be a more difficult problem, both with respect to optimization 
and approximation [4]. Whereas the TSPLIB library of the 
best-known TSP decisions [3] contains symmetric TSP 
instances with as many as 85900 cities, its largest asymmetric 
TSP instance has only 443 cities and over half of its 
asymmetric TSP instances have fewer than 100 cities [4]. 
Computational complexity of the TSP was the main reason for 
creating the great number of heuristic algorithms to get 
approximate TSP decisions in polynomial time [5]. One of the 
most efficient heuristic approaches is the class of genetic 
algorithms. Genetic algorithms are general-purpose searching 
techniques based on the Darwinian Principle of Natural 
Selection [6]. Genetic algorithms combine selection, crossover 
and mutation operations with the goal of finding the best 
solution of a problem. Genetic algorithms search for this 
solution until a specified termination criterion is met. One of 
the main problems of genetic algorithms is local minimums 
[8]. It is very common that genetic algorithm converge to a 
solution that might be the best among the ones close/similar to 
it, but it could be far from the best solution we can get. 
Another duty is generating the initial population [6]. Starting 
from a sufficiently good initial population can save a lot of 
evolution time, as well as facilitating the genetic algorithm to 
deliver better quality solutions. To overcome the above-
mentioned problems we propose a concept that we call 
“Oracle.” Thanks to information provided by Oracle it is 
possible to avoid local minimums and generate good quality 
initial populations.  

II. ORACLE 
The approach for finding the optimal decision distributions 

for large-scale asymmetric TSP was proposed in [1].  
For light left tail TSP weight matrixes distributions it will 

be Rayleigh distribution: 
 

2

2

2
2)( σ

σ
⋅

−
⋅=

x

exxp  (1) 

 
For heavy left tail TSP weight matrixes distributions the 

optimal decision distribution will be γ-distribution: 
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Methods for finding parameters of these distributions by a 

given asymmetric TSP weight matrix, calculating a prediction 
of the optimal tour length and its variance are also presented in 
[1]. The result of this research provides an opportunity to 
reduce drastically the search space for solving the asymmetric 
TSP. For example, for the dimension of the problem n = 1000 
we can delete nearly 99% of the elements of the TSP weight 
matrix as irrelevant for the optimal decision. For the 
dimension n = 10000 nearly 99.9 % of the elements can be 
deleted, etc. After such pruning according to the predicted 
optimal decision distribution, we can determine the probability 
for the remaining elements of the weight matrix to be included 
in the optimal decision to support finding an optimal TSP 
solution. 

We will call information provided by this approach 
“Oracle” and will use it to improve the performance of genetic 
algorithms for the asymmetric TSP. 

III. CLASSICAL GENETIC ALGORITHMS FOR TSP 
If we want to solve TSP using genetic algorithms, we have 

to consider some facts. An appropriate way of encoding the 
tours that the salesman can choose is by assigning every city a 
different number and representing tours as a list of these 
numbers in the order they must be visited. Every city/number 
is intended to be a gene of a full chromosome. Tours/lists 
represent chromosomes. Lists must have the same length as 
the number of cities in the TSP and no city can appear twice in 
the same list. The initial set of solutions can be created either 
by randomizing the list of cities or creating tours using 
heuristic algorithms. A simple evaluation function could just 
calculate the total distance of the tour represented by each list. 
In this way, lower values will mean routes are closer to the 
optimum solution. Reproduction can be done by crossover and 
mutation or by combining both techniques. There is a wide 
range of mutations to be applied to the members of a 
population of TSP solutions. Choosing the most appropriate 
one will determine in some way the success of the algorithm. 
We analyzed the performance of the six different mutations: 
swap adjacent nodes mutation, swap nodes mutation, move 
node mutation, relocate mutation, invert mutation and permute 
mutation. 

All the mutation functions have at least one randomized 
factor, which makes them more efficient when trying to 
emulate a specie evolution. The more randomized these 
functions are, the more possibilities of evolution we will have. 
Swap adjacent nodes mutation turned out to be quite 
inappropriate for our goal, due to its limited range of 
variations. On the other hand, invert mutation provided us 
with best results. This mutation also came out as the less prone 
to get stuck in local minimums. Fig. 1 shows an example of 
the rd100 TSP instance from TSPLIB being solved by means 
of the six different mutations during a certain number of 

generations. We can appreciate how swap adjacent gets 
quickly stuck in a local minimum, whereas invert mutation is 
the one that faster gets close to the optimum solution.  
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Fig. 1 Performance of mutations for 'rd100.tsp' from TSP-LIB  
 

To continue the analysis, we need large-scale asymmetric 
TSP instances, but as it was mentioned above, TSPLIB has not 
appropriate ones. Because of this fact we will continue our 
investigation by using generated large-scale instances. Further 
we will use asymmetric TSP instances up to 500-nodes with 
elements of weight matrixes generated randomly on the 
interval [0, 1] according to distribution density f(x) = 2x 
(triangle distribution).  

Fig. 2 demonstrates the length of the solutions found for a 
500-node generated asymmetric TSP instance in relation with 
the time elapsed until these solutions were reached. The 
average length of the solutions found so far is also showed. 

The expected length for the optimal solution delivered by 
Oracle is around 30.46 (+/- 0.45). It is possible to see that, in 
average, the later the algorithm gets stuck in a local minimum, 
the closer the solution found is to the optimal path length. 
However, the length of the best solution found is 57.69. This 
means that the solutions found are still quite far from the 
optimal one.   
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Fig. 2 Solutions found for a 500-node TSP 

 
Fig. 3 demonstrates expected distribution density of the 

optimal decision, delivered by Oracle, and distribution density 
of the decision delivered by the classical genetic algorithm for 
a 500-nodes generated asymmetric TSP instance, which shows 
poor preliminary precision. In the successive results we should 
try to get a distribution density much closer to the expected 
one, which will mean better solutions for the TSP.   
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Fig. 3 Distribution density for classical genetic algorithms 
 

IV. LOCAL MINIMUMS PROBLEM 
As it was mentioned above, local minimums are one of the 

main problems of genetic algorithms. So, detecting and 
avoiding local minimums is the first goal of our investigation. 
By Oracle it is possible to know the expected length of the 
optimal route and its variance. This information can be used 
for evaluating whether we have found an appropriate solution 
or have to keep on searching. Local minimums are detected by 
counting the number of generations that have been created 
without improving a best solution, which is sufficiently far 
from the one predicted by Oracle. When this number reaches a 
certain quantity, it means that we are in a local minimum and 
we have to act accordingly.  

The way of skipping a local minimum is going back in the 
evolution and trying to evolve in a different direction. This is 
accomplished by mutating a whole population enough so it 
does not get back to the same solution we had in the local 

minimum, but not so much that we loose all the evolution we 
had already performed. A lot of combinations have been tested 
in the quest for the most suitable way of skipping a local 
minimum. The best way we have found to manage this 
problem is by applying several single-node oriented 
mutations. We have used a combination of swap node and 
move node mutations, each of them used twice, alternatively. 
This technique means an improvement in the algorithm 
performance. Fig. 4 shows the performance improvement 
regarding the quality of the solution for a 500-nodes TSP 
instance.      
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Fig. 4 Average solutions length for a 500-node TSP 

 
However, this increase in the precision of the algorithm 

causes a significant increase of the time needed too, as we can 
see in Fig. 5. 
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Fig. 5 Average time spent for a 500-node TSP 

 
Consequently, the distribution density improves the one we 

got for the results of classical genetic algorithms and gets 
closer to the expected optimal one, as we can see in Fig. 6.  
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Fig. 6 Distribution density avoiding local minimums 
 

V. GENERATION OF INITIAL POPULATION 
Starting from a sufficiently good initial population can save 

a lot of evolution time, as well as facilitating the genetic 
algorithm to deliver better quality solutions. Our task now is to 
create an efficient and quick way to create initial population 
members. We will use “predicted by Oracle optimal decision 
distribution” as a guide that can lead us to solutions looking 
quite similar to the optimal path.  

We came up with the idea of sorting each node’s neighbors 
by “predicted Oracle distance density distribution.” Then, 
when it comes to choose the next node in the path, we pick an 
unvisited neighbor with a probability that is directly 
proportional to its distance expected density. In this way, 
distances with an insignificant density will not be picked 
unless the rest of the neighbors have been visited already. This 
method reminds of the nearest-neighbor algorithm [9], but 
introduces a pseudo-random factor and considers the expected 
distance density in the final path instead of the distance itself. 
From now on, we will call this method most-probable-
neighbor algorithm. Fig. 7 represents the outstanding 
performance of the new algorithm, which, in addition, was not 
as time consuming as preliminary attempts. For each TSP size 
from 10 to 500, we calculated the average total length of the 
initial population members, both generated randomly and 
using the most-probable-neighbor algorithm. As we can see, 
the members of initial populations generated by this new 
method are much closer to the optimal route than the solutions 
provided by genetic algorithms before implementing this 
improvement, even after performing genetic algorithms’ 
evolution through a huge number of generations. This will 
allow us to start the evolution process from a point where it 
would have taken an enormous amount of time to get to 
applying mutations.  

Another fact we can extract from the graph is that when 
possible solutions are generated randomly, their length differs 
from the optimal route length more and more as the number of 
nodes of TSP instance increases. However the length of 
solutions generated by the most–probable-neighbor algorithm 
remains somehow constant in relation to the expected length 
of the optimal route, as we can see in Fig. 8.         
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Fig. 7 Average length of initial population members 
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Fig. 8 Percentage length difference of initial population members 

with expected optimal road 
 

The members of the initial population generated by the 
most-probable-neighbor algorithm are high quality solutions 
for the TSP to start the evolution process from. However, it 
would take too long to generate the entire set of initial 
population members using this technique. Instead, we generate 
a few members and mutate them to fill up the entire 
population. 

If we take a look at the distribution density for the members 
of the initial population generated by the most-probable-
neighbor algorithm (Fig. 9), we will appreciate how the curve 
is much closer to the expected optimal decision distribution. 
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Fig. 9 Distribution density for most-probable-neighbor algorithm 
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As these solutions are not generated completely randomly, 

it was our task to find out an appropriate way to mutate them. 
By analyzing the paths created by the most-probable-neighbor 
algorithm we developed a mutation function, which tries to 
find the place in the path where the last node could be placed 
in order to decrease the total path length. If it does not find a 
better place for the last node, it continues with the preceding 
one, and so on.  

VI. FINAL RESULTS 
Now it is time to merge all the improvements we have 

developed and check how they work all together. 
The final algorithm works as follows: 
1. The initial population is created using the 

most-probable-neighbor algorithm we have implemented (or 
by mutating members created by it, in case the process is too 
slow). 

2. Then, the specific mutation that we have 
created places the last nodes of the path in more proper places 
in order to make the path more homogeneous. 

3. Finally, the genetic algorithm starts working 
in the quest for the expected optimal route length. It will 
detect whether we have reached a good solution for the TSP, 
or are just in a local minimum. For the second case, the 
algorithm tries to skip the local minimum and lets the 
evolution go on. 

The distribution density for the solution provided looks very 
similar to that predicted by Oracle, as we can see in Fig. 10.  
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Fig. 10 Distribution density for final results 
 

We now have to evaluate how accurate and efficient our 
new algorithm is in order to decide whether the improvements 
done to the classical genetic algorithms are worth applying. 
We can compare the solutions provided by the algorithm by 
placing all the solutions obtained in a chart. The Y axe of the 
chart will represent the length of the solution and the X axe 
will represent the amount of time spent to deliver that solution. 
The solutions with shorter paths will be at the bottom and 
those, which have been delivered in less time, will be shown at 
the left. In this way, solutions placed at the bottom-left corner 
will be considered better solutions than those in the upper-
right corner (Fig. 11).  
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Fig. 11 Examples of evolutions for a 500-node TSP 

 
It is obvious that the resulting algorithm delivers better 

solutions in less time than the classical genetic algorithms, but 
on the other hand, it spends a considerable amount of time 
after generating the initial population which does not result in 
a great improvement of the solutions delivered by the most-
probable-neighbor algorithm.   

If we take a look at the different distribution densities we 
have obtained, we will be able to notice how each time they 
get closer to the “predicted by Oracle optimal distribution 
density,” as showed in Fig. 12. 
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Fig. 12 Distribution density 
 

VII. CONCLUSION 
The presented results confirm that the concept of Oracle is 

an efficient means for improving the performance of genetic 
algorithms. 
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