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Abstract— Scale defects are common surface defects in hot steel 

rolling. The modelling of such defects is problematic and their causes  
are not straightforward. In this study, we investigated genetic 
algorithms in search for a mathematical solution to scale formation. 
For this research, a high-dimensional data set from hot steel rolling 
process was gathered. The synchronisation of the variables as well as 
the allocation of the measurements made on the steel strip were 
solved before the modelling phase.  
 

Keywords— Genetic algorithms, hot strip rolling, knowledge 
discovery, modelling.  

I. INTRODUCTION 
ACHINE learning methods were applied to hot strip 
rolling since the more traditional methods have not 

proved feasible in scale defect modelling or prediction. Scale 
defects are a common group of surface defects in hot steel 
rolling, and due to stringent surface quality requirements it is 
important to recognize the risk factors that cause scale on the 
surface of steel products.  

Oxidation of steel results in a three-layer scale consisting of 
wüstite, FeO, magnetite Fe3O4 and hematite Fe2O3. Wüstite, 
which is the innermost layer, is stable only at temperatures 
above 570°C. In hot rolling process conditions it constitutes 
roughly 95% of scale [1,2,3]. There are several scale types 
with different mechanisms of formation. Rolled-in or black 
scale develops when harder oxides are rolled into [1] the 
surface during the finishing process. Red scale is mostly 
associated with a high Si-content, although this is not a 
necessary condition [2]. In red scale detection, there is only a 
small possibility for confusing red scale with some other 
defect [4]. When the two types coincide, it is possible that 
some rolled-in scale defects will be ignored by the detection 
system, and therefore strips with over 0.1% Si-content were 
therefore investigated only for red scale and the other parts of 
the data for rolled-in scale.  

The origin of scale defects has been a topic of interest in 
many research projects, but it is still hard to find literature on 
the modelling of defects The first published modelling study 
of surface quality related to scaling, that gave rise to a 
practical application (VAI-Q Strip), was published recently 
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[5]. However, no physical model for scale formation has been 
formulated so far. The problem for modelling is due to high 
dimensional variable group with their interactions. 

Neural networks have been traditionally used for modelling 
purposes when the formulation of a physical model has not 
been possible. Such models suffer from a lack of informativity 
and interpretability. However, a search for a formal model is 
possible by using methods derived from the Genetic 
Algorithms, hereafter GA [6]. 

Several reasons for scale formation are mentioned in the 
literature, including the effects of temperature and time 
[1,3,5,7], rolling forces and reduction [1,5], steel composition 
[8] and gas atmosphere. Silicon content and reheating 
temperature [3] are also relevant factors, since molten fayalite, 
Fe2SiO4, accelerates the scaling rate [2]. Furthermore, uneven 
cooling was mentioned as a contributing factor in [7]. 
However, the current knowledge about how the process 
conditions and the steel grade affect the final properties of 
tertiary scale is fragmentary [1].   

Three different machine learning methods have been 
applied and compared. Two prediction models were 
implemented with neural networks (multilayer perceptrons 
and self-organizing maps) in an earlier study [9]. The original 
goal was to recognize high-risk process conditions and to 
identify the part of the process that causes the scale defects. 
Therefore, further knowledge in the form of a mathematical 
solution was searched for in this study by means of genetic 
programming. The application constructs a simple 
mathematical model, which is used to predict scale defects. 
Moreover, continuous learning was applied in this study. 
High-frequency measurements of the rolling process enabled a 
local analysis of scale defects in different parts of the strips. 
The response of the video camera-based machine vision 
system was utilised in the training of models. 

II. DATA 
At the beginning of the research, data was gathered and 

analysed iteratively. The final data set was collected at 
Rautaruukki Oyj, Raahe, Finland during 15.8.2003 –   
27.8.2003, and it consisted of 1326 steel strips and 59 
variables from diagnostics measurements and 127 variables 
containing averaged values. Average values reflect product 
properties such as the composition of steel, target values, 
dimensions and oven identification number. Mill diagnostics 
time series information was gathered from roughing mill to 
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finishing mill temperature. The pre-processing and selection 
of variables were done using data sets consisting of over 
15000 strips from two separate one-month periods. The 
diagnostics data consisted of temperatures, rolling forces and 
speeds, cooling water flows and pressure of the scale breaker. 

The measurement interval in the time series data set varied 
between 0.0025s and 0.05s. Therefore, there are tens of 
thousands of measurements of high-frequency variables per 
strip. Hot strip rolling is quite a complex process from the 
point of view of measurements and data: During the process, a 
steel slab goes through plastic deformation, which increases 
its length between the points at which different variables are 
measured. Furthermore, rolling speed varies when it is used as 
a means to control temperature. Data synchronisation and 
allocation on the steel strip had to be solved before the data 
analysis. Therefore, the data were modified from time-indexed 
signals to a distance-based axis common for all variables.  

 

Fig. 1. Finishing mill layout. 
 

The target variable, i.e. the scale defect count, was recorded 
between the last finishing stands and the cooling section. The 
video camera-based machine vision system used in surface 
quality detection, Parsytec ODIS 4.2, is shown on the right in 
Fig. 1. The machine vision system detects scale defects and 
indicates the exact location of each defect. There was a 
possible drawback, however, since only the count of defects 
was measured, but neither the size nor the severity of the 
defect area was recorded. 

III. DATA MINING AND MODELLING 
The model should be continuously learning, since there was 

a significant difference in the number of scale defects between 
the data sets from different time periods. A prediction system 
should predict errors before they occur. Since most of the 
diagnostics measurements are done at the finishing stands, 
however, it is not possible to make predictions on-line in order 
to adjust the process parameters for the strip being rolled. 
Instead, the estimation given by the prediction system could 
be compared with the measured values. The outcome of the 
comparison could be used to facilitate decision-making 
concerning the mill set-up for the following strips or the need 
for service (predicting maintenance).  

Careful data pre-processing is essential before the 
modelling phase. The application area involves several 
problems that restrict the usability of feature extraction 
methods. Firstly, the process contains some controversial 
properties. For instance, the surface temperature is affected by 
scale thickness, because the oxide layer reduces heat transfer 
[1]. Since the crop shear temperature is measured just before 
the scale breaker, the measurements may be inaccurate. 

Moreover, scale thickness is reduced in proportion to rolling 
reduction, but reduction increases simultaneously the amount 
of harder oxides and the probability of defects due to scale 
cracking.  Secondly, the combination of variables is huge. 
Thirdly, the lack of severe process faults resulted in a small 
number of scale defects, which is a problem from the 
viewpoint of data mining. The approach was to collect data 
without process experiments, e.g. by reducing scale breaker 
pressure. However, intentionally generated fault situations 
would not have been useful when normal process conditions 
were modelled. Since the preconditions for modelling were 
quite demanding and due to the low scale content of the 
samples, the first task was to identify the variables with 
maximum influence on the amount of scale. 

A.  Synchronisation 
Process state varies constantly and causes difficulties in 

modelling if there is no information about process dynamics 
available [10]. High-frequency measurements are necessary to 
find out the conditions within the entire strip length. Mill 
sensors are located at different positions along the production 
line, and measurements are therefore recorded at different 
times. Synchronisation of the variables and allocation of the 
measurements on the steel strip had to be solved before data 
analysis. There was a time stamp at the beginning of each time 
series, but since the measurement series was triggered before 
the strip arrived at the appropriate position, the indication of 
which part of the measurement series was within the length of 
the strip had to be solved. Feature extraction techniques (e.g. 
derivation) were used for temperature and rolling force signals 
to locate the leading edge of the strip. Furthermore, the strip 
edge extracted from the rolling force signals was used to 
proportionate the strip speed between stands to the threading 
speed, which was an absolute value. Measured speeds at 
various locations were synchronised by searching for the 
maximum correlation between signals at different lag values. 
Based on the knowledge of the speed over strip length and the 
time of the leading edge of the strip, the other measurements 
could be located. Each variable value is presented as a 
(measurement, position) pair for subsequent utilisation in 
modelling.  

B. Feature Extraction and Variable Count Reduction 
Measurement-position pairs were further processed by 

calculating features for each 10m section by means of 
descriptive statistics and Fourier transform. The features were 
mean, standard deviation, minimum, maximum, derivative, 
energy at a frequency interval of 1-5Hz and 5-20Hz and 
maximum amplitude with a related frequency between 1-
25Hz. Furthermore, the absolute magnitude of scale defects 
was proportioned to the area size of the strip segment.  

The features had to be combined with the scale defect 
information in order to find out the critical conditions for scale 
formation. A SOM [11] was used to visualize the 
dependencies of the variables on scale defect by mapping 
variable combinations with scale defect. SOM is able to 
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visualise non-linear dependencies, and it has been used in 
many industrial applications e.g. to model product quality in 
steel rolling [12,13]. Redundant and non-affecting variables 
were removed based on visualisation. As a result, the number 
of variables was reduced from 186 to 10 at the modelling 
phase.  

C. Analysis and Scale Defect Prediction 
The behaviour of scale at a roll gap is difficult to predict 

[14].  Thus, the use of machine learning modelling methods 
instead of physical models is justified. Predictive modelling 
has been done earlier by using neural networks [9]. The 
uneven target variable distribution, which is a consequence of 
the small number of defects, affects learning negatively. 
Training algorithms aim to minimise the average error, which 
leads to poor generalisation on rare occasions. However, 
biasing of the distribution was not possible without wasting 
too much data. Thus, only the number of samples without 
defects was limited in some analyses. Both GA and MLP 
suffered from the unbalanced data, which is why the output 
had a limited range near zero. However, there are possibilities 
to compensate for the “zeroing effect”. GA can be based on 
freely selected cost function and they can utilise various 
penalizing functions [16]. Although the particular application 
allowed direct calculation of cost function, it is possible to 
penalize a solution candidate when, for instance, a solution is 
impossible (e.g. a negative number of defects). In this 
application, negative values were penalized. In addition, if the 
outcome of the equation was too close to zero for the entire 
training set, the similar action was applied. Furthermore, 
excessively complicated solutions were penalized. 

A chromosome structure consists of variables with a 
multiplier factor and arithmetic basic operations between 
terms. The following operators were implemented: addition, 
multiplication, division, exponent function and special no-
operation, which ends the formula. Since no single variable 
was known to have a linear effect on the modelled function, 
the formula length was limited to be between 2 and 10 terms. 
The genotype was coded with real valued numbers. A 
chromosome can be written k1m1o1, k2m2o2, ..., o9k10m10, 
where ki is a scaling factor, mi is a variable and oi is a 
operator. The other option would have been a variable length 
chromosome, which has been suggested by Kotani et al. [17].  

In this application the operator genes select the program 
path to be executed to calculate a cost function, which is based 
on RMS error in this case. This resembles genetic 
programming [18], although the code structure is static, 
lacking code evolution.  

A standard set of genetic operators with minor 
modifications were used in the algorithm.  Selection was 
based on combined fitness calculated from a cost function and 
from chromosome diversity. Diversity was measured as a sum 
of Euclidean distances to all neighbours. 

The real value coded genes were not the lowest order 
presentation for genes unlike the binary coded ones. 
Nevertheless, the effect of the schema theorem [6] has been 

put into practice by selecting the crossover points so that 
variable and scaling factor constitute variable length groups 
which are kept together in the calculations. Therefore a 
structured information change takes place in the reproduction. 
Good structures will have increasing numbers of samples in 
the subsequent generations as shown in [6,19]. However, 
without exchanging the locations of those building blocks, 
some of the power goes unused, since the different good 
solutions can compete for the same location in a string. 
Furthermore “super building blocks” could occupy several 
locations in distinct samples, restricting the production of 
other good solutions. The reason to code a string as a 
combination of separate real valued blocks is to avoid the bit 
position effect. Furthermore, the use of real values instead of 
binary coding allows the search space to increase. 

The range of gene values was not restricted within the 
range of the initial population, since the selected crossover 
method can extend the population range occasionally. 
Therefore, new areas were searched and the population 
diversity was maintained. The value of the offspring gene o at 
time t+1 was calculated from the equation: 
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Actually, it became necessary to limit the excessive 

divergence of gene values by limiting maximum diversion. In 
addition, too similar chromosomes were deleted from the 
population before fitness calculations.  

Population size was varied between 100 and 1000 in the 
modelling efforts. A continuously learning version was also 
tested. The model was trained with the data from 10-200 
consecutive strips at a time and after each training period, the 
next strip in the sequence was modelled. To test the algorithm, 
an artificial data set consisting of three random variables was 
generated. The fit between the estimation and the generated 
value from function f = 0.5exp(2x)–1.5y3– z is shown in Fig 
2. 

 
Fig. 2. Test function correlation with estimation on the left and estimated 
values with reference to the surface at z=0 on the right. 

IV. RESULTS 
One steel quality, which was studied for rolled-in scale, was 

selected as an illustrative example. On an average the number 
of rolled-in-scale observations was 0.0488/m2 for this quality. 
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Independent training and testing sets were selected in such a 
way that there could not be samples from the same strip in 
both sets. The “alarm rate”, selected for convenience and  
unrelated to the rejection risk, was set at  0.5 observations/m2.  

Different numbers of parameters and various combinations 
were tested. The most promising variables found with SOM in 
the data mining phase were used in the GA analysis. The 
average error in the test data was 0,0957 [1/m2], which is 
almost equal to the value achieved with MLP. There are many 
other formulas that are almost as good as the one that gave the 
best result. One further possibility would be the study the 
frequencies of various building blocks.  

When continuous learning was applied, the testing error 
was reduced to 0.0640. However, the result is not as good as 
that obtained with SOM, which can be seen in Fig. 3, where 
estimations have been plotted on (measurement, estimate) 
space. The alarm rate is not reached although there are 81 
measurements above it. Furthermore, the interpretability of the 
model decreases, since the on-line learning model is a product 
of a short period. However, the history in the form of the best 
genotype for each time step was recorded, which made it 
possible to search for similarities and to study the learning. 
Furthermore, the history knowledge was applied to the 
initialisation of a new population in continuous learning. The 
test errors of GA are compared to the multilayer perceptron, 
MLP [15] and SOM-type neural networks in table I. 

 

 
Fig. 3. Measured (on x –axis) versus estimated (on y –axis) values. 
 

TABLE  I  
COMPARISON OF RESULTS   

Method Test error Training type 
GA 0.0640 continuous 
GA 0.0957 batch 
SOM 0.0597 batch 
MLP 0.1032 batch 

V. CONCLUSION 
The data synchronisation was successfully accomplished 

before the data analysis. The focus in the modelling was on 
the quantity of scale after the finishing mill, since the 
available scale defect inspection system detected scale only at 
that stage.  Modelling of the entire scale formation procedure 
would have required scale detection during the whole rolling 
process  

Andorfer et al. pointed out in their article [6] that the 
classification accuracy of the surface inspection system is 
questionable. Indeed, the performance of the scale detection 
system was highly dependent on the environmental 
conditions. 

As a result it can be stated that scale content modelling is 

possible using high-frequency data synchronisation. The 
interpretability of the solution made the GA based model a 
feasible tool for extracting knowledge, even though the results 
obtained with real world data were not as good as expected, 
although the continuous learning was applied. 

Since the proposed GA method is applicable to continuous 
functions and the data are divided in different and probably 
even non-continuous functions, there is a challenge for further 
development.  
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