
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1254

Generating State-Based Testing Models for Object-
Oriented Framework Interface Classes

Jehad Al Dallal, and Paul Sorenson

Abstract—An application framework provides a reusable design

and implementation for a family of software systems. Application
developers extend the framework to build their particular
applications using hooks. Hooks are the places identified to show
how to use and customize the framework. Hooks define the
Framework Interface Classes (FICs) and the specifications of their
methods. As part of the development life cycle, it is required to test
the implementations of the FICs. Building a testing model to express
the behavior of a class is an essential step for the generation of the
class-based test cases. The testing model has to be consistent with the
specifications provided for the hooks. State-based models consisting
of states and transitions are testing models well suited to object-
oriented software. Typically, hand-construction of a state-based
model of a class behavior is expensive, error-prone, and may result in
constructing an inconsistent model with the specifications of the class
methods, which misleads verification results. In this paper, a
technique is introduced to automatically synthesize a state-based
testing model for FICs using the specifications provided for the
hooks. A tool that supports the proposed technique is introduced.

Keywords—Framework interface classes, hooks, state-based
testing, testing model.

I. INTRODUCTION

N application framework provides a reusable design and
implementation for a family of software systems [1].

Users of the framework complete or extend the framework to
build their particular applications. Places at which users can
add their own classes are called hooks [2]. To build an
application using a framework, application developers create
two types of classes: (1) classes that use the framework
classes and (2) classes that do not. Classes that use the
framework classes are called Framework Interface Classes
(FICs) because they act as interfaces between the framework
classes and the second type of the classes created by
application developers. Building reusable test cases for the
FICs and providing the test cases with the framework can
potentially reduce the framework application testing time and
increase application quality. Providing the frameworks with
reusable test cases makes the frameworks more usable for and
marketable to application developers.

As shown in Fig. 1, the input to the testing process of the
FICs is the specifications of the FIC methods. Hook
descriptions provide the specifications of the FIC methods in
terms of pre- and post-conditions. There are two types of pre-

Jehad Al Dallal is with Department of Information Sciences, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

Paul Sorenson is with Department of Computing Science, University of
Alberta, Edmonton, AB. T6G 2H1, Canada (e-mail: sorenson@cs.ualberta.ca).

and post-conditions: (1) construction ones and (2) execution
ones and these are illustrated in the example in Fig. 2. The
construction pre- and post-conditions are the constraints that
must be satisfied before and after the hook is used,
respectively, and they are identified in the hook description by
keywords such as Object, Class, and Operation. The
execution pre- and post-conditions are the dynamic constraints
that must be satisfied before and after the methods defined in
the hook are executed, respectively. The construction pre- and
post-conditions, in contrast with the execution ones, do not
describe the behavior of the methods defined in the hooks and,
therefore, cannot be used in synthesizing the behavioral model
of the FIC. The execution pre-conditions are described in
terms of class instance variables and method input parameters.
The execution post-conditions are described in terms of class
instance variables, input parameters, output parameters,
method return values, and method thrown exceptions. More
precisely, the execution method specifications (i.e., pre- and
post-conditions) check: (1) whether class instance variables,
method input parameters, method output parameters, and
method return values are within the allowed domain of values,
and (2) whether the relationships among the values of the
class instance variables, method input parameters, method
output parameters, and method return values are satisfied.

Fig. 1 The FIC testing process

To help understand the relationship between the hooks and

the FICs let us examine a concrete example. Fig. 2 shows the
description of the Initialize Account hook of a banking
framework. In the Changes section of the hook, the FIC called
NewAccount is introduced. The hook specifies also one of the

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1255

FIC methods, which is the constructor method
NewAccount(int amount). In the Pre-conditions and Post-
conditions sections of the hook description, the pre-conditions
and post-conditions of the constructor method are specified.
The first stated post-condition is a construction post-condition
because it describes a condition that must be satisfied when
the hook is used and it is identified by the keyword Operation.
The other pre- and post-conditions are execution ones because
they describe the conditions that must be satisfied,
respectively, before and after the constructor method is
executed. To determine the behavior of a FIC we have to
consider all the framework hooks that specify the FIC
methods. For the rest of this paper, unless stated otherwise, all
pre- and post-conditions referred to are of type execution,
because these are the conditions in which we are most
interested in building test cases.

Fig. 2 The description of the Initialize Account hook of a banking

framework

In our concrete example, the hooks of the banking
framework define several public methods for the NewAccount
FIC. The methods are NewAccount, balance, deposit,
withdraw, freeze, unfreeze, activate. The pre- and post-
conditions of the NewAccount FIC method defined in the
hooks are listed in Table I. From the pre-conditions and post-
conditions, we synthesize the states and transitions of the
NewAccount class.

For example, in Table I, balance() is a method that has no
pre-conditions which means that it can be called at any time
during the object life cycle. MaxPeriod is a static instance
variable, amount is a local variable, and the variables balance,
frozen, the return of the balance() method, and the return of
the getUpdate() method are non-static instance variables. The
balance() method returns the value of the balance instance
variable. The getUpdate method calculates the difference
between the current date and the last activity date.

Despite the fact that the method specifications hold the
specifications for the class behaviors, researchers seem to
limit the method specification use to support the automated
detection of software failures and the isolation of faults, and to
generate method-based test cases. We are not aware of any
work that uses the method specifications to generate class-

based test cases. For example, in [3], to test a class behavior,
class behavior testing models (e.g., state-transition model or
UML statechart) used to generate the test drivers have to be
pre-provided, and the method specifications are used only as
testing oracles. Hand-construction of the class behavior testing
model is expensive, error-prone, and may result in
constructing an inconsistent model with the specifications of
the class methods, which misleads verification results.

In this paper, a new technique is introduced to
automatically synthesize the state-transition testing model of
the FIC sequential class behavior from the specifications of
the class methods. This reduces considerably the class testing
cost and the chance of errors. The result is a state-based
testing model that is consistent with respect to the
specifications of the class methods. Therefore, using the
introduced state-transition model synthesis technique, only the
specifications of the FIC methods have to be provided to test
the FIC behavior. The state-transition model is synthesized
automatically from the method specifications. After that, a
specification-based testing technique can be applied to derive
the test drivers (i.e., implementations of the test cases) from
the synthesized state-transition model. Finally, the test drivers
are executed and the method specifications are used as testing
oracles to evaluate the actual results of the test cases as pass or
no pass. Fig. 3 compares the testing process that uses our
proposed modeling technique and the one that does not (e.g.,
[4], [5], and [6]). In process (a), the FIC testing model as well
as the FIC method specifications has to be provided to test the
FICs, while in process (b), only the FIC method specifications
have to be provided to test the FICs and the FIC testing model
is synthesized internally in the process.

Fig. 3 FIC behavior testing process using method specifications:

(a) without using the proposed modeling technique and (b) with
using the proposed modeling technique

The paper is organized as follows. Section II, discusses the

related work. In Section III and Section IV, the proposed
techniques to extract the class behavior states and transitions,
respectively, from the method specifications are described.
Finally, Section V provides conclusions and a discussion of
future work.

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and
bank branches).
…
Pre-conditions: amount>=0;
Changes:
 NewAccount.NewAccount(int amount) extends
Account.Account(int amount);
 …
Post-conditions:

1. Operation NewAccount. NewAccount (int);
2. NewAccount.balance>=0;
3. ! NewAccount.frozen;
4. NewAccount.getUpdate()< NewAccount.MaxPeriod

…

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1256

TABLE I
THE PRE-CONDITIONS AND POST-CONDITIONS OF THE NEWACCOUNT CLASS METHODS

Method Pre-conditions Post-conditions

NewAccount
(amount)

amount>=0 NewAccount.balance>=0 && ! NewAccount.frozen &&
NewAccount.getUpdate()< NewAccount.MaxPeriod

balance()
deposit
(amount)

! NewAccount.frozen && NewAccount.getUpdate()<
NewAccount.MaxPeriod

NewAccount.balance=amount+ NewAccount.balance && !
NewAccount.frozen && NewAccount.getUpdate()<
NewAccount.MaxPeriod

withdraw(am
ount)

NewAccount.balance>=0 && ! NewAccount.frozen &&
NewAccount.getUpdate()< NewAccount.MaxPeriod

NewAccount.balance= NewAccount.balance-amount && !
NewAccount.frozen && NewAccount.getUpdate()<
NewAccount.MaxPeriod

freeze() ! NewAccount.frozen && NewAccount.balance>=0 NewAccount.frozen && NewAccount.balance>=0
unfreeze() NewAccount.frozen && NewAccount.balance>=0 ! NewAccount.frozen && NewAccount.balance>=0 &&

NewAccount.getUpdate()< NewAccount.MaxPeriod
activate() NewAccount.balance>=0 && !NewAccount.frozen

&&NewAccount.getUpdate()>=
NewAccount.MaxPeriod

NewAccount.balance>=0 && !NewAccount.frozen &&
NewAccount.getUpdate()< NewAccount.MaxPeriod

II. RELATED WORK
Researchers identified two benefits of using the method

specifications (i.e., pre- and post-conditions) (1) evaluating
the results of the test cases, and (2) building test cases to test
the methods of classes. The method specifications and the
class invariants are called contracts. In [7], contracts are used
to evaluate the results of the test cases. It is shown that
contracts detect large percentage of failures (roughly 80% of
the faults detected using hard-coded oracles). Moreover, it is
shown that the percentage of the detected faults depends on
the precision of the contracts. Baudry et al, [8] showed that
the quality of the contracts is more important than their
quantity. In [7], it is found that the effort involved in isolating
a fault improves eight folds between programs without
contracts as compared to the ones with contracts.

There are several tools and languages introduced to support
the use of the contracts. Design-by-Contract (DbC) [9] is used
to specify the contracts in Eiffel language. Jcontract [10] and
iContract [11] are tools used to implement DbC for Java
programs. In both tools, contracts written in DbC are specified
as Java comments. The iContract tool instruments the Java
program with extra code to check the contracts. The
instrumented Java program can then be compiled as usual with
a Java compiler. The Jcontract tool is provided with a
compiler that checks the DbC specifications and instruments
the .class file with extra bytecodes to check the contracts at
run time.
In [3], Java Modeling Language (JML) [12] and [13] is used
to specify the contracts for Java methods. In this work, JML is
integrated with Junit framework [14] to test the Java methods.
JML is also used in the Korat framework [15], where the
method specifications are used to automatically generate test
cases for Java methods and to check the correctness of the
outputs. JTest [16] is a tool that uses DbC contracts to
automatically generate test cases for Java methods and to
check the correctness of the outputs.

III. SYNTHESIZING THE STATES OF A FIC
To synthesize the states of a FIC, we have to construct the

condition/instance-variable table. In the table, the columns and
rows represent the non-static instance-variables of the FIC and
the pre-condition/post-conditions of the FIC methods that
contain conditions involving the non-static instance variables,
respectively. In the table, we consider only the non-static
instance variables. The values of the static instance variables
do not change during the object life cycle and, therefore, they
do not contribute in determining the object states. Table II
shows the condition/instance-variable table extracted from
Table I.

Finally, the table has to be optimized by eliminating
redundant rows and unnecessary information. To optimize the
table follow these steps

Step 1: Delete any clause that depends on a dynamic variable
(i.e., a variable that its value is not assigned at compilation
time or can change during the object life-cycle) because the
combinations of the instance variable values that represent a
state of a class are determined at compilation time and do not
change during the object life-cycle. The deleted clauses are
considered later in the transition synthesis process.
Step 2: Delete redundant rows.
Step 3: If the combinations of instance variable values in a
row r1 overlap with the combinations of instance variable
values of another row r2, replace r1 and r2 with three rows: the
first one contains the combinations of instance variable values
contained in r1 and not contained in r2, the second one
contains the combinations of instance variable values
contained in r2 and not contained in r1, and the third row
contains the overlapping combinations of instance variable
values.
Step 4: Iterate through steps 2 and 3 until no redundant rows
and no rows for which Step 3 can be applied exist.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1257

TABLE II
THE CONDITION/INSTANCE-VARIABLE TABLE EXTRACTED FROM TABLE I

Each row in the optimized table represents a state of the
object of that class during its life-cycle based on the instance
variable value combination shown in the row. Step 1 ensures
that the states do not change during the object life-cycle (i.e., a
basic property of the states of a class state-based model as
described in [4]) and, therefore, each remaining clause in the
table has boundary values determined at compilation time.
The second step ensures that there are no redundant states in
the synthesized model. Step 3 ensures that each synthesized
state is exclusive (i.e., there is no overlapping states).
Determining the overlapping combinations of instance
variable values contained in two rows is straightforward
because the condition clauses in the rows have fixed boundary
values as ensured in Step 1. Finally, Step 4 holds the stopping
criterion for the state synthesis process.

When the optimization rules are applied on Table II,
according to Step 1, ‘balance+amount’ and ‘balance-amount’
are deleted from rows 3 and 4, respectively, because they
depend on dynamic variables. This makes rows 3 and 4
redundant with row 2 and, therefore, rows 3 and 4 are deleted
according to Step 2. The combinations of instance variable
values contained in row 1 overlap with the combinations of
instance variable values contained in row 2. Therefore, to
avoid the creation of overlapping states, rows 1 and 2 are
substituted with three rows. The first row contains the
combinations of instance variable values contained in row 1
and not contained in row 2. This row is ignored because it
does not contain any combination of instance variable values
(i.e., all the combinations of instance variable values
contained in row 1 overlap with the combinations of instance
variable values contained in row 2). The second row contains
the combinations of instance variable values contained in row
2 and not contained in row 1 (i.e., the combinations of
instance variable values that has balance<0). The third row
contains the overlapping combinations of instance variable
values of rows 1 and 2 (i.e., the combinations of instance
variable values that has balance >=0). Finally, the
combinations of instance variable values contained in the third
row formed in the previous step overlap with the
combinations of instance variable values contained in row 5.
Therefore, the two rows are replaced with three rows. The
first row is ignored because it does not contain any

combination of instance variable values (i.e., all of the
combinations of instance variable values contained in the third
row formed in the previous step overlap with the
combinations of instance variable values contained in row 5).
The second row has getUpdate() >=MaxPeriod and the third
row has getUpdate() <MaxPeriod. This results in having the
optimized table shown in Table III. In this table, each row
represents a state that corresponds to the instance variable
value combinations given in the row. The combinations of
instance variable values in each row are called the state-
invariants [4].

TABLE III

OPTIMIZED TABLE CONSTRUCTED BY APPLYING OPTIMIZATION RULES ON
TABLE II

State
identifier

Instance-variables

 frozen balance getUpdate()

1 false >=0 <MaxPeriod

2 false <0 <MaxPeriod

3 false >=0 >=MaxPeriod

4 true >=0

IV. SYNTHESIZING THE TRANSITIONS OF A FIC

To extract the transitions that model the legal behavior of a
FIC, we have to map the pre-conditions and post-conditions of
the FIC methods to the extracted state-invariants. Each state in
which its state-invariants satisfy the pre-conditions of a
method is a source state for the transition associated with the
method call. Moreover, each state in which its state-invariants
satisfy the post-conditions of a method is a destination state
for the transition associated with the method call. The
procedure shown in Fig. 4 explains the mapping process and
shows how to extract the predicates and actions of the
transitions. The source state of the constructor method is by
default the alpha state. If no destructor method is specified in
the class, an unlabeled transition has to be added from each
state, other than the alpha state, to the omega state.

Non-static instance-variables Condition
identifier

Source of the condition
frozen balance getUpdate()

1 post-condition of the NewAccount method, pre-condition of
the withdraw method, post-condition of the unfreeze method,
and post-condition of the activate method

false >=0 <MaxPeriod

2 Pre-condition of the deposit method false <MaxPeriod
3 Post-condition of the deposit method false balance+amount <MaxPeriod
4 Post-condition of the withdraw method false balance-amount <MaxPeriod
5 Pre-condition of the freeze method false >=0
6 Post-condition of the freeze method and pre-condition of the

freeze method
true >=0

7 Pre-condition of the activate method false >=0 >=MaxPeriod

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1258

Fig. 4 Construction process of the transitions of the FIC specification
model

When the procedure shown in Fig. 4 is applied on tables I
and III, the transitions shown in Table IV are extracted. For
example, since the balance method has no pre-conditions and
its post-condition satisfies all the invariants of all states, a self-
loop transition associated with balance() event is added to
each state (other than alpha and omega). The post-condition of
the balance method is not specified in any state and, therefore,
it is added as an action to all the self-loop transitions. For the
withdraw method, the pre-conditions satisfy the invariants of
state 1 and the post-conditions satisfy the invariants of states 1
and 2. Therefore, two transitions associated with the withdraw
event are added as shown in Table IV. Note that the set of pre-
conditions of the method is the same as the invariants of state
1, which causes no predicates to be added at this step. The set
of post-conditions of the withdraw method includes
“balance=balance-amount” which is not included in the state
invariants of states 1 and 2. Therefore, the post-condition is
added to both transitions as actions. Finally, since state 1 now
has two outgoing transitions that have the same labels, the
difference between the invariants of the destination states of
the transitions has to be added as predicates to the transitions.
The difference between states 1 and 2 is that state 1 has
balance>=0, while state 2 has balance<0. Therefore, “balance
(at destination state) >=0” has to be added to one of the
transitions (from state 1 to state 1) and “balance (at destination
state) <0” has to be added to the other transition (from state 1
to state 2). Since the predicates are checked at the source
states, we can substitute “balance (at destination state)” by
“balance-amount”.

TABLE IV
TRANSITIONS OF THE NEWACCOUNT FIC EXTRACTED USING THE PROCEDURE SHOWN IN FIG. 4

Transitio
n

identifier

Source state
identifier

Destination
state identifier

Transition
event

Transition
predicates

Transition actions

1 alpha 1 NewAccount amount>=0
2 1 1 balance return balance
3 2 2 balance return balance
4 3 3 balance return balance
5 4 4 balance return balance
6 1 1 deposit balance+amount>=0 balance=balance+amount
7 1 2 deposit balance+amount<0 balance=balance+amount
8 2 1 deposit balance+amount>=0 balance=balance+amount
9 2 2 deposit balance+amount<0 balance=balance+amount

10 1 1 withdraw balance-amount>=0 balance=balance-amount
11 1 2 withdraw balance-amount<0 balance=balance-amount
12 1 4 freeze
13 3 4 freeze
14 4 1 unfreeze balance>=0
15 3 1 activate
16 1 Omega
17 2 Omega
18 3 Omega
19 4 Omega

Inputs: Invariants of the FIC states and the pre-conditions
and post-conditions of the FIC methods.

Output: Transitions of the FIC state-based model.
Procedure:
1. for each FIC method do
2. Search for all states whose state-invariants satisfy the

pre-conditions of the method.
3. Search for all states whose state-invariants satisfy the

post-conditions of the method.
4. Create a transition from each state found in Step 2 to

each state found in Step 3 and associate the
method name with the transition as an event.

5. for each transition created in Step 4 do
6. if the set of pre-conditions of the method is a

superset of the set of state-invariants of the
source state of the transition then add the non-
overlapped portion of the set as predicates to the
transition.

7. if the set of post-conditions of the method is a
superset of the set of state-invariants of the
destination state of the transition then add the
non-overlapped portion of the set as actions to
the transition.

8. if there is another transition that has the same
source state, event, and predicates then add to
each of the transitions the difference between
the post-conditions of the method called in the
transition and the state-invariants of the
destination states as predicates to the transitions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1259

Since the transition synthesis method uses the method
specifications to synthesize the transitions, it is limited to
event-driven transitions (i.e., transitions that have associated
events). For non-event-driven transitions, it is required to
determine the source and destination states first. The state-
invariants of the destination state, which are different than the
state-invariants of the source state, are then added as
predicates to the transition. For the NewAccount class
example, we have identified two non-event-driven transition

examples as shown in Table V. The invariant of state 3, which
is different than the invariant of state 1, is
“getUpdate()>=MaxPeriod”. Therefore, this difference is
added as a predicate to the non-event-driven transition that has
the states 1 and 3 as source and destination states,
respectively. The same situation applies for the transition that
has the states 4 and 3 as source and destination states,
respectively.

TABLE V
NON-EVENT-DRIVEN TRANSITIONS OF THE NEWACCOUNT FIC

 Fig. 5 shows the synthesized state-transition model
represented in a State Transition Diagram (STD). In the
diagram, states and transitions are represented by nodes and
edges, respectively. To make the diagram more
understandable, meaningful names can be associated to the
states. In Fig. 5, states numbered 1, 2, 3, and 4 are named
Open, Overdrawn, Inactive, and Frozen, respectively. The
transitions are labeled by their identifiers shown in Tables IV
and V.

Fig. 5 STD of the synthesized state-transition model of the
NewAccount FIC

V. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a technique to synthesize the

state-transition model for the sequential class behavior using
the specifications of the FIC methods provided in the hook
descriptions. The technique first synthesizes automatically the
states of the model. Then it synthesizes automatically the
event-driven transitions of the model and their attributes (i.e.,
event, predicates, and actions). Given the source and
destination states of the non-event-driven transitions, the
technique finds automatically the attributes of the transitions.
As a result, the test drivers used to test the sequential behavior
of the FIC can be generated from the contracts almost for free.

Moreover, using the proposed synthesis technique the time

required to verify the correctness of the model is eliminated.
The proposed technique does not guarantee synthesizing a
free of infeasible paths model. Infeasible paths are the ones
that cannot be executed. To solve this problem, we have to
either detect the infeasible paths and avoid using them in
generating the test drivers [17], or we have to ignore any test
driver that has violated pre-conditions [3]. The proposed
technique focuses on modeling classes that have sequential
behaviors. Further research is required to model classes that
have concurrent behaviors. To model such classes,
synchronization contracts [18] can be used. A prototype tool is
developed to automate the FIC testing process shown in Fig.
1. However, the first step of the process is not implemented
yet. Further work is required to extend the tool to fully
automate the testing process.

REFERENCES
[1] K. Beck and R, Johnson. Patterns generated architectures, Proc. of

ECOOP 94, 1994, 139-149.
[2] G. Froehlich. Hooks: an aid to the reuse of object-oriented frameworks,

Ph.D. Thesis, University of Alberta, Department of Computing Science,
2002.

[3] Y. Cheon and G. Leavens, A simple and practical approach to unit
testing: the JML and JUnit way, Proc. of the 16th European Conference
on Object-Oriented Programming (ECOOP2002), June 2002, pp. 231-
254.

[4] R. Binder. Testing object-oriented systems, Addison Wesley, 1999.
[5] J. Offut and A. Abdurazik, Generating tests from UML specifications,

Second International Conference on the Unified Modeling Language
(UML99), Fort Collins, CO, October 1999, 416-429.

[6] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, Evaluation of three
specification-based testing criteria, Sixth IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS '00), Tokyo,
Japan, September 2000, 179-187.

[7] L. Briand, Y. Labiche, and H. Sun, Investigating the use of analysis
contracts to support fault isolation in object-oriented code, International
Symposium on Software Testing and Analysis ISSTA, Rome, Italy, July
2002.

[8] B. Baudry, Y. LeTraon, and J.-M. Jézéquel, Robustness and
diagnosability of OO-systems designed by contracts, Proceedings of
Metrics'01, London, UK, April 2001.

[9] B. Meyer, Design by contracts, IEEE Computer, 1992, Vol. 25(10), 40-
52.

Transition identifier Source state identifier Destination state
identifier

Transition predicates Transition
actions

20 1 3 getUpdate()>=MaxPeriod -
21 4 3 getUpdate()>=MaxPeriod && !frozen -

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1260

[10] Jcontract,
http://www.parasoft.com/jsp/products/home.jsp?product=Jcontract,
ParaSoft Corporation, July 2006.

[11] iContract: the Java Design-by-Contract tool,
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-
cooltools.html, July 2006.

[12] G. Leavens, A. Baker, and C. Ruby, Preliminary design of JML: a
behavioral interface specification language for Java, TR 98-06p, Iowa
State University, Department of Computer Science, August 2001.

[13] G. Leavens, A. Baker, and C. Ruby, JML: a notation for detailed design.
In H. Kilov, B. Rupe, and I. Simmonds, editors, behavioral
specifications of Businesses and Systems, chapter 12, Kluwer, 1999, pp.
175-188.

[14] Junit, http://junit.sourceforge.net/, July 2006.
[15] C. Boyapati, S. Khurshid, and D. Marinov, Korat: Automated Testing

Based on Java Predicates, International Symposium on Software Testing
and Analysis ISSTA, Rome, Italy, July 2002.

[16] Jtest, http://www.parasoft.com/jsp/products/home.jsp?product=Jtest,
ParaSoft Corporation, July 2006.

[17] J. Offutt and J. Pan, Automatically detecting equivalent mutants and
infeasible paths, The Journal Of Software Testing, Verification, and
Reliability, 7(3), September 1997, pp 165-192.

[18] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, Making
components contract aware, IEEE Computer, 13(7), July 1999.

