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Abstract—An application framework provides a reusable design 

and implementation for a family of software systems. Application 
developers extend the framework to build their particular 
applications using hooks. Hooks are the places identified to show 
how to use and customize the framework. Hooks define the 
Framework Interface Classes (FICs) and the specifications of their 
methods. As part of the development life cycle, it is required to test 
the implementations of the FICs. Building a testing model to express 
the behavior of a class is an essential step for the generation of the 
class-based test cases. The testing model has to be consistent with the 
specifications provided for the hooks. State-based models consisting 
of states and transitions are testing models well suited to object-
oriented software. Typically, hand-construction of a state-based 
model of a class behavior is expensive, error-prone, and may result in 
constructing an inconsistent model with the specifications of the class 
methods, which misleads verification results. In this paper, a 
technique is introduced to automatically synthesize a state-based 
testing model for FICs using the specifications provided for the 
hooks. A tool that supports the proposed technique is introduced. 
 

Keywords—Framework interface classes, hooks, state-based 
testing, testing model. 

I. INTRODUCTION 

N application framework provides a reusable design and 
implementation for a family of software systems [1]. 

Users of the framework complete or extend the framework to 
build their particular applications. Places at which users can 
add their own classes are called hooks [2]. To build an 
application using a framework, application developers create 
two types of classes: (1) classes that use the framework 
classes and (2) classes that do not. Classes that use the 
framework classes are called Framework Interface Classes 
(FICs) because they act as interfaces between the framework 
classes and the second type of the classes created by 
application developers. Building reusable test cases for the 
FICs and providing the test cases with the framework can 
potentially reduce the framework application testing time and 
increase application quality. Providing the frameworks with 
reusable test cases makes the frameworks more usable for and 
marketable to application developers.  

As shown in Fig. 1, the input to the testing process of the 
FICs is the specifications of the FIC methods. Hook 
descriptions provide the specifications of the FIC methods in 
terms of pre- and post-conditions. There are two types of pre-  
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and post-conditions: (1) construction ones and (2) execution 
ones and these are illustrated in the example in Fig. 2. The 
construction pre- and post-conditions are the constraints that 
must be satisfied before and after the hook is used, 
respectively, and they are identified in the hook description by 
keywords such as Object, Class, and Operation. The 
execution pre- and post-conditions are the dynamic constraints 
that must be satisfied before and after the methods defined in 
the hook are executed, respectively. The construction pre- and 
post-conditions, in contrast with the execution ones, do not 
describe the behavior of the methods defined in the hooks and, 
therefore, cannot be used in synthesizing the behavioral model 
of the FIC. The execution pre-conditions are described in 
terms of class instance variables and method input parameters. 
The execution post-conditions are described in terms of class 
instance variables, input parameters, output parameters, 
method return values, and method thrown exceptions. More 
precisely, the execution method specifications (i.e., pre- and 
post-conditions) check: (1) whether class instance variables, 
method input parameters, method output parameters, and 
method return values are within the allowed domain of values,  
and (2) whether the relationships among the values of the 
class instance variables, method input parameters, method 
output parameters, and method return values are satisfied.  
 

 
Fig. 1 The FIC testing process 

 
To help understand the relationship between the hooks and 

the FICs let us examine a concrete example. Fig. 2 shows the 
description of the Initialize Account hook of a banking 
framework. In the Changes section of the hook, the FIC called 
NewAccount is introduced. The hook specifies also one of the 
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FIC methods, which is the constructor method 
NewAccount(int amount). In the Pre-conditions and Post-
conditions sections of the hook description, the pre-conditions 
and post-conditions of the constructor method are specified. 
The first stated post-condition is a construction post-condition 
because it describes a condition that must be satisfied when 
the hook is used and it is identified by the keyword Operation. 
The other pre- and post-conditions are execution ones because 
they describe the conditions that must be satisfied, 
respectively, before and after the constructor method is 
executed. To determine the behavior of a FIC we have to 
consider all the framework hooks that specify the FIC 
methods. For the rest of this paper, unless stated otherwise, all 
pre- and post-conditions referred to are of type execution, 
because these are the conditions in which we are most 
interested in building test cases.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 The description of the Initialize Account hook of a banking 

framework 
 

In our concrete example, the hooks of the banking 
framework define several public methods for the NewAccount 
FIC. The methods are NewAccount, balance, deposit, 
withdraw, freeze, unfreeze, activate. The pre- and post-
conditions of the NewAccount FIC method defined in the 
hooks are listed in Table I. From the pre-conditions and post-
conditions, we synthesize the states and transitions of the 
NewAccount class. 

For example, in Table I, balance() is a method that has no 
pre-conditions which means that it can be called at any time 
during the object life cycle. MaxPeriod is a static instance 
variable, amount is a local variable, and the variables balance, 
frozen, the return of the balance() method, and the return of 
the getUpdate() method are non-static instance variables. The 
balance() method returns the value of the balance instance 
variable. The getUpdate method calculates the difference 
between the current date and the last activity date.  

Despite the fact that the method specifications hold the 
specifications for the class behaviors, researchers seem to 
limit the method specification use to support the automated 
detection of software failures and the isolation of faults, and to 
generate method-based test cases. We are not aware of any 
work that uses the method specifications to generate class-

based test cases. For example, in [3], to test a class behavior, 
class behavior testing models (e.g., state-transition model or 
UML statechart) used to generate the test drivers have to be 
pre-provided, and the method specifications are used only as 
testing oracles. Hand-construction of the class behavior testing 
model is expensive, error-prone, and may result in 
constructing an inconsistent model with the specifications of 
the class methods, which misleads verification results. 

In this paper, a new technique is introduced to 
automatically synthesize the state-transition testing model of 
the FIC sequential class behavior from the specifications of 
the class methods. This reduces considerably the class testing 
cost and the chance of errors. The result is a state-based 
testing model that is consistent with respect to the 
specifications of the class methods. Therefore, using the 
introduced state-transition model synthesis technique, only the 
specifications of the FIC methods have to be provided to test 
the FIC behavior. The state-transition model is synthesized 
automatically from the method specifications. After that, a 
specification-based testing technique can be applied to derive 
the test drivers (i.e., implementations of the test cases) from 
the synthesized state-transition model. Finally, the test drivers 
are executed and the method specifications are used as testing 
oracles to evaluate the actual results of the test cases as pass or 
no pass. Fig. 3 compares the testing process that uses our 
proposed modeling technique and the one that does not (e.g., 
[4], [5], and [6]). In process (a), the FIC testing model as well 
as the FIC method specifications has to be provided to test the 
FICs, while in process (b), only the FIC method specifications 
have to be provided to test the FICs and the FIC testing model 
is synthesized internally in the process. 

 

 
Fig. 3 FIC behavior testing process using method specifications: 

(a) without using the proposed modeling technique and (b) with 
using the proposed modeling technique 

 
The paper is organized as follows. Section II, discusses the 

related work. In Section III and Section IV, the proposed 
techniques to extract the class behavior states and transitions, 
respectively, from the method specifications are described. 
Finally, Section V provides conclusions and a discussion of 
future work. 

Name: Initialize Account 
Requirement: Initialize an account (i.e., set the currency and 
bank branches). 
… 
Pre-conditions: amount>=0; 
Changes: 
 NewAccount.NewAccount(int amount) extends 
Account.Account(int amount); 
 … 
Post-conditions:  

1. Operation NewAccount. NewAccount (int);  
2. NewAccount.balance>=0; 
3. ! NewAccount.frozen; 
4. NewAccount.getUpdate()< NewAccount.MaxPeriod 

…   
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TABLE I 
THE PRE-CONDITIONS AND POST-CONDITIONS OF THE NEWACCOUNT CLASS METHODS 

Method Pre-conditions Post-conditions 

NewAccount 
(amount) 

amount>=0 NewAccount.balance>=0 && ! NewAccount.frozen && 
NewAccount.getUpdate()< NewAccount.MaxPeriod 

balance()   
deposit 
(amount) 

! NewAccount.frozen && NewAccount.getUpdate()< 
NewAccount.MaxPeriod 

NewAccount.balance=amount+ NewAccount.balance && ! 
NewAccount.frozen && NewAccount.getUpdate()< 
NewAccount.MaxPeriod 

withdraw(am
ount) 

NewAccount.balance>=0 && ! NewAccount.frozen && 
NewAccount.getUpdate()< NewAccount.MaxPeriod 

NewAccount.balance= NewAccount.balance-amount && ! 
NewAccount.frozen && NewAccount.getUpdate()< 
NewAccount.MaxPeriod 

freeze() ! NewAccount.frozen && NewAccount.balance>=0 NewAccount.frozen && NewAccount.balance>=0 
unfreeze() NewAccount.frozen && NewAccount.balance>=0 ! NewAccount.frozen && NewAccount.balance>=0 && 

NewAccount.getUpdate()< NewAccount.MaxPeriod 
activate() NewAccount.balance>=0 && !NewAccount.frozen 

&&NewAccount.getUpdate()>= 
NewAccount.MaxPeriod 

NewAccount.balance>=0 &&   !NewAccount.frozen && 
NewAccount.getUpdate()< NewAccount.MaxPeriod 

 

II.    RELATED WORK 
Researchers identified two benefits of using the method 

specifications (i.e., pre- and post-conditions) (1) evaluating 
the results of the test cases, and (2) building test cases to test 
the methods of classes. The method specifications and the 
class invariants are called contracts. In [7], contracts are used 
to evaluate the results of the test cases. It is shown that 
contracts detect large percentage of failures (roughly 80% of 
the faults detected using hard-coded oracles). Moreover, it is 
shown that the percentage of the detected faults depends on 
the precision of the contracts. Baudry et al, [8] showed that 
the quality of the contracts is more important than their 
quantity. In [7], it is found that the effort involved in isolating 
a fault improves eight folds between programs without 
contracts as compared to the ones with contracts. 

There are several tools and languages introduced to support 
the use of the contracts. Design-by-Contract (DbC) [9] is used 
to specify the contracts in Eiffel language. Jcontract [10] and 
iContract [11] are tools used to implement DbC for Java 
programs. In both tools, contracts written in DbC are specified 
as Java comments. The iContract tool instruments the Java 
program with extra code to check the contracts. The 
instrumented Java program can then be compiled as usual with 
a Java compiler. The Jcontract tool is provided with a 
compiler that checks the DbC specifications and instruments 
the .class file with extra bytecodes to check the contracts at 
run time. 
In [3], Java Modeling Language (JML) [12] and [13] is used 
to specify the contracts for Java methods. In this work, JML is 
integrated with Junit framework [14] to test the Java methods. 
JML is also used in the Korat framework [15], where the 
method specifications are used to automatically generate test 
cases for Java methods and to check the correctness of the 
outputs. JTest [16] is a tool that uses DbC contracts to 
automatically generate test cases for Java methods and to 
check the correctness of the outputs.  

III. SYNTHESIZING THE STATES OF A FIC 
To synthesize the states of a FIC, we have to construct the 

condition/instance-variable table. In the table, the columns and 
rows represent the non-static instance-variables of the FIC and 
the pre-condition/post-conditions of the FIC methods that 
contain conditions involving the non-static instance variables, 
respectively. In the table, we consider only the non-static 
instance variables. The values of the static instance variables 
do not change during the object life cycle and, therefore, they 
do not contribute in determining the object states. Table II 
shows the condition/instance-variable table extracted from 
Table I. 

Finally, the table has to be optimized by eliminating 
redundant rows and unnecessary information. To optimize the 
table follow these steps 

Step 1: Delete any clause that depends on a dynamic variable 
(i.e., a variable that its value is not assigned at compilation 
time or can change during the object life-cycle) because the 
combinations of the instance variable values that represent a 
state of a class are determined at compilation time and do not 
change during the object life-cycle. The deleted clauses are 
considered later in the transition synthesis process. 
Step 2:  Delete redundant rows. 
Step 3: If the combinations of instance variable values in a 
row r1 overlap with the combinations of instance variable 
values of another row r2, replace r1 and r2 with three rows: the 
first one contains the combinations of instance variable values 
contained in r1 and not contained in r2, the second one 
contains the combinations of instance variable values 
contained in r2 and not contained in r1, and the third row 
contains the overlapping combinations of instance variable 
values. 
Step 4: Iterate through steps 2 and 3 until no redundant rows 
and no rows for which Step 3 can be applied exist. 
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TABLE II 
THE CONDITION/INSTANCE-VARIABLE TABLE EXTRACTED FROM TABLE I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each row in the optimized table represents a state of the 
object of that class during its life-cycle based on the instance 
variable value combination shown in the row. Step 1 ensures 
that the states do not change during the object life-cycle (i.e., a 
basic property of the states of a class state-based model as 
described in [4]) and, therefore, each remaining clause in the 
table has boundary values determined at compilation time. 
The second step ensures that there are no redundant states in 
the synthesized model. Step 3 ensures that each synthesized 
state is exclusive (i.e., there is no overlapping states). 
Determining the overlapping combinations of instance 
variable values contained in two rows is straightforward 
because the condition clauses in the rows have fixed boundary 
values as ensured in Step 1. Finally, Step 4 holds the stopping 
criterion for the state synthesis process. 

When the optimization rules are applied on Table II, 
according to Step 1, ‘balance+amount’ and ‘balance-amount’ 
are deleted from rows 3 and 4, respectively, because they 
depend on dynamic variables. This makes rows 3 and 4 
redundant with row 2 and, therefore, rows 3 and 4 are deleted 
according to Step 2. The combinations of instance variable 
values contained in row 1 overlap with the combinations of 
instance variable values contained in row 2. Therefore, to 
avoid the creation of overlapping states, rows 1 and 2 are 
substituted with three rows. The first row contains the 
combinations of instance variable values contained in row 1 
and not contained in row 2. This row is ignored because it 
does not contain any combination of instance variable values 
(i.e., all the combinations of instance variable values 
contained in row 1 overlap with the combinations of instance 
variable values contained in row 2). The second row contains 
the combinations of instance variable values contained in row 
2 and not contained in row 1 (i.e., the combinations of 
instance variable values that has balance<0). The third row 
contains the overlapping combinations of instance variable 
values of rows 1 and 2 (i.e., the combinations of instance 
variable values that has balance >=0). Finally, the 
combinations of instance variable values contained in the third 
row formed in the previous step overlap with the 
combinations of instance variable values contained in row 5. 
Therefore, the two rows are replaced with three rows. The 
first row is ignored because it does not contain any 

combination of instance variable values (i.e., all of the 
combinations of instance variable values contained in the third 
row formed in the previous step overlap with the 
combinations of instance variable values contained in row 5). 
The second row has getUpdate() >=MaxPeriod and the third 
row has getUpdate() <MaxPeriod. This results in having the 
optimized table shown in Table III. In this table, each row 
represents a state that corresponds to the instance variable 
value combinations given in the row. The combinations of 
instance variable values in each row are called the state-
invariants [4]. 

 
TABLE III 

OPTIMIZED TABLE CONSTRUCTED BY APPLYING OPTIMIZATION RULES ON 
TABLE II 

State 
identifier 

Instance-variables 

 frozen balance getUpdate() 

1 false >=0 <MaxPeriod 

2 false <0 <MaxPeriod 

3 false >=0 >=MaxPeriod 

4 true >=0  

 
IV. SYNTHESIZING THE TRANSITIONS OF A FIC 

To extract the transitions that model the legal behavior of a 
FIC, we have to map the pre-conditions and post-conditions of 
the FIC methods to the extracted state-invariants. Each state in 
which its state-invariants satisfy the pre-conditions of a 
method is a source state for the transition associated with the 
method call. Moreover, each state in which its state-invariants 
satisfy the post-conditions of a method is a destination state 
for the transition associated with the method call. The 
procedure shown in Fig. 4 explains the mapping process and 
shows how to extract the predicates and actions of the 
transitions. The source state of the constructor method is by 
default the alpha state. If no destructor method is specified in 
the class, an unlabeled transition has to be added from each 
state, other than the alpha state, to the omega state. 

 
 

Non-static instance-variables Condition 
identifier 

Source of the condition 
frozen balance getUpdate() 

1 post-condition of the NewAccount method, pre-condition of 
the withdraw method, post-condition of the unfreeze method, 
and post-condition of the activate method  

false >=0 <MaxPeriod 

2 Pre-condition of the deposit method false  <MaxPeriod 
3 Post-condition of the deposit method false balance+amount <MaxPeriod 
4 Post-condition of the withdraw method false balance-amount <MaxPeriod 
5 Pre-condition of the freeze method false >=0  
6 Post-condition of the freeze method and pre-condition of the 

freeze method 
true >=0  

7 Pre-condition of the activate method false >=0 >=MaxPeriod 
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Fig. 4 Construction process of the transitions of the FIC specification 
model 

When the procedure shown in Fig. 4 is applied on tables I 
and III, the transitions shown in Table IV are extracted. For 
example, since the balance method has no pre-conditions and 
its post-condition satisfies all the invariants of all states, a self-
loop transition associated with balance() event is added to 
each state (other than alpha and omega). The post-condition of 
the balance method is not specified in any state and, therefore, 
it is added as an action to all the self-loop transitions. For the 
withdraw method, the pre-conditions satisfy the invariants of 
state 1 and the post-conditions satisfy the invariants of states 1 
and 2. Therefore, two transitions associated with the withdraw 
event are added as shown in Table IV. Note that the set of pre-
conditions of the method is the same as the invariants of state 
1, which causes no predicates to be added at this step. The set 
of post-conditions of the withdraw method includes 
“balance=balance-amount” which is not included in the state 
invariants of states 1 and 2. Therefore, the post-condition is 
added to both transitions as actions. Finally, since state 1 now 
has two outgoing transitions that have the same labels, the 
difference between the invariants of the destination states of 
the transitions has to be added as predicates to the transitions. 
The difference between states 1 and 2 is that state 1 has 
balance>=0, while state 2 has balance<0. Therefore, “balance 
(at destination state) >=0” has to be added to one of the 
transitions (from state 1 to state 1) and “balance (at destination 
state) <0” has to be added to the other transition (from state 1 
to state 2).  Since the predicates are checked at the source 
states, we can substitute “balance (at destination state)” by 
“balance-amount”.

TABLE IV 
TRANSITIONS OF THE NEWACCOUNT FIC EXTRACTED USING THE PROCEDURE SHOWN IN FIG. 4 

Transitio
n 

identifier 

Source state 
identifier 

Destination 
state identifier 

Transition 
event 

Transition 
predicates 

Transition actions 

1 alpha 1 NewAccount amount>=0  
2 1 1 balance  return balance 
3 2 2 balance  return balance 
4 3 3 balance  return balance 
5 4 4 balance  return balance 
6 1 1 deposit balance+amount>=0 balance=balance+amount 
7 1 2 deposit balance+amount<0 balance=balance+amount 
8 2 1 deposit balance+amount>=0 balance=balance+amount 
9 2 2 deposit balance+amount<0 balance=balance+amount 

10 1 1 withdraw balance-amount>=0 balance=balance-amount 
11 1 2 withdraw balance-amount<0 balance=balance-amount 
12 1 4 freeze   
13 3 4 freeze   
14 4 1 unfreeze balance>=0  
15 3 1 activate   
16 1 Omega    
17 2 Omega    
18 3 Omega    
19 4 Omega    

 
 
 
 

 
 
 

Inputs: Invariants of the FIC states and the pre-conditions 
and post-conditions of the FIC methods. 

Output: Transitions of the FIC state-based model. 
Procedure: 
1. for each FIC method do 
2.       Search for all states whose state-invariants satisfy the 

pre-conditions of the method. 
3.       Search for all states whose state-invariants satisfy the 

post-conditions of the method. 
4.      Create a transition from each state found in Step 2 to 

each state found in Step 3 and associate the 
method name with the transition as an event. 

5.        for each transition created in Step 4 do 
6.         if the set of pre-conditions of the method is a 

superset of the set of state-invariants of the 
source state of the transition then add the non-
overlapped portion of the set as predicates to the 
transition. 

7.       if the set of post-conditions of the method is a 
superset of the set of state-invariants of the 
destination state of the transition then add the 
non-overlapped portion of the set as actions to 
the transition. 

8.      if there is another transition that has the same 
source state, event, and predicates then add to 
each of the transitions the difference between 
the post-conditions of the method called in the 
transition and the state-invariants of the 
destination states as predicates to the transitions.
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Since the transition synthesis method uses the method 
specifications to synthesize the transitions, it is limited to 
event-driven transitions (i.e., transitions that have associated 
events). For non-event-driven transitions, it is required to 
determine the source and destination states first. The state-
invariants of the destination state, which are different than the 
state-invariants of the source state, are then added as 
predicates to the transition. For the NewAccount class 
example, we have identified two non-event-driven transition 

examples as shown in Table V. The invariant of state 3, which 
is different than the invariant of state 1, is 
“getUpdate()>=MaxPeriod”. Therefore, this difference is 
added as a predicate to the non-event-driven transition that has 
the states 1 and 3 as source and destination states, 
respectively. The same situation applies for the transition that 
has the states 4 and 3 as source and destination states, 
respectively. 

 
 

TABLE V 
NON-EVENT-DRIVEN TRANSITIONS OF THE NEWACCOUNT FIC 

 
 
 
 
 

 
    Fig. 5 shows the synthesized state-transition model 
represented in a State Transition Diagram (STD). In the 
diagram, states and transitions are represented by nodes and 
edges, respectively. To make the diagram more 
understandable, meaningful names can be associated to the 
states. In Fig. 5, states numbered 1, 2, 3, and 4 are named 
Open, Overdrawn, Inactive, and Frozen, respectively. The 
transitions are labeled by their identifiers shown in Tables IV 
and V. 

 

 
 

Fig. 5 STD of the synthesized state-transition model of the 
NewAccount FIC 

V.     CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced a technique to synthesize the 

state-transition model for the sequential class behavior using 
the specifications of the FIC methods provided in the hook 
descriptions. The technique first synthesizes automatically the 
states of the model. Then it synthesizes automatically the 
event-driven transitions of the model and their attributes (i.e., 
event, predicates, and actions). Given the source and 
destination states of the non-event-driven transitions, the 
technique finds automatically the attributes of the transitions. 
As a result, the test drivers used to test the sequential behavior 
of the FIC can be generated from the contracts almost for free.  

 

 
Moreover, using the proposed synthesis technique the time 

required to verify the correctness of the model is eliminated. 
The proposed technique does not guarantee synthesizing a 
free of infeasible paths model. Infeasible paths are the ones 
that cannot be executed. To solve this problem, we have to 
either detect the infeasible paths and avoid using them in 
generating the test drivers [17], or we have to ignore any test 
driver that has violated pre-conditions [3]. The proposed 
technique focuses on modeling classes that have sequential 
behaviors. Further research is required to model classes that 
have concurrent behaviors. To model such classes, 
synchronization contracts [18] can be used. A prototype tool is 
developed to automate the FIC testing process shown in Fig. 
1. However, the first step of the process is not implemented 
yet. Further work is required to extend the tool to fully 
automate the testing process.  
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