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Generalized Rough Sets Applied to Graphs Related
to Urban Problems
Mihai Rebenciuc, Simona Mihaela Bibic

Abstract—Branch of modern mathematics, graphs represent in-
struments for optimization and solving practical applications in
various fields such as economic networks, engineering, network op-
timization, the geometry of social action, generally, complex systems
including contemporary urban problems (path or transport efficien-
cies, biourbanism, & c.). In this paper is studied the interconnection
of some urban network, which can lead to a simulation problem of a
digraph through another digraph. The simulation is made univoc or
more general multivoc. The concepts of fragment and atom are very
useful in the study of connectivity in the digraph that is simulation
- including an alternative evaluation of k- connectivity. Rough set
approach in (bi)digraph which is proposed in premier in this paper
contribute to improved significantly the evaluation of k-connectivity.
This rough set approach is based on generalized rough sets - basic
facts are presented in this paper.

Keywords—(Bi)digraphs, rough set theory, systems of interacting
agents, complex systems.

I. INTRODUCTION

COMPLEX systems represent sets of elements (agents)

which are not identical and connected through various

interactions (networks). Biourbanism [36] is the science that

focuses on the study of the concept of an urban organism

(or city regarded as an urban organism), considering it as a

hypercomplex system in relation to its internal and external

dynamics, as well as their mutual interactions. Also, biour-

banism aims to reformulate the epistemological foundation of

architecture and urbanism, in line with the science of complex

dynamic systems. In general, this approach therefore links bi-

ourbanism to the other sciences like life sciences (e.g., botany,

biology, zoology, agriculture and food, microbiology, physi-

ology, biochemistry, medical sciences) and integrated systems

sciences (e.g., ecology, statistical mechanics, thermodynamics,

operations research). Thus, the analysis of the evolutionary

dynamics of a complex system can be described using network

theory. From a mathematical point of view, network study

(particular, urban networks) uses graph theory (one of the

fundamental domains of discrete mathematics). In this respect,

the networks are essential elements to understand the basic

principles of other sciences, if these organizational principles

are structured around of the mathematics of complexity, such

as fractals and chaos theory. In terms of applicability in other

areas can list some of them: biology, IT, economics, social sci-

ences, urban planning. In some speciality works [33]–[36] has

been demonstrated that the urban environment is an extremely
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complex system that can be characterized by a large number

of relations and interconnections that occur both between

its components (agents) and between them and the external

environment. For example, the network of streets and alleys

whose interactions and connections determine the comfort’s

level of urban neighborhoods, as well as its overlapping with

other networks (energy, informational, social, economic flows,

ecological, etc.).

Graph theory [27], [33]–[35] is a tool for optimization and

solving practical applications in all fields, such as representa-

tion and study of economic and social networks, engineering,

optimization of networks (goods and information transport

systems), social action geometry, complex general systems,

including contemporary urban issues (analysis of transporta-

tion and distribution problems, biourbanism [36]), dynamic

programming to determine the optimal policy, game theory,

information theory (study of signs and codes). However, the

critical behavior of classical graph theory [35] has been noted

in solving existing problems (e.g., network security applica-

tions). In this respect, it was introduced the notion of bigraph

(an extension of the graph [33]), improved subsequently by

bigraph with sharing [34]. Bigraphs represent a mathematical

model for interacting systems of agents (ubiquitous systems

based on placing and linking) and having the ability to indicate

the position in space, displacement, and the agents’ intercon-

nections. As an extrapolation of applications of (bi)digraphs

is proposed rough set approach regarding to issues of possible

uncertainty related to urban problems [1]–[4].

II. GENERALIZED ROUGH SETS: A NEW LOOK

Remark 1. (A brief history)

Rough sets (RS) - as an extension of classic (crisp) sets

had an exponential development (by applications in various

areas) in the quarter century between when opening [5] and

testamentary time [6] - and continue today; this is illustrated

by a handbook [7] and by series LNCS Transactions in RS
[8] and LNAI RS and Knowledge Technologies [9] (a Pawlak

dedication). Originally RS were defined in a classifying (parti-

tioning) approximation space, i.e., in an equivalence relational

structure, then - more general in a covering approximation

space, i.e., a tolerance relational structure - up to a (ho-

mogeneous) relational approximation space [5], [11], [10],

[12], but in [10] Pawlak speaks about an alternative - a

topological approximation space which is an idea resumed in

other paper [13], [14]. A category approach to RS is made in

[15]. RS interfered and interferes with fuzzy sets (FS) theory
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that was initiated by Zadeh [18] and was then developed in

seven handbooks edited by Dubois and Prade between 1998

- 2000 and in IEEE Transactions on Fuzzy Systems (for a

synthesis see [16], [17]); the interference RS - FS consisted in

hybridizations FS -RS (RFS), RS - FS (FRS) that was initiated

by Dubois and Prade, see [19]. For other generalizations,

respectively for recent trends in applied RS see [20], [21],

respectively [22]–[26].

The paper [4] is an unification effort of some generaliza-

tions - with a weak alternative and with a new look of RS; in

addition are proposed two impact applications. Basic facts are

presented in this section.

Remark 2. (Nonhomogeneous relational approximation
space) A (nonhomogeneous) relational approximation space

(U, V.R) is in fact a (nonhomogeneous binary) relational

structure where R ∈ Rel(U, V ) - the set of (nonhomogeneous

binary) relations between U, V ; consequently are used - as a

addenda relative to (binary) relations (co)kernel, restrictions

and inducing [1], respectively sections [2]. In general R is

in U, V , i.e., U∗ = UR = dom(R) ⊂ U , V ∗ = RV =
codom(R) ⊂ V ; particularly, R is left-total if U∗ = U ,

respectively R is right-total (or surjective) if V ∗ = V and

R is total if it is so left-total, right-total.

Let be Y ∈ P(V )
Definition 1. ([right-] rough approximations) The [right-]
[rough] lower approximation of Y [with respect to R] - for
short [R-right-] [r-]lower approximation of Y is

r − low approx
→
R
(Y ) = Y̊

→
R

=

= ∪{R < u > |Y |R < u >= R < u >, u ∈ U∗} ,
(1)

here r is informative and can omit.

The [right-] rough upper approximation of Y [with respect
to R] - for short [R-right-] r-upper approximation of Y is

r − uppapprox
→
R
(Y ) =

∗
Y

→
R

=

= ∪{R < u > |Y |R < u >�= ∅, u ∈ U∗} .
(2)

Definition 2. ([right-] rough boundary) The [right-] rough
boundary of Y [with respect to R] - for short [R-right-] r-
boundary of Y is

r − bn
→
R
(Y ) = ∗b

→
R
(Y ) =

∗
Y̊

→
R

=
∗
Y�Y̊ (3)

(in both definitions [right], [→] are the default and [R] can
omit if not any possibility of confusion).
Observation 1.

i) (addenda) Other expressions for Y̊ and
∗
Y

Y̊ = {v ∈ V |∃u ∈ U∗, v ∈ R < u >=Y |R < u >} ,
∗
Y = {v ∈ V |∃u ∈ U∗, v ∈ R < u >, Y |R < u >�= ∅} .

(4)

In addition the [right-] rough outside of Y [with respect

to R] - for short [R-right] r-outside of Y is

r − out
→
R
(Y ) = ∗o

→
R
(Y ) = CV ∗(

∗
Y ) . (5)

In general occur inequalities Y̊ ⊆ ∗
Y , Y ⊆ ∗

Y if Y ∈
P(V ∗).

ii) (sources) The source of Y̊
→
R

, respectively
∗
Y

→
R

is ∪Y̊ →
R

=

{u ∈ U∗|
Y
|R < u >= R < u >}, respectively ∪ ∗

Y →
R

=

{u ∈ U∗|
Y
|R < u > �= ∅}, which means that Y̊

→
R

=

R
(
∪Y̊ →

R

)
([R−]∪Y̊ →

R

- section),
∗
Y

→
R

= R

(
∪ ∗
Y →
R

)
([R−]∪ ∗

Y →
R

- section), where again [→] is the default

and [R] can omit, see [2].

Occur equalities

Y̊ = R
(∪Y̊

)
= max⊆

{
R(U ′)|Y |R(U ′) = R(U ′), U ′ ∈ P(U∗)

}

= ∪{
R(U ′)|Y |R(U ′) = R(U ′), U ′ ∈ P(U∗)

}
,

∗
Y = R

(
∪ ∗
Y

)
= max⊆

{
R(U ′)|Y |R(U ′) �= ∅, U ′ ∈ P(U∗)

}

= ∪{
R(U ′)|Y |R(U ′) �= ∅, U ′ ∈ P(U∗)

}
.

(6)

iii) (left-approximations, left-boundary) Analog are defined

the left - rough approximations X̊
←
R

= X̊
R−1 ,

∗
X

←
R

=
∗
X

R−1 , respectively the left - rough boundary
∗
X̊

←
R

=
∗
X̊

R−1 and left-rough outside ∗o
←
R
(X) = ∗o

→

R−1
(X) =

CU∗(
∗
X) ([R] can omit) and respectively the sources.

iv) (homogeneous cases) In the case of a (homogeneous)

relational approximation space (V,R) - which is isomor-

phic with the (homogeneous binary) relational structure

(V,R), R ∈ Rel(V ) (see [1], [2]) the approximations and

the boundaries are analogous. In particular if R is V ∗ -

symmetric relation, then ”right” and ”left” coincide.

Definition 3. (s-surjective) R ∈ Rel(U, V ) is V ∗ s-surjective
in Y ∈ P(V ∗) if there is X ∈ P(U∗) so that Y = R(X); R
is V ∗ s-surjective if R is V ∗ s-surjective in any Y ∈ P(V ∗).
Remark 3. (Connection) Y = Y̊

R
iff R is V ∗ s-surjective

in Y , Y ∈ P(V ∗) - and consequently
∗
Y̊ =

∗
Y \ Y , see

Observation 1 (ii). In addition ∗bR(Y ) = ∅ implies R
is V ∗ s-surjective in Y , Y ∈ P(V ∗) and in general, ∗bR ≡ ∅

implies R is V ∗ s-surjective (∗bR is induced operator).

Definition 4. ([right-] rough set) Set Y ∈ P(V ∗) is [right-
] rough [with respect to R] - for short [R-right-] rough if

∗b
→
R
(Y ) =

∗
Y̊

→
R

�= ∅ (again [right], [→] are the default and
[R] can omit).
Observation 2.

i) (representations) The classical representation for Y [R−]

rough set is ◦ρ
→
R
(Y ) =

(
Y̊

→
R

,
∗
Y

→
R

)
. A new represen-

tation for Y [R−] rough set is ρ
→
R
(Y ) =

(
Y̊

→
R

,
∗
Y̊

→
R

)
according to bijection β

→
: P2(V ∗) → P2(V ∗),

(A,B)
β	 (A,B \A), A ⊆ B (◦ρ, ρ are not injection

or surjective).

ii) (left-rough) Analogously X ∈ P(U∗) is [R−] left-rough

set if ∗b
←
R
(X) =

∗
X̊ �= ∅ (with representations ◦ρ

←
R

, ρ
←
R

).

iii) (homogeneous cases) For homogeneous cases, it is anal-

ogous, see Observation 1 (iv).

iv) (rough universe) If is notes RP→
R
(V ∗), respectively

RP←
R
(U∗) the universe of [R-right-] rough sets of

P(V ∗), respectively of [R-left-] rough sets of P(U∗)
(and analogous in the homogeneous cases R ∈ Rel(V ),
respectively R ∈ Rel(U)).
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v) (rough sets type border) In the special case of the [right-]

rough sets type border (with Y̊
→
R

= ∅, Y ∈ RP→
R
(V ∗))

in some applications is used n-conditioning
∗
Y̊

→
R

/n, i.e.,
∗
Y̊

→
R

/n =
∗
Y̊

→
R

\ Y , |
∗
Y̊

→
R

| − |Y | > n, n ∈ N (and

analogously at left).

Definition 5. (rough membership relations) Roughly speaking
rough membership relations is r ∈ =<∈,∈>l (lexicographi-
cal). More specifically the [right-] rough membership relation
[with respect to R] - for short [R-right-] rough membership
relation r ∈→

R
is defined by yr ∈→

R
Y (∈ RP(V ∗)) if y ∈ Y̊

→
R

(interior point) or y /∈ Y̊
→
R

, y ∈
∗
Y̊

→
R

(bounded point - again
[right], [→] are the default and [R] can omit). The [R-] left-
rough membership relation r ∈←

R
is defined analogously.

Remark 4. (Pairs of primitive objects) It has been ob-

tained the pairs of primitive objects
(
Y ∈ RP→

R
(V ∗),r ∈→

R

)
,

respectively
(
X ∈ RP←

R
(U∗),r ∈←

R

)
(nonhomogeneous and

analogous homogeneous).

Example 1. (induced classifying approximation spaces) The

relation R ∈ Rel(U, V ) induces two equivalence relations

in V,U -E
→
R defined by (v1, v2) ∈ E if R−1 < v1 >=

R−1 < v2 >, V ∗ = dom(E) = codom(E), respectively

E
←
R

defined by (u1, u2) ∈ E
←

if R < u1 >= R <
u2 >, U∗ = dom(E

←
) = codom(E

←
). Are obtained E-

rough sets, respectively E
←

-rough sets according to E-(r-)

approximations and E-(r-) boundary, respectively to E
←

-(r-)

approximations and E
←

-(r-) boundary.

III. GENERALIZED ROUGH SETS IN (BI)DIGRAPHS

Section III is developed in [4], but Application 1 (k-

vertex connectivity vs. roughness) is original.

Remark 5. (Abbreviations) A digraph G =
(
V

[G]
, E

[G]

)
(where [G] can omit if not any possibility of confusion) - as a

directed graph is bidigraph if his underlying graph is bipartite

- with {P,Q} a partition of V (see [27] - and for bigraphs

”as a space and motion of communicating agents”, see [33]).

Remark 6. (Isomorphisms) In the bipartite case the bidi-

graph (P,Q,E) is isomorphic with the (nonhomogeneous

binary) relational structure (P,Q,R), where R ∈ Rel(P,Q)
and (u, v) ∈ E iff (u, v) ∈ R. Further, the (nonhomo-

geneous binary) relational structure (P,Q,R) is isomorphic

with the (nonhomogeneous) relational approximation space

(P,Q,R), see Remark 2. The homogeneous case is analog,

i.e., (V,E) 	 (V,R), (V,R) - as (homogeneous binary)

relational structure, respectively as relational approximation

space.

Definition 6. (right-rough set, left-rough set) Set Y ∈ P(Q∗)
is right-rough (with respect to R) - for short R-right-rough if

∗b
→
R
(Y ) =

∗
Y̊R �= ∅ , where ∗b(Y) =

∗
Y̊ =

∗
Y \ Y̊ (7)

(including respectively R− r-boundary, R− r-upper approx-
imation, R-lower approximation and R − r-outside of Y ).
Analogously X ∈ P(P ∗) is R-left -rough set if ∗b

←
R
(X) =

∗
X̊

←
R

�= ∅ (again ”right”, ”→” are the default and ”R” can
omit, see Definition 1, Definition 4, respectively
Observation 2 (ii) and Observation 1 (iii)).

Observation 3.

i) (representation - at right and at left) The representations

are ρ
→
R
(Y ) =

(
Y̊

→
R

,
∗
Y̊

→
R

)
, Y ∈ P(Q∗), respectively

ρ
←
R
(X) =

(
X̊

←
R
,

∗
X̊

←
R

)
, X ∈ P∗(P ) according to the

isomorphism (A,B)
β	 (A,B \ A), A ⊆ B (”→” is the

default and ”R” can omit, see Observation2 (i,ii)).

ii) (pair of primitive objects - at right and at left) It is

notes RP→
R
(Q∗) the universe of R-right-rough sets of

P(Q∗); the R-right-rough membership relation r ∈→
R

is

defined by yr ∈→
R
Y
(∈ RP→

R
(Q∗)

)
if y ∈ Y̊

→
R

(inte-

rior vertex) or y /∈ Y̊
→
R

, y ∈
∗
Y̊

→
R

(bounded vertex).

It has been obtained the pair of primitive objects at

right
{
Y ∈ RP→

R
(Q∗), r ∈→

R

}
. Analogously it obtains

the primitive object at left
{
X ∈ RP←

R
(P ∗), r ∈←

R

}
(again ”right”, ”→” are the default and ”R” can

omit - see Definition 4, Observation 2 (iii,iv),

Definition 5, Remark 4).

iii) (homogeneous cases) It is analogous, see

Observations 1 (iv), 2 (iii) and Remark 4.

Example 2.

a. (induced classifying approximation spaces in a bidi-
graph G = (V = {P,Q}, E) 	 (P,Q,R)) Accord-

ing to Example 1 are obtained
(
Q,E

Q

)
, respectively(

P,E
←
P

)
as induced classifying approximations spaces

where (v1, v2) ∈ E
Q

if R−1 < v1 >= R−1 < v2 >,

respectively (u1, u2) ∈ E
←
P

if R < u1 >= R < u2 >.

Analogously are obtained (V,E
V
), respectively

(
V,E

←
V

)
as induced classifying approximations spaces in a digraph

G = (V,E) (homogeneous case)

b. (another classifying approximation space in a digraph
G = (V,E)) Let be A

[G]
= {a|a : V → Ca} a set

of vertex attributes; A induces a equivalence relation

in V - E
A

defined by (u, v) ∈ E
A

if a(u) = a(v),
a ∈ A - and so is obtained (V,E

A
) as induced classifying

approximation space. Still can be considered operations

with E
V

, E
←
V

, E
A

- but this is another problem, see [3],

[4].

Definition 7. (induced rough subgraphs - in a digraph) In
a digraph G =

(
V

[G]
, E

[G]

) 	 (V,R) the induced R-right-
rough subgraph on a R-right-rough set W ∈ P(V ∗) is
a graph H

→
R

=
(
W

→
R
, E

→
R

)
, where W

→
R

= W and the
end-points of edge e ∈ E

→
R

are in W
→
R

. Analogously is
defined an induced R-left-rough subgraph on W as H

←
R

=(
W

←
R
, E

←
R

)
(again ”right” is the default and ”R” can omit,

see Definition 6).
Observation 4.

i) (”incompleteness”) An induced rough subgraph is an

”incomplete” induced subgraph.

ii) (induced rough subgraphs in a bidigraph) Analogous are

defined the induced rough subgraphs in a bidigraph G =
(V = {P,Q}, E) 	 (P,Q,R).
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Application 1. (k-vertex connectivity vs. roughness) Let be

a (simple) digraph G = (V,E) 	 (V,R). The results of the

following are contained in [29]–[32] (see and [27]).

Definition 8. (boundaries) The positive, respectively negative
boundary of W ∈ P(V ∗) denoted by ∂+W , respectively ∂−W
is the set of vertices that are adjacent from, respectively to W .
Definition 9. (fragments) Let G be a k-strongly connected
digraph; F ∈ P(V ∗) is a positive fragment of G if |∂+F | = k
and V ∗ \ {F ∪ ∂+F} �= ∅. Analogously, F is a negative
fragment of G if |∂−F | = k and V ∗ \ {F ∪ ∂−F} �= ∅.
Definition 10. (atom) An atom A is a (positive or negative)
fragment of minimum cardinality.
Theorem 1.

T1. (alternative definition)

k = min
{∣∣∂+F

∣∣ |F ∈ P(V ∗), F ∪ ∂+F �= V ∗ or |F| = 1
}
.

(8)

T2. (distinct-disjoint) For a connected G any two distinct
atoms are disjoints.

T3. (k-disconnecting set) For a k-connected G, T a k-
disconnecting set (|T | = k) and A an atom are occur
A ⊂ T or A ∩ T = ∅.

An analysis in short is next:

A1. (sections) In fact boundaries are sections, i.e., ∂+F =
R(W ), ∂−F = R−1(W ).

A2. (replacements) For W ∈ RP→
R
(V ∗), respectively W ∈

RP←
R
(V ∗) the replacements R(W ) −

∗
W̊

→
R

, respec-

tively R−1(W )−
∗
W̊

←
R

are justified topological (see and

Observation 2 (v)).

A3. (recover) It recover the Definitions 8-10 (accord-

ing to A2).

A4. (truth) It is investigate if T1-T3 of Theorem 1 remain

true (according to A3).

Example 3. (classic and new)
Let be G++ = (V,E++) 	 (V,R++), where

V = V1 ∪ V2

V1 = {v1, v3, v5, v7}
V2 = {v2, v4, v6, v8} ,

(9)

and

E++ = E1
+ ∪ E2

+ ∪ E3

E1
+ = {(v1, v3), (v3, v5), (v5, v7), (v7, v1)}

E2
+ = {(v2, v4), (v4, v6), (v6, v8), (v8, v2)}

E3 = {(v1, v2), (v2, v1), (v3, v4), (v4, v3),
(v5, v6), (v6, v5), (v7, v8), (v8, v7)} , k = 2 .

(10)

1) Classic
For Ai = {vi}, i = 1, 8, ∂+A1 = F23, ∂−A1 = F27

(see Fij), |∂+A1| = |∂−A1| = 2, A1 is an atom, etc.

For Fij = {vi, vj}, i, j = 1, 8, i �= j, ∂+F12 = F34,

∂−F12 = F78, |∂+F12| = |∂−F12| = 2, respectively

∂+F13 = F24, ∂−F13 = F47, |∂+F13|, |∂−F13| = 2,

etc.; Fij are (positive, negative) fragments.

2) New

For Ai, i = 1, 8, Å
→
1 = Å

←
1 = ∅,

∗
A

→
1 =

∗
Å

→
1 =

∗
A

←
1 =

∗
Å

←
1 = A1 ∪ F48, ρ

→
(A1) = ρ

←
(A1) =

(∅, A1 ∪ F48), |
∗
Å

→
1 /1| = |

∗
Å

←
1 /1| = |3 − 1| = 2 (see

Observation 2 (v)), A1 remains atom, etc.

For Fij , i, j = 1, 8, i �= j, F̊
→
12 = F̊

←
12 = ∅,

∗
F

→
12 =

∗
F̊

→
12 =

∗
F

←
12 =

∗
F̊

←
12 = F12 ∪ F34 ∪ F78 =

V \ F56, ρ
→
(F12) = ρ

←
(F12) = (∅, V \ F56),

|
∗
F̊

→
12/1| = |

∗
F̊

←
12/1| = |6 − 2| = 4 (see again

Observation 2 (v)), F12 is removed, respectively

F̊
→
13 = F̊

←
13 = ∅,

∗
F

→
13 =

∗
F̊

→
13 =

∗
F

←
13 =

∗
F̊

←
13 =

F13 ∪ F34 ∪ F68 = V \ F57, ρ
→
(F13) = ρ

←
(F13) =

(∅, V \ F57), |
∗
F̊

→
13/1| = |

∗
F̊

←
13/1| = |6 − 2| = 4 (see

again Observation 2 (v)), F13 is removed, etc.

For point T1 of Theorem 1 are obtained fewer frag-

ments - at right and at left (remain only atoms) and

k = min

{
|

∗
F̊

→
/1||F ∈ RP→

R
(V ∗) , ∗o

→
R
(F ) �= ∅ .

}
(11)

The case digraph G+− = (V,E+−), where

E+− = E1
+ ∪ E2

− ∪ E3

E2
− = {(v4, v2), (v2, v8), (v8, v6), (v6, v4)}

(12)

is left for reader.

IV. URBAN INTERCONNECTION NETWORK

In the following is presented the idea of simulating an urban

interconnection network based on interconnection network for

an adapted model of parallel machine [27], [38] and finally,

which can lead to a simulation problem of a digraph through

another digraph, see Sections II-III and [1]–[4].

Remark 7. (Parallel Machine Scheduling)
Problem formulation: In the parallel machine schedul-

ing [37] there is a number M of machines that can process

all tasks in different or same speeds. Scheduling in parallel

machines can be considered as a two step process, i.e.

S1 - how to efficiently assign the tasks to each machines:

which tasks to which machines

S2 - which is the sequence of the tasks allocated to each

machine.

In principle, an interconnection network in a parallel ma-

chine transfers information from any source vertex (source

node) to any destination vertex (destination node) which is

desired - e.g., in parallel computing, a collection of proces-

sors which are linked between them. Thus, the tasks should

be fulfilled with as small response time as possible which

would allow that a large number of such transfers to take

place concurrently; moreover, the process cost it should be

inexpensive as compared to the rest. A network consists of

links and switches (help to send the information from the

source node S to the destination node D) and is specified

by its topology, routing algorithm, switching strategy, and

flow control mechanism. Interconnection networks are com-

posed of switching elements. Its topology is the pattern to

connect the individual switches to other elements. A network

allows exchange of data between processors in the parallel
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system - direct connection networks which have point-to-point

connections between neighboring nodes (that are fixed which

means that these networks are static - e.g., rings, meshes

and cubes) and indirect connection networks which have no

fixed neighbors nodes and can subdivided into three parts (bus

networks, multistage networks, crossbar switches) - in this

case, the communication topology can be changed dynamically

based on the application demands. From the point of view of

evaluating design trade-offs in network topology, if the main

concern is the routing distance, then the dimension has to be

maximized and this problem is reduced at the hypercube case.

The hypercube, denoted Qn, is a graph of remarkable

properties and numerous applications in coding, computer

science, and other areas of mathematics. By definition, a n-

dimensional hypercube graph Qn has 2n vertices, n · 2n−1

edges and is a n-regular graph witch means that every vertex

is of degree n.

Remark 8. It can construct the n-dimensional hypercube Qn

recursively

Qn =

⎧⎪⎨
⎪⎩

K1 , n = 0

K2 , n = 1

Qn−1 ×K2 , n ≥ 2 ,

(13)

where K1, K2 are complete.

Theorem 2. (Hypercube characterization theorem [27]) Let
consider a graph G. If its vertices are the binary sequences
of length n and two vertices are adjacent if their sequences
differ in exactly one place, then it said that G is isomorphic
to Qn.
Observation 5.

i) (bipartiteness) Hypercube Qn is also bipartite, i.e. the

vertex set of the graph can be partitioned into two subsets,

where, within each set no vertices are adjacent. Further-

more, for the n-dimensional hypercube, the cardinalities

of these sets are equal, i.e. each set has 2n−1 vertices.

Thus, a n-dimensional hypercube Qn can be drawn in

two ways, one of them emphasizing the bipartition.

ii) (vertex transitivity) Hypercubes are vertex-transitive

graphs, i.e. given any two vertices in a n-hypercube Qn,

there is an automorphism mapping one vertex to the other

while maintaining vertex adjacency .

iii) (adjacency matrix of a hypercube)

AQ1
=

[
0 1

1 0

]
, AQ2

=

[
AQ1

I2

I2 AQ1

]
, (14)

and, recursively

AQn
=

[
AQn−1

I2n−1

I2n−1 AQn−1

]
, ∀n ≥ 3 . (15)

Remark 9. (the bandwidth concept) Basic idea is a problem

of optimal assignment of number to vertices of a n-hypercube

Qn, see [28]. In fact, it is determined the minimum value of∑
Δij over all possible assignments, where Δij = |i− j| and

i, j are assigned to adjacent vertices. The problem is precisely

that of determining the bandwidth of a hypercube Qn and this

concept is presented in the following.

Observation 6. Let consider the graph G. According to [27]

are defined the notions

i) Proper numbering of G: Is a bijection f : V →
{1, 2, . . . , n}.

ii) Bandwidth of f denoted Bf (G): If f is

a proper numbering of a graph G, then

Bf (G) = max {|f(x)− f(y)|xy ∈ E}, where xy
represents the edge with endpoints x and y.

iii) Bandwidth of G denoted B(G): B(G) =
min {Bf (G)|f is a proper numbering ofG}.

iv) Bandwidth numbering of G: Is a proper numbering f
such that B(G) = Bf (G).

Remark 10. One of important application of bandwidth

(related to coding theory) is interconnection networks problem

- can be modeled by a graph G, where the vertices represent

the processors and edges correspond to the links, see [27].

1) It is simulate the network represented by G on a second

network modeled by graph H .

2) This can be done by a one-to-one mapping f : V (G) →
V (H) - the processor x in G is simulated by processor

f(x) in H , respectively the link xy in G is simulated by

a shortest path between f(x) and f(y) in H .

3) If it denoted with t the communication time for link xy
in G, then dt is represented the corresponding time in

H , where d = |f(x)− f(y)| (distance between f(x) and

f(y)) in H . If it considered t = 1 and H a path, then

the greatest possible delay in the simulation is B(G).
4) Everywhere the (bipartite) graph can be a (bi)digraph.

5) (multivoc variants - (bi)simulation) Let consider

(U,EU ) 	 (U,RU ), respectively (V,EV ) 	 (V,RV ).
A simulation S ∈ Rel(U, V )between the homogeneous

relational structures (U,RU ), (V,RV ) is defined by

a non-banal existential variant of the compatibility

condition with RU , RV - for each u, u′ ∈ U , v ∈ V ,

with (u, v) ∈ S, (u, u′) ∈ RU implies there exits v′ ∈ V ,

(u′, v′) ∈ S, (v.v′) ∈ RV - which is equivalently with

the usual condition ”for each u ∈ U , v ∈ V , with

(u, v) ∈ S and for each u′ ∈ U , (u, u′) ∈ RU implies

there exists v′ ∈ V , (u′, v′) ∈ S, (v, v′) ∈ RV ”. A

(bi)simulation is a pair of simulation (S, S−1), see [1].

V. CONCLUSIONS

This paper proposed in premier a rough set approach in

(bi)digraphs which contribute to improve significantly the

evaluation of k-connectivity. This is relative to a simulation

problem of a digraph through another digraph and is related

to the interconnection of some urban network. The simulation

problem can be solved also in bigraphs - as space and motion

extension of graphs, but this is another problem.
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