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Abstract—When the profile information of an existing road is 
missing or not up-to-date and the parameters of the vertical 
alignment are needed for engineering analysis, the engineer has to re-
create the geometric design features of the road alignment using 
collected profile data. The profile data may be collected using 
traditional surveying methods, global positioning systems, or digital 
imagery. This paper develops a method that estimates the parameters 
of the geometric features that best characterize the existing vertical 
alignments in terms of tangents and the expressions of the curve, that 
may be symmetrical, asymmetrical, reverse, and complex vertical 
curves. The method is implemented using an Excel-based 
optimization method that minimizes the differences between the 
observed profile and the profiles estimated from the equations of the 
vertical curve. The method uses a ‘wireframe’ representation of the 
profile that makes the proposed method applicable to all types of 
vertical curves. A secondary contribution of this paper is to introduce 
the properties of the equal-arc asymmetrical curve that has been 
recently developed in the highway geometric design field. 

Keywords—Optimization, parameters, data, reverse, spreadsheet, 
vertical curves. 

I. INTRODUCTION

HE parameters of an existing highway vertical alignment 
need to be estimated when the profile parameters 

according to which the roadway was built originally, are 
missing or are not up-to-date. This is a problem often faced 
when identifying the alignment parameters of the older roads. 
It is also necessary to check how a new (as-built) roadway 
adheres to the original specifications. Some provinces in 
Canada, for example, have collected GPS-based pitch and 
heading data every meter for thousands of kilometres of roads 
for the purpose of estimating alignment parameters. The 
profile parameters are necessary when examining the 
adequacy of the sight distance and recommending safety 
improvements, such as changes in speed limits. The estimation 
process involves collecting the profile data (distance and 
elevation of different points along the vertical profile) using 
traditional surveying methods, global positioning systems 
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(GPS), or digital imagery, and applying a mathematical 
method that identifies the vertical curve parameters [1, 2]. 

This paper proposes a method that estimates the parameters 
of a vertical alignment that best fit the collected profile data. 
The input data include the profile data and the bounds on the 
values of the unknown parameters. These parameters depend 
on the type of vertical curve, but they basically include the 
tangent grades and the vertical curvature of the parabolic 
curve. The proposed method derives the values of the 
parameters such that the squared sum or absolute value sum of 
the differences between the observed profile elevations and 
the elevations obtained from the estimated vertical curve 
alignment. The method is suited for estimating the parameters 
of vertical alignments involving any combination of vertical 
curve types. 

Two basic types of vertical curves are described in 
surveying engineering literature. They are the symmetrical 
and asymmetrical curves [3–6). The symmetrical curve 
consists of a parabolic curve connecting two tangents that are 
equal in length. It may be a crest or a sag curve, or a reverse 
curve that connects the crest and sag curves. There are two 
types of asymmetric curves: the traditional asymmetric curve 
[7] and the equal-arc asymmetrical curve [8]. The traditional 
asymmetric curve (TA) consists of two parabolic arcs that 
connect two unequal-length tangents, where for crest curves 
the point of common curvature (PCC) of the two arcs lies 
below the PVI and vice versa for sag curves. The two arcs 
have different curvatures. The curve length requirements to 
satisfy sight distance needs have been established [9, 10]. 

The equal-arc asymmetrical curve (EAA), not addressed in 
surveying engineering texts, has been developed to improve 
the features of the traditional asymmetric curve. The curve 
consists of two parabolic arcs with different curvatures, but its 
PCC lies in the middle of the curve. This curve enhances 
vertical alignment aesthetics, improves sight distance, reduces 
required curve length, increases vertical clearance, and 
improves driver comfort. The length requirements for the 
EAA curve have been established [11]. All or some of the 
three preceding curves may be present in the existing highway 
vertical alignment, and the proposed method identifies the 
alignment parameters from the existing profile data.  

The following sections present previous work and 
motivation, the properties of vertical curves, and the problem 
and the proposed method. Application examples are then 
presented, followed by the concluding remarks. 

Generalized Method for Estimating Best-Fit 
Vertical Alignments for Profile Data 

Said M. Easa and Shinya Kikuchi 

T



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:3, No:9, 2009

328

II. PAST WORK AND MOTIVATION
Earlier research on estimating the vertical curves that best fit the 

existing profile data focused on symmetrical curves [12]. In this 
work, the estimation process was converted into a linear optimization 
(LP) model that involved four parameters: elevation of the point of 
vertical curvature (PVC), elevation of the point of vertical tangency 
(PVT), and the first and second tangent slopes (grades). The 
objective was to minimize the sum of the squared deviations between 
the observed and estimated elevations subject to symmetrical 
parabolic-curve geometric constraints. To obtain the global optimal 
solution, the LP model was solved repeatedly for various locations of 
the PVC and PVT using the LINGO software [13]. The estimation 
process was subsequently improved by automating the iterations 
using Visual Basic [14]. The method used the Solver software with 
spreadsheets that are familiar to most surveying professionals. The 
iterative method, however, requires a very long time to find the 
solution (e.g. about 10 hours for an increment of 0.1 m). To improve 
the solution time, an LP formulation that yields the global optimal 
solution in a minute was subsequently developed using binary 
variables that distinguish the endpoints between the curve and its 
tangents [15]. 

Another model that uses piecewise parametric equations has been 
developed and applied to GPS-based profile data of highway 
alignments [16]. In this model, each consecutive four data points are 
used to generate a B-spline curve and the spline had second-order 
continuity. This model is adequate for moderate accuracy levels only 
since the B-spline may have crest and sag shapes within the spline 
curve, resulting in a bumpy surface. Such a surface may adversely 
affect the accuracy of the calculated tangent slopes. It is clear that so 
far no method can estimate the parameters of complex vertical 
alignments simultaneously for all of its components (i.e. tangents and 
parabolic curves). Such a method is presented in this paper. 

III.  PROPERTIES OF VERTICAL CURVES
The properties of three types of vertical curves are reviewed. A 

symmetrical curve consists of a parabolic arc connecting two equal-
length tangents (see Fig. 1). The curve starts at PVC, ends at PVT, 
and its tangents intersect at the point of vertical intersection (PVI). 
The algebraic difference in slope of the curve (in decimals), A, is 
given by 

A = g1 – g2                (1) 

where g1 = slope of the first tangent and g2 = slope of the second 
tangent. Note that A is positive for crest curves and negative for sag 
curves. The rate of change in slope, r, of the symmetrical curve
equals A / L, where L is curve length.

The asymmetrical curve connects two tangents whose horizontal 
projections are not equal. It consists of two symmetrical curves (with 
different rates of change in slope) that have a common tangent at 
PCC. The curve length, L, is given by 

L = L1 + L2             (2) 

where L1 is the shorter tangent and L2 is the longer tangent. The ratio 
between the shorter tangent length and the curve length  is given by 

R = L1 / L                   (3)

where R is called tangent ratio. 

For the traditional asymmetric curve, the PCC lies under the PVI. 
The rates of change in slope of the shorter (sharper) and longer 
(flatter) arcs, r1t and r2t, respectively, are given by: 

RL
R)-(1A=r1t            (4) 

R)-(1L
RA=r 2t             (5) 

For the equal-arc asymmetrical vertical curve, the PCC lies in the 
middle of the curve, thus minimizing the difference between the 
curvatures of the two arcs. The rates of change in slope for the 
shorter and longer arcs, r1e and r2e, are given by: 

Fig. 1  Geometry of asymmetrical and symmetric vertical curves 
(TA = traditional asymmetrical and EAA = equal-arc 
asymmetrical) 

L
4R)-(3A=r 1e

          (6) 

L
4R)+(-1A=r 2e           (7) 

where

R > 0.25            (8) 

For the traditional asymmetric curve, R should be greater than 0. 
Note that the symmetrical curve is a special case of the TA and EAA 
asymmetrical curves. For R = 0.5, (4) and (5) of the TA curve yield r1t = 
r2t = A / L, which is the rate of change in slope of a symmetrical curve, 
and similarly for (6) and (7) of the EAA curve. 

A comparison of the two types of asymmetrical curves (TA and 
EAA) is shown also in Fig. 1 for L1 = 300 m, L2 = 500 m, g1 = 0.02, 
and g2 = -0.03. The PCC lies under PVI for the TA curve, while it 
lies in the middle of the curve for the EAA curve. Clearly, the first 
arc of the EAA curve is flatter than that of the TA curve, and vice 
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versa for the second arc. Thus, the EAA curve smoothes out the 
curvature of the TA curve. 
 The reverse vertical curve, which is especially useful for 
mountainous terrain and interchange ramps, connects two 
symmetrical vertical curves (one crest and the other sag) that have a 
common tangent at the PCC. The two curves may or may not have 
equal rates of change in slope and the first and second tangents may 
be parallel. 

IV. PROBLEM AND PROPOSED METHOD 
This section clarifies the problem at hand, formulates it as an 

optimization problem, and presents the proposed solution technique. 
In the process, a new concept, the ‘wireframe’ representation of the 
vertical alignment, is introduced. The wireframe represents a molded 
shape of the vertical alignment which is constructed using the least 
number of parameters. Since the symmetrical curve is a special case 
of the asymmetrical curve, the proposed method is described for only 
the asymmetrical curves. 

A. The Problem 
The situation at hand is as follows. The elevations along the 

vertical road profile are given at certain intervals. The problem is to 
determine the parameters of the mathematical expressions for the 
parabolic curves and the tangents that form the vertical alignment. 
The nature of this problem is in the category of adjustment, in which 
the mathematical expression‘s parameters are estimated from a given 
set of data. The parameters are determined so that the curve fits the 
observed profile elevations as much as possible. This is an 
optimization problem, in which the objective is to minimize the sum 
of the squared differences (SD) between the observed elevations and 
the elevations derived from the mathematical expressions: 

                           N 
Minimize z =  (yi – Yi)2 (SD Criterion)        (9) 

                          i=1

where N = number of observations, yi = observed y-coordinate, and 
Yi = estimated y-coordinate.   

Alternatively, the objective may be to minimize the absolute 
deviations (AD), 

N
Minimize z =  |yi – Yi| (AD Criterion)        (10) 

i=1

where |.| denotes absolute value The AD criterion has certain merits 
in some cases, like detecting outliers and allowing a model to 
become linear in the objective function, and has been advocated by a 
number of researchers [17, 12, 14].  

The constraints of the model depend on the type of vertical 
alignment and the specified parameters (decision variables) used for 
establishing the wireframe, which is explained next. For the 
asymmetrical curve, for example, the parameters may be selected as 
the x-coordinate of PVI and the x and y-coordinates of PVC, PVT, 
and a specified point on the first tangent. The constraints would then 
include relationships for: (1) the lower and upper bounds on the 
parameters, (2) the y-coordinate of PVI, (3) lengths of the two 
tangents and tangent ratio, (4) curve length and algebraic difference 
in slopes, (5) rates of change in slope (r1t, r2t or r1e, r2e), and (6) 
slopes of the first, second, and common tangents (the latter depends 
on the type of asymmetrical curve). Alternatively, the parameters 

may be selected as the slopes of the first and second tangents, the x 
and y-coordinates of PVC, and the x-coordinates of PVC and PVT. 
Similar constraints are then established to satisfy the properties of the 
asymmetrical curve.  

B. Wireframe Representation 
The wireframe is defined here as the geometric representation 

which uniquely establishes the vertical alignment with the minimum 
number of parameters. This number depends on the type of vertical 
alignment, but in general, the parameters whose bounds can be easily 
established should be selected. In the following subsections, the 
parameters of the wireframe are defined for the traditional 
asymmetrical curve, equal-are asymmetrical curve, reverse curve, 
and complex alignments. 

Traditional Asymmetrical Curves. Consider the TA curve shown 
in Fig. 2a. The PVC, PVT, PVI, and PCC are denoted by A, B, C, 
and D, respectively. The common tangent at D intersects with the 
first and second tangents at C1 and C2, respectively. To facilitate 
establishing the lower and upper bounds on the parameters, the 
following seven parameters are selected: xQ, yQ, xA, yA, xB, yB, and xC,
where the subscript Q = an arbitrary point on the first tangent, (xQ,
yQ), (xA, yA), (xB, yB) = x and y-coordinates of Q, A, and B, 
respectively, and xC is x-coordinate of C. The preceding seven 
variables completely define the wireframe. Note that different values 
in the parameters will only shift the placement of the wireframe, 
while the shape of the wireframe itself will remain intact. The basic 
relationships for establishing the wireframe (which become the 
constraints in the optimization model) are as follows.  
 The slope of the first tangent, sA, is determined using the 
coordinates of Q and A, 

sA = (yA – yQ) / (xA – xQ)          (11) 

The y-coordinate of C is then given by 

yC = yA + sA (xC - xA)          (12) 

The slope of the second tangent is then determined using the 
coordinates of B and Q as 

sB = (yB – yC) / (xB – xC)          (13) 

The length of the vertical curve L and the algebraic difference in 
slope A are given by 

L = xB – xA           (14) 

A = sA – sB           (15) 

The lengths of the first and second tangents are given by 

L1 = xC – xA           (16)

L2 = xB – xC           (17) 

The tangent ratio, R, and the rates of change in slope, r1t and r2t, are 
calculated using (3)–(5), respectively. The slope of the common 
tangent, sD, and the x and y-coordinates of D (xD, yD) are given by 

sD = sA – r1t L1           (18) 
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xD = xA + L1           (19) 

yD = yA +   sA L1 - r1t  L1
2/2         (20) 

It should be noted that the order of the calculations of (11)–(20) is 
not important since they can be stored anywhere in the spreadsheet. 
The estimated coordinates, Yi, are calculated using a conditional 
Excel formula that models the four regions of the TA curve, as 
follows

=IF(x  xA, y = yQ + sA (x – xQ), IF(AND(x  xA, x  xD), y = yA + sA
(x – xA) – r1t  (x – xA)2/2, IF(AND(x  xD, x  xB), y = yD + sD (x – xD)
– r2t  (x – xD)2/2, y = yB + sB (x – xB))))                        (21) 

which simply says that if x  xA, y is given by the equation of the first 
tangent; if xA  x  xD, y is given by the equation of the first parabolic 
arc, if xD  x  xB, y is given by the equation of the second parabolic 
arc; and if x  xB, y is given by the equation of the second tangent. 
The rates of change in slope, r1t and r2t, are calculated using (4) and 
(5). The deviation (yi - Yi), the squared deviation, and the sum of the 
squared deviations are then calculated. 

 Equal-Arc Asymmetrical Curve. The EAA curve is shown in Fig. 
2(b).  The parameters and geometric characteristics of the curve are 
identical to those of the TA curve, except that (18)–(20) are given by 

Fig. 2 Wireframe representation of asymmetrical vertical curves: (a) 
TA curve and (b) EAA curve 

sD = sA – r1e (L / 2)          (22) 

xD = xA +  (L/ 2)           (23) 

yD = yA + sA (L / 2) – r1e (L / 2)2/2         (24) 

The rates of change in slope, r1e and r2e, are calculated using (6) 
and (7). The preceding individual formulations of the TA and EAA 
curves were unified using a variable that denotes the curve type. This 
variable allows the user to specify the type of vertical curve to be 
fitted to the data (TA, EAA, or symmetrical).  

Reverse Curves. Since the intersection point of the two tangents of 
a reverse curve may lie very far from the profile data (or even at 
infinity for parallel tangents), the wireframe of the curve was 
represented in a different way. The parameters in this case were 
defined as the x and y-coordinates of Q, A, B, the x-coordinate of C, 
and the common slope at D, which define the wireframe shown in 
Fig. 3. Thus, the parameters are xQ, yQ, xA, yA, xB, yB, xC1, and sD.
With these parameters, the elements of the wireframe can be 
calculated similar to those of the asymmetrical curves. The slope sA is 
given by (11) and the coordinate yC1 is calculated by substituting for 
xC1 in (12). Then, xD and yD are given by  

xD = xA + 2(xC1 – xA)          (25) 

yD = yC1 + sD (xD – xC1)          (26) 

The coordinates of C2 and the slope of the second tangent are given 
by 

xC2 = (xD + xB) / 2           (27) 

yC2 = yD + sD (xC2 – xD)          (28) 

sB = yB( – yC2) / (xB – xC2)          (29) 

Fig. 3 Wireframe representation of reverse vertical curve 

The lengths of the first and second symmetrical curves are given 
by L1 = xD – xA and L2 = xB – xD and the respective algebraic 
differences in slope are calculated based on (1) as A1 = sA – sD and A2
= sD – sB. The rate of change in slope are given by r1 = L1 / A1 and r2
= L2 / A2. The estimated Yi coordinates are calculated similar to (21). 
The calculation of the objective function is identical to that of the 
asymmetrical curves.  

Complex Alignments. The proposed wireframe representation can 
be applied to more complex vertical alignments. Consider, for 
example, a reverse curve that consists of a crest asymmetrical curve 
followed by a sag symmetrical curve after an intermediate tangent. 
This would involve a simple modification to the formulation of the 
asymmetrical curves. In this case, the following sag symmetrical 
curve would require three additional parameters. Let the start, end, 
and the PVI of the symmetrical curve be denoted by E, F, and G. 
Then, the additional parameters will be xE, xF, and yF. The y-
coordinate of E is given by  

yE = yB + sB (xE – xB)          (30) 

The coordinates of G (xG, yG) and the slope of the second tangent of 
the symmetrical curve, sF, are given by 
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xG = (xF + xE) / 2           (31) 

yG = yB + sB (xG – xB)          (32) 

sF = (yF – yG) / (xF – xG)          (33) 

Other elements of the symmetrical curve are given by L = xF – xE, A
= sB – sF, and r = A / L. The estimated elevation of the symmetrical 
curve is then easily formulated using a conditional formula similar to 
(21).

C. Solution Process 
Once the objective and constraints of the optimization model are 

defined as shown above, the next step is to solve the model. This is a 
nonlinear, non-convex optimization model, can be solved using the 
Premium solver software [18]. This software implements the 
Generalized Reduced Gradient (GRG) technique that uses a 
mulitstart strategy for global optimization. The strategy generates 
candidate starting points with randomly selected values within the 
specified bounds of the parameters. These points are then grouped 
into clusters that are likely to lead to the same locally optimal 
solution. The solver is then run from a representative point in each 
cluster and continues with successively smaller clusters that are 
likely to capture each locally optimal solution. A Bayesian test is 
used to determine whether the process should continue [19], and 
ultimately the software converges in probability to a globally optimal 
solution. For more details on the software, the readers are encouraged 
to refer to [18]. 

Fig. 4  Spreadsheet for estimating asymmetrical and symmetrical 
vertical curves (results are for the TA curve) 

The software uses a spreadsheet in which the input data and the 
formulated model are presented. The spreadsheet for the unified 
formulation of vertical alignments is shown in Fig. 4. A detailed 
description of the spreadsheet is presented in Appendix 1. 

D. Key Features of Proposed Method 
The following key features of the proposed method are worth 

noting:
1) Applicability to both Crest and Sag Vertical Curves. The 

wireframe representation allows the estimation of the best-fit 

crest or sag vertical curves without any additional task. That is, 
the concept is applicable to both crest and sag asymmetrical 
curves, to both sag-crest and crest-sag reverse curves, and to any 
configuration of complex alignments. 

2) Ability to Estimate all Types of Vertical Curves. The proposed 
method can be used to estimate the vertical curve (TA, EAA, 
and symmetrical) that best fits the profile data. This is done by 
running the software for each type individually and selecting the 
one that produces the least objective function. 

3) Parameter Bounds are easily Established. Approximate values 
of the parameters can be determined using a graph of the profile 
data. The approximate values are input to the spreadsheet and 
used to establish the lower and upper bounds on the parameters 
automatically using a specified percentage deviation from the 
approximate values. This feature allows the user to change the 
bounds in both the spreadsheet and the Solver Parameters 
window by changing only the percentage deviation. 

4) Close Initial Approximations of the Parameters are not 
required. Unlike traditional linearized least-squares problems, 
close initial approximations of the parameters are not required. 
The input initial values of the parameters can be set equal to 
zero and, in this case, the software will use the specified bounds 
to conduct the search for the optimal solution. It is suggested, 
however, that the approximate values used to establish the 
bounds be used as initial values of the parameters since this 
would speed up the finding of the optimal solution.  Note that 
using reasonable values of the parameters is particularly useful 
during spreadsheet formulation since these values and the 
constraints can be used to plot the wireframe and check the 
correctness of the formulation. 

V. APPLICATION EXAMPLES
The proposed method is applied to three examples involving data 

for TA, EAA, and symmetrical curves (Example 1), reverse curve 
(Example 2), and complex alignment (Example 3). The assumed 
observed profile data for each example are shown in Table 1 
(throughout, all units of the x and y-coordinates are in meters). In all 
examples, the optimization is based on the SD criterion of (9) which 
is normally used in surveying applications. 

A. Example 1: Asymmetrical and Symmetrical Curves 
Consider the profile data shown in Fig. 5. The parameters and 

curve elements for the TA, EAA, and symmetrical curves are shown 
in Tables 2 and 3. For the TA curve, the initial values in the 
parameters were: xQ = 25, yQ = 4.5, xA = 110, yA = 6, xB = 220, yB = 5, 
and xC = 160, which correspond to the wireframe in Fig. 5(a). The 
approximate values of the parameters were first determined using a 
graphical plot of the data. Assuming  = 20%, the lower and upper 
bounds of the parameters are established, as shown in Fig. 4. All 
calculations and results are shown in the figure. By setting TYPE = 
T, a traditional asymmetrical curve was fitted to the profile data, as 
shown in Fig. 5(b).

The value of the objective function was z = 0.0183. Since there are 
14 observations, the approximate average deviation between the 
observations and the estimated profile equals (z/14)0.5 = 0.036 m. 
Clearly, this is excellent fit, but it reflects the hypothetical data used 
in this application example. In actual applications, the accuracy of 
the fit would depend on the method used for collecting the profile 
data. The optimal curve elements are L1= 41.74 m, L2 = 63.66 m, L = 
105.40 m, R = 0.40, sA = 0.029, sB = -0.032, r1 = 0.00086, and r2 = 
0.00035.
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TABLE I 
HYPOTHETICAL (OBSERVED) PROFILE DATA 

FORAPPLICATION EXAMPLES 

Example 1: 
TA, EAA, 

Symm. 
Curves

(x=20-280)

Example 2: 
Reverse
Curve

(x=20-280)

Example 3:
Complex
Alignment 
(x = 20-520) 

x
(m)

y
(m)

x
(m)

y
(m)

x
(m)

y
(m)

x
(m)

y
(m)

20 2.4 20 2.4 20 2.4 300 1.4 

40 2.9 40 2.9 40 2.9 320 1 

60 3.6 60 3.6 60 3.6 340 0.7 

80 4.2 80 4.2 80 4.2 360 0.6 

100 4.7 100 4.7 100 4.7 380 0.8 

120 5.2 120 5.2 120 5.2 400 1.3 

140 5.4 140 5.4 140 5.4 420 1.9 

160 5.3 160 5.3 160 5.3 440 2.6 

180 4.9 180 4.9 180 4.9 460 3.4 

200 4.5 200 4.4 200 4.5 480 4.2 

220 3.9 220 3.9 220 3.9 500 5 

240 3.3 240 4 240 3.3 520 5.8 

260 2.6 260 5 260 2.7 - - 

280 2 280 6 280 2 - - 

TABLE II
OPTIMAL OBJECTIVE VALUE AND PARAMETERS FOR THE TA, EAA, AND

SYMMETRICAL CURVES

Curve Type Z xQ yQ xA yA xB yB xC

TA 0.0183 18.00 2.34 107.92 4.93 213.32 4.11 149.66 

EAA 0.0151 18.03 2.34 105.19 4.86 209.80 4.22 149.31 

Symmetrical 0.0471 18.85 2.35 90.00 4.47 208.60 4.29 149.30 

TABLE III
OPTIMAL ELEMENTS FOR THE TA, EAA, AND SYMMETRICAL CURVES

Curve Type sA sB yC xD yD sD L1 L2 R 

TA 0.029 -0.032 6.13 149.66 5.37 -0.008 41.74 63.66 0.40 

EAA 0.029 -0.032 6.13 157.50 5.33 -0.011 44.12 60.49 0.42 

Symmetrical 0.030 -0.033 6.23 149.30 5.31 -0.002 59.30 59.30 0.5 

The EAA curve was fitted to the same profile data (Table 1, 
Example 1) by setting TYPE = E. The fitted curve is shown in Fig. 6. 
The objective value was z = 0.0151 which is slightly better than that 
of the TA curve (z = 0.0183). The elements corresponding to the 
optimal solution are L1= 44.12 m, L2 = 60.49 m, L = 104.61 m, R = 
0.42, sA = 0.029, sB = -0.032, r1 = 0.00076 and r2 = 0.00040. As 
noted, r1 of the EAA curve is smaller than that of the TA curve and r2
is larger. This is expected since the EAA curve smoothes out the 
curvature of the TA curve, as previously mentioned (even though the 
start and end points of the two curves are slightly different). Also, the 
lengths and tangent ratios of the two curves are very close, and the 
tangent slopes are identical (for three decimals). 

By setting TYPE = S, the best-fit symmetrical curve for the same 
profile data was estimated. The corresponding global optimal 
solution was z = 0.0471. Clearly, the TA and EAA curves fit the 
profile data better than the symmetrical curve, since they provide 
smaller z values, as shown in Table 2. This is expected since during 
the estimation of these curves, the global optimal solution would 
have corresponded to R = 0.5 if this value provided the best fit. 
Based on the preceding results, the EAA curve would be selected as 
it provides the best fit because of the smallest z value.                                            

B. Example 2: Reverse Curve 

Consider the profile data for the reverse curve (Table 1, Example 
2) which consist of a crest followed by a sag curve as shown in Fig. 
7. Based on the formulation previously presented, the best-fit vertical 
curve is shown in the figure and corresponds to z = 0.0239. The 
optimal parameters were xQ =16.27, yQ = 2.26, xA = 97.15, yA =4.67,
xB =252.00, yB = 4.55, xC1 =150.93, and sD = -0.038. The tangent 
slopes were sA = 0.0298 and sB = 0.0523. 

C. Example 3: Complex Alignment 
To illustrate the case of a complex vertical alignment, consider a 

reverse vertical curve consisting of a crest asymmetrical curve 
followed by a sag symmetrical curve after an intermediate tangent. 
The corresponding data are given in Table 1 under Example 3. The 
formulas previously presented for reverse curves were added to the 
spreadsheet of Fig. 4 along with the observed profile data for the 
symmetrical curve which followed the existing data on the      
spreadsheet. The optimal curve is shown in Fig. 8 and corresponds to
z = 0.0353. The values of the parameters are xQ =19.54, yQ = 2.37, xA
= 105.98, yA = 4.90, xB = 215.22, yB = 4.06, xC = 148.47, xE = 296.19, 
xF = 425.02, and yF = 4.54. The tangent slopes are sA = 0.0293, sB = -
0.0313,  and sF  =  0.0393.  Other  curve elements  can  be  easily 
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Fig. 5  Best-fit TA vertical curve: (a) Wireframe location 
before optimization and (b) Fitted curve after optimization 

calculated. Clearly, the wireframe representation is working well for 
all types of vertical curves, including complex alignments. 

VI. CONCLUDING REMARKS
This paper has presented a generalized method for estimating the 

optimal vertical alignments (parameters for the parabolic curve and 
tangents) for given vertical profile data. The proposed wireframe 
concept allows the user to estimate the parameters of different types 
of vertical curves (asymmetrical, symmetrical, reverse, and complex) 
easily and efficiently. The concept can be used to model a complex 
vertical alignment consisting of any number and order of vertical 
curves and tangents along the roadway. The optimization model uses  

Fig. 6  Best-fit EAA vertical curve

Fig. 7  Best-fit reverse vertical curve 

Fig. 8  Best-fit complex vertical alignment consisting of a TA crest 
curve followed by a symmetrical curve after an intermediate tangent 

the Generalized Reduced Gradient technique that converges to a 
globally optimal solution quickly. The proposed method implements 
a spreadsheet that is familiar to most surveying professionals.

The bounds on the parameters are established using approximate 
values input by the user initially. It is essential that the bounds be 
large enough to capture the actual global optimal solution. This can 
be checked by comparing each optimal value in the parameters with 
the respective lower and upper bounds. If an optimal value equals the 
lower or upper bound, this would indicate that the respective bound 
is binding the optimal solution, and that the global solution may lie 
outside that bound. In this respect, the formulated spreadsheet allows 
the user to easily relax all bounds by changing a simple variable. 

It is unlikely that the profile data for any constructed EAA curve 
will be missing since the curve has only been recently developed. 
However, the curve may be considered in estimating old 
traditionally-designed asymmetrical curves with missing profile data. 
The reason for this is that the curve may provide a better fit to the 
data than the traditional asymmetrical curve owing to the differential 
settlements that may have occurred in the roadway profile over the 
years. In addition, when as-built roadways are checked for 
compliance with the original specifications, the EAA curve may be 
part of the alignment and would therefore require to be considered in 
the estimation process. 

The EAA curve represents a useful tool in the design of 
asymmetrical curves since it provides important benefits. It is hoped 
that the curve will be introduced in the surveying engineering texts to 
help provide surveying engineering students and professionals with 
all the tools of vertical curve design. 
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APPENDIX 1: DESCRIPTION OF SPREADSHEET 
FORMULATION 

 The spreadsheet used as input to the Premium Solver software is 
shown in Fig. 4. The spreadsheet includes the unified formulation 
and corresponds to the results of the TA curve. The entries of the 
spreadsheet are as follows: 
1) Store the type of vertical curve TYPE in F2, where TYPE = T, E, 

or S for the TA, EAA, and symmetrical curves, respectively. 
2) The lower and upper bounds on the parameters are required. The 

user need only provide in the spreadsheet the approximate initial 
values of the parameters (C5–I5) and the desired percentage 
deviation, , of the lower and upper bounds from these values 
(C2). These initial values can be determined from a graphical 
plot of the profile data. The spreadsheet uses  to calculate the 
lower and upper bounds of the parameters which are stored in 
C6–I6 and C4–I4, respectively. These bounds are added in the 
Solver Parameters window in terms of cell addresses rather than 
numerical values. For example, the bounds on xA are written as, 
E9  E6 and E9  E4. In this way, the user can evaluate 
different bounds by changing only  in the spreadsheet. 

3) The optimal parameters are stored in C9–J9. Before the solution 
starts, the mid-point values in C5–I5 can be input as the initial 
values of the parameters. Such values would speed up the 
optimization process.

4) The variables sA, yC, sB, L, A, L1, L2, and R are calculated using 
(11)–(17) and (3), respectively, and are stored in C12–I12 and 
C15. All the preceding variables are the same for both the TA 
and EAA curves. 

5) The variables that are different for the TA and EAA curves are 
r1, r2, sD, xD, and yD. These variables are calculated using (18)–
(20) of the TA curve or (22)–(24) of the EAA curve, and are 
stored in D15–H15. The conditional formulas for making these 
calculations, which are based on the curve type, are listed in 
Table 4. 

6) The constraints on R are stored in I17 and I18 which represent 
the lower and upper bounds on R, respectively. The upper bound 
is 0.5 and the lower bound is given by 

=IF(F2="T",0,IF(F2="E",0.25,0.5))    (lower bound)  (34) 

Equation (34) states that if the curve type is T (TA curve) the 
lower bound is zero, if the curve type is E (EAA curve) the 
lower bound is 0.25 and otherwise the lower bound is 0.5 
(symmetrical curve). Thus, for the symmetrical curve the upper 
and lower bound constraints will be R  0.5 and R  0.5, which 
are equivalent to R = 0.5 as required. Two constraints are then 
added in the Solver Parameters window: C15  I17 and C15 
I18. For the TA curve, the user may specify a lower bound on 
R by replacing the zero value in (34) with the desired limit. 

7) The observed x and y-coordinates are added in C19–C32 and 
D19–D32, respectively. 

TABLE IV
CONDITIONAL FORMULAS FOR ASYMMETRICAL AND

SYMMETRICAL VERTICAL CURVE ESTIMATION

Variable Cell Conditional Formula 

r1t, r1e, or r D15 =IF(G5="T",L2*(1-
D19)/(G16*D19),IF(G5="E",L2*(3-
4*D19)/G16, G12/F12)) 

r2t, r2e, or r E15 =IF(G5="T",L2*D19/(G16*(1-
D19)),IF(G5="E",L2*(4*D19-
1)/G16,G12/F12))

SD F15 =IF(G5="T",D16-
E19*I16,IF(G5="E",D16-
E19*G16/2,D16-E19*G16/2))

XD G15 =IF(G5="T",F13+I16,IF(G5="E",F13
+G16/2,F13+G16/2))

YD H15 =IF(G5="T",G13+D16*I16-
E19*I16^2/2,IF(G5="E",G13+D16*G
16/2-
E19*(G16/2)^2/2,G13+D16*G16/2-
E19*(G16/2)^2/2))

8) The estimated Yi coordinates are stored in E19–E32 based on 
(21).

9) The absolute and squared deviations are calculated based on the 
observed and estimated elevations (yi and Yi) and are stored in 
F19–F32 and G19–G32, respectively. The sums of the absolute 
and squared deviations are stored in F33 and G33, respectively, 
and the specific cell to be minimized is then marked in the 
Solver Parameters window.
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