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 
Abstract—The Maximum entropy principle in spectral analysis 

was used as an estimator of Direction of Arrival (DoA) of 
electromagnetic or acoustic sources impinging on an array of sensors, 
indeed the maximum entropy operator is very efficient when the 
signals of the radiating sources are ergodic and complex zero mean 
random processes which is the case for cosmic sources. In this paper, 
we present basic review of the maximum entropy method (MEM) 
which consists of rank one operator but not a projector, and we 
elaborate a new operator which is full rank and sum of all possible 
projectors. Two dimensional Simulation results based on Monte 
Carlo trials prove the resolution power of the new operator where the 
MEM presents some erroneous fluctuations. 
 

Keywords—Maximum entropy, Cosmic source, Localization, 
operator, projector, azimuth, elevation, DoA, circular array.  

I. INTRODUCTION 

OURCE localization problem of radiating sources is an 
active field of research [1]-[6] because of the diversity of 

its applications such as radar, sonar, radio astronomy, 
geophysics, positioning systems and so on.  

Localization of the wave field by means of DoA techniques 
has the advantage of no requirement of the synchronization 
between the sources and the sensors. In the last two decades, 
one of the famous proposed spectra for DoA problem is the 
maximum entropy principle [4] which is very performing 
when the signals of the radiating sources are complex 
identically distributed random processes which is correct 
model for cosmic sources [5]. In fact the MEM method has the 
advantage of high resolution power, in other words it breaks 
the Rayleigh limit angular resolution of the array which is 
inversely proportional to the array aperture, the second 
advantage is that it only requires the inversion of the inter 
spectral matrix to compute the angular spectrum. The origin of 
the MEM method is based on an optimization problem where 
the goal is to search for a vector that minimizes the output 
power of the array with a constraint that the first element of 
the target vector equals one. The resulting operator is dyadic 
product of the optimized vector. In this paper, we briefly 
describe the MEM mechanism and we present a generalization 
of the concept where we propose a new operator which is a 
full rank consisting of the summation of all possible projectors 
into the complement signal subspace. In the next section we 
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describe the geometry of the problem and the statistical data 
model, in the third section we present the new formulation and 
we confirm its validity by some computer simulation in the 
last section. 

II. STATISTICAL DATA MODEL 

In medium of propagation, suppose that we have ܲ 
statistically independent  sources generating a radiation during 
a time of observation, the resulting electric field [6] at point ݎԦ 
is given by the partial differential equation as: 

  

∆ ∑ ሬԦ௜ሺ௉ܧ
௜ୀଵ ,Ԧݎ ሻݐ ൌ

ଵ

௖మ

డమ ∑ ாሬԦ೔ሺ௥Ԧ,௧ሻು
೔సభ

డ௧మ                 (1) 
 

where ∆ is the Laplacian operator: ∆ൌ డమ

డ௫మ ൅ డమ

డ௬మ ൅ డమ

డ௭మ and ܿ is 

the velocity of propagation. The solution for one source of the 
first equation is differentiable equation ܥஶ which is given by: 
 

,ԦݎሬԦ௜ሺܧ ሻݐ ൌ ∑ ሻ݁ି௝ሺఠ௧ି௞ሬԦ೔.௥Ԧሻ௉ݐ௜ሺݏ
௜ୀଵ                          (2) 

 

where ሬ݇Ԧ
௜ is the ݅௧௛ wave vector. The geometry is illustrated in 

the Fig. 1 that represents the propagation of one source in 
ሺݔ,  :ሻ planeݕ
 

 

Fig. 1 Propagation model in ሺݔ,  ሻ planeݕ
 

We suppose that we have ܰ sensors to measure the 
intercepted waves, the measured signals ܺ are proportional to 

 ሬԦ| after removing the carrier frequencies terms ݁ି௝ሺఠ௧ሻ withܧ|
߱ ൌ ߨ2 ௖݂, let us consider that the sensors are isotropic and 
uniformly placed where the distance between two sensors is 
 During the observation time ܶ, the collected signals at .2/ߣ
instant ݐ are written by the following equation: 
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ܺሺݐሻ ൌ ∑ ∑ ሻ݁ି௝௞ሬԦೕ.௥Ԧ೔ݐ௝ሺݏ ൅ ݊ሺݐሻ௉
௝ୀଵ

ே
௜ୀଵ                    (3) 

 
During the acquisition time we get ܭ samples so ܺሺݐሻ א 

 ሻ is the scalarݐ௝ሺݏ ,Ԧ௜ is the position of the ݅௧௛ sensorݎ ,ே௫௄ܥ
that represents the value of the ݆௧௛ signal at instant t , ݊ሺݐሻ is 
vector of spatially and temporally white noise where it is 
uncorrelated between sensors and independent of sources. The 
problem of localization is based on the recovery of the 

component of the wave vectors ሬ݇Ԧ
௝, generally, by means of 

inter spectral matrix א ߁  ே௫ே, its theoretical expression isܥ
given by the following equation: 
 

߁  ൌ lim்՜ାஶ
ଵ

்
׬ ܺሺݐሻܺାሺݐሻ݀ݐ ൌ ାܣ௦߁ܣ ൅ ௡߁

்
଴                   (4) 

    
௦߁ א .ሻ, ሺݐሺݏ ௉௫௉ is the correlation matrix of the signalsܥ ሻା is 
the conjugate transpose operator and ܣ א  ே௫௉ is the steeringܥ
matrix, taking the first sensor as reference, the elements of ܣ 
are given by: 
 

ܣ     ൌ ൮

1 1 … 1
݁ି௝௞ሬԦభ.௥Ԧమ ݁ି௝௞ሬԦమ.௥Ԧమ … ݁ି௝௞ሬԦು.௥Ԧమ

… … … …

݁ି௝௞ሬԦభ.௥Ԧಿ ݁ି௝௞ሬԦమ.௥Ԧಿ … ݁ି௝௞ሬԦು.௥Ԧಿ

൲               (5)   

 
௡߁ ,has Vandermonde structure ܣ א  ே௫ே is the correlationܥ
matrix of the perturbation noise which expressed in the ideal 
case as ߁௡ ൌ  is the standard deviation. The quality of ߪ ,ேܫଶߪ
 estimation is dependent on the number of snapshots, its ߁
approximation is given by:  
 

߁ ൌ ଵିܭ ෍ ܺሺݐሻܺାሺݐሻ
௄

௧ୀଵ

 

 
Note: Due to the models of the parameters ݏሺݐሻ and ݊ሺݐሻ, the 
received signals are represented by random matrix ܺሺݐሻ whose 
joint probability density function is written: 
 

ሻ൯ݐ൫ܺሺ݌         ൌ ଵ

గಿ಼ ୢୣ୲ሼ௰ሽ
݁ሺି௑శሺ௧ሻ௰షభ௑ሺ௧ሻሻ                (6)                                                                                     

 
The spectral decomposition of the matrix ߁ is written as a 

sum of two orthogonal subspaces, called signal and noise 
subspaces as the following: 
 

߁ ൌ ෍ ௜ݑ௜ݑ௜ߣ
ା ൅

௉

௜ୀଵ

෍ ௝ݑ௝ݑ௝ߣ
ା

ே

௝ୀ௉ାଵ

 

 
where ߣ௝ ؆ ܰ ଶ is the noise power which is degenerateߪ െ ܲ 
times. The largest eigenvalues represent the signal subspace, 
in descending order, the spectrum of ߁ is represented by: 
 

௰ߪ ൌ ଵߣ| ൒ ڮ ൒ ௉ߣ ൐ ௉ାଵߣ ൎ ڮ ൎ ேߣ ൐. 
 

To detect the column of the matrix ܣ, we search for noise 
subspace. In compact form, the projectors into the signal and 
noise subspaces can be written by this equation ௦ܷ ௦ܷ

ା ൅

ܷ௡ܷ௡
ା ൌ  .ே, where they form complete baseܫ

The objective herein, is to search for an approximation of 
the projector into the noise subspace ௡ܲ ൌ ேܫ െ ௦ܷ ௦ܷ

ା. 

III. GENERALIZED MAXIMUM ENTROPY OPERATOR 

The maximum entropy localization technique is based on 
searching for vector which minimizes the output power of the 
array as the following: 
 

ሽ  Subject to ܽା݁௜ܽ߁ሼܽା݊݅ܯ               ൌ 1                  (7) 
 
where ݁௜ is the ݅௧௛ column of the identity matrix ܫே, if we use 
the Lagrange multiplier we get the function ܮሺܽ,  ሻ definedߣ
by: 
 

,ሺܽܮ           ሻߣ ൌ ܽାܽ߁ െ ሺ1ߣ െ ܽା݁௜ሻ                             (8) 
 

Searching for the minimum yields to ௅ሺ௔,ఒሻ

ௗ௔
ൌ 0, since the 

inter spectral matrix is self adjoint operator, ܮሺܽ,  ሻ reaches aߣ
minimum when we have: 
 

ܽ߁2                       െ ௜݁ߣ  ൌ 0                                        (9) 
 

 The Lagrange multiplier has the following solution: 
 

ߣ                       ൌ 2/݁௜
 ௜                                      (10)݁߁்

 
using the constraint, the optimized vector is obtained as the 
following: 
 

ܽ ൌ ଶ௰షభ௘೔

ଶ௘೔
೅௰௘೔

ൌ ௰షభ௘೔

ఈ
                                    (11)  

 
where ߙ is constant, the final operator is rank one operator 
defined as: 
 

                ௜ܲ ൌ ܽܽା ൌ ଵ݁௜݁௜ି߁
 ଵ                              (12)ି߁்

 
the spatial spectrum is therefore given by the following two 
dimensional function : 
 

            ݂ሺߠ, ߮ሻ ൌ ൫ܽାሺߠ, ߮ሻ ௜ܲ ܽሺሺߠ, ߮ሻ൯
ିଵ

                       (13) 
 

The operator ௜ܲ is of rank one and is not a projector, its 
spectrum contains one non zero eigenvalue ߚ: 
 

௉೔ߪ                   
ൌ |0,0,0, … , ߚ ൐                                     (14) 

 
 For two dimensional localization problem, the operator ௜ܲ 

may not be efficient if there are multiple sources, and this 
situation can be the same for any index ݅ ൌ ሼ1, . . ܰሽ. For this 
case, we propose a generalization of the MEM principle where 
each dyadic ௜ܲ is transformed into projector. 

Following the definition of the spectrum of projector, the 
spectrum of ௜ܲ must contain binaries values, since we have the 
sum of the eigenvalues as: 
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                           ∑ ௜ߣ
ே
௜ୀଵ ൌ ሼݎܶ ௜ܲሽ ൌ  (15)                               ߚ

 
The dyadic projector is obtained by  ௜ܲ ൌ ௜ܲ/ܶݎሼ ௜ܲሽ , now the 

operator is pure projector such that ׊ ݉ א ܰ, ௜ܲ
௠ ൌ ௜ܲ and   

௉೔ߪ
ൌ |0,0,0, … ,1 ൐ where the Van Neumann entropy is zero: 

 
                 ܵሺ ௜ܲሻ ൌ െܶݎሺ ௜݈ܲ݃݋ሺ ௜ܲሻሻ ൌ 0                            (16) 

 
To get full rank operator, we sum over all possible 

projectors which leads to the following result: 
 

                       ܳ ൌ ∑ ௜ܲ/ே
௜ୀଵ ሼݎܶ  ௜ܲሽ                                    (17) 

 
The final matrix Q is full rank operator characterized by the 

following spectrum: 
  

ொߪ            ൌ ଵߣ| ൒ ڮ ൒ ேି௉ߣ ൐ ேି௉ାଵߣ ൎ ڮ ൎ ேߣ ൐      (18) 
 

The new spatial function is computed with new operator ܳ 
using (13) which is has more resolution power of detecting the 
signal subspace ܣሺߠ, ߮ሻ [7], to prove this remark we present in 
the next section some numerical results. 

IV. SIMULATION RESULTS 

We run some computer simulation to test the performance 
of the proposed operator, we consider a circular array 
consisting of ܰ ൌ 15 isotropic and identical sensors, 200 
samples are collected from three non correlated narrowband 
sources with positions ሺߠଵ ൌ 15°, ߮ଵ ൌ 50°ሻ, ሺߠଶ ൌ 40°, ߮ଶ ൌ
44°ሻ and ሺߠଷ ൌ 57°, ߮ଷ ൌ 60°ሻ with ߣ ൌ 0.3 ݉. The distance 
between two consecutive sensors is 2/ߣ.  

The sources have the same power (ൎ  and the signal (ݐݐܽݓ 1

to noise ratio is set to ݎ݊ݏ ൌ 10݃݋20݈ ቀ
ଵ

଴.ହ଺
ቁ ൌ  where the ܤ5݀

noise is spatially and temporally uncorrelated and the sources 
are sampled from ݏሺݐሻ~ܰܥሺ0,  ଷሻ which is a model to representܫ
the cosmic sources [5]. We compare the performance analysis 
of MEM and generalized MEM using Monte Carlo simulation 
of 1000 trials, the following two graphs represent the average 
of the realizations for both functions. 

In Fig. 2, we remark that the MEM presents some erroneous 
results due to rank one operator while the generalized MEM 
gives precise localization because the operator has full rank. 

If we compare the spectrum of our operator ܳ with that of 
Minimum Variance Distortionless Response (MVDR) [8], we 
find that there is difference in the magnitude of the 
eigenvalues, in the third test, we present the sorted eigenvalues 
of ܳ and ି߁ଵ, we realize that three first signal eigenvalues of 
signal subspace are the almost null for both operators while 
the other eigenvalues belonging to the noise subspace are 
different in theirs magnitudes. 

In the second part of the simulation, we change the 
configuration of the array, we consider in this case a uniform 
linear array with the same number of sensors as in the first 
experiment, the localization problem is focused on azimuth 
angles only ߠ ൌ ሾ15°, 40°, 57°ሿ. In Fig. 5, the two functions 
represent an average of 1000 trials, The magnitudes of the 
obtained peaks using MEM function are higher than those 

obtained by the generalized MEM, but for smaller values of 
the spectra, the functions represent slight differences that can 
be seen using logarithm scale (dB). 

 

 

Fig. 2 MEM localization function 
 

 

Fig. 3 Generalized MEM localization function 
 

 

Fig. 4 Eigenvalues of MVDR and proposed operator 
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Fig. 5 One dimensional localization, ܴܵܰ ൌ  ܤ5݀

V. CONCLUSION 

Maximum entropy principle for narrowband DoA problem 
consists of dyadic operator constructed from any column of 
the inverse inter spectral matrix when the array is uniform, the 
technique is robust when the signals of the sources are random 
which suits the application of DoA in radio astronomy to 
localize cosmic sources. However if the localization is two 
dimensional, MEM may give erroneous result, to overcome 
this issue, we have proposed generalized MEM operator which 
a sum of all projectors calculated from inverse inter spectral 
matrix, this new formulation has more resolution power in two 
dimensional case which is confirmed by simulation results. 
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