Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Yuli Hu, Shaoquan Sun

Abstract—The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords—BCI-algebras with operators, generalized fuzzy subalgebras, generalized fuzzy ideals, generalized fuzzy quotient algebras.

I. Introduction

THE fuzzy set is a generalization of the classical set. After the introduction of fuzzy sets, there have been a number of generalizations of this fundamental concept, especially, in the branches of mathematics. Imai and Iseki [1], [2] introduced the concept of BCK/BCI-algebras, which are generalizations of BCK-algebras. In 1980, Ming et al. [13] introduced the neighbourhood structure of a fuzzy point.

In 1991, Xi [3] applied the fuzzy sets to BCK-algebras; fuzzy BCK/BCI-algebras have been widely researched. Meng et al. [4] introduced the concept of fuzzy implicative ideals of BCK-algebras in 1997. Liu and Meng [6], [7] introduced the notions of fuzzy positive implicative ideals and fuzzy implicative ideals of BCI-algebras. Zheng [5] defined operators in BCK-algebras and raised the concept of BCIalgebras with operators and gave some isomorphism theorems of it. In 2002, Liu [8] introduced the concept of the fuzzy quotient algebras of BCI-algebras. In 2004, Jun [9] introduced the (α, β) -fuzzy ideals of BCK/BCI-algebras and established the characterizations of $(\in, \in \lor q)$ -fuzzy ideals. In 2006, Liao et al. [11] introduced the $(\in, \in \lor q_{(\lambda,\mu)})$ -fuzzy normal subgroup. In 2009, Jun et al. [12] introduced the concept of $(\in, \in \lor q)$ ideals of BCI-algebras. In 2011, Liu and Sun [10] introduced the concept of generalized fuzzy ideals of BCI-algebra and investigate some basic properties. In 2017, Hu et al. [14] introduced the fuzzy subalgebras and fuzzy ideals of BCI-

In this paper, we give the notions of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, in particular, discuss the basic properties of generalized fuzzy BCI-algebras

algebras with operators.

Yuli Hu is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (phone: 178-06259520; e-mail:1198260194@qq.com).

Shaoquan Sun is with the College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (phone: 185-61681686; e-mail: qdsunsaoquan@163.com).

with operators and give several results about it.

II. PRELIMINARIES

We recall some definitions and propositions which may be

An algebra $\langle X; *, 0 \rangle$ of type (2,0) is called a BCI-algebra, if for all $x, y, z \in X$, it satisfies the following conditions:

- 1. ((x*y)*(x*z))*(z*y)=0;
- 2. (x*(x*y))*y=0;
- 3. x * x = 0;
- 4. x * y = 0 and y * x = 0 imply x = y.

We can define x * y = 0 if and only if $x \le y$, then the above conditions can be written as:

- 1. $(x*y)*(x*z) \le z*y$;
- 2. $x*(x*y) \leq y$;
- 3. $x \le x$;
- 4. $x \le y$ and $y \le x$ imply x = y.

If a BCI-algebra satisfies 0 * x = 0, then it is called a BCK-algebra.

Definition 1. [5] $\langle X; *, 0 \rangle$ is a BCI-algebra, M is a non-empty set, if there exists a mapping $(m, x) \to mx$ from $m \times x$ to X which satisfies $m(x * y) = (mx) * (my), \forall x, y \in X, m \in M$. then M is called a left operator of X, X is called a BCI-algebra with left operator M, or M - BCI-algebra for short.

Definition 2. [13] $\langle X; *, 0 \rangle$ is a BCI-algebra, a fuzzy subset *A* of *X* of the form

$$A(y) = \begin{cases} t(\neq 0), y = x, \\ 0, y \neq x, \end{cases}$$

is said to be a fuzzy point with support x and value t, and is denoted by x.

Proposition 1. [10] Let $\langle X; *, 0 \rangle$ be a BCI-algebra, if A is a fuzzy generalized ideal of it, and $x * y \le z$, then

$$A(x) \lor \lambda \ge A(y) \land A(z) \land \mu, x, y, z \in X.$$

Definition 3. [5] Let $\langle X; *, 0 \rangle$ and $\langle \overline{X}; *, 0 \rangle$ be two M – BCI-algebras, if f is a homomorphism from $\langle X; *, 0 \rangle$ to $\langle \overline{X}; *, 0 \rangle$, and f(mx) = mf(x) for all $x \in X$, $m \in M$, then f is called a homomorphism with operators.

Definition 4. If $\langle X; *, 0 \rangle$ is a BCI-algebra, A is a non-empty subset of X, and $mx \in A$ for all $x \in A, m \in M$, then $\langle A; *, 0 \rangle$ is called an M – subalgebra of $\langle X; *, 0 \rangle$.

In the following parts, X always means a M – BCI-algebra unless otherwise specified.

III. GENERALIZED FUZZY SUBALGEBRAS OF BCI-ALGEBRAS WITH OPERATORS

Definition 5. $\langle X; *, 0 \rangle$ is a BCI-algebra, let A be a fuzzy subset of X, t, λ , $\mu \in [0,1]$ and $\lambda < \mu$. if $A(x) \ge t$, we denoted $x_t \in A$; if $t > \lambda$ and $A(x) + t > 2\mu$, we denoted $x_t q_{(\lambda,\mu)} A$; if $x_t \in A$ or $x_t q_{(\lambda,\mu)} A$, we denoted $x_t \in \vee q_{(\lambda,\mu)} A$.

Definition 6. $\langle X; *, 0 \rangle$ is an M –BCI-algebra, let A be a fuzzy subset of X, if it satisfies:

1. $x_t \in A$ and $y_r \in A$ implies $(x * y)_{t \wedge r} \in \forall q_{(\lambda,\mu)}A, \ \forall x, y \in X, t, r \in [0,1];$

2. $x_t \in A$ implies $(mx)_t \in \forall q_{(\lambda,\mu)} A, \forall x \in X, t \in [0,1].$

Then A is called an $M - (\in, \in \lor q_{(\lambda,\mu)})$ – fuzzy subalgebra or a generalized M – fuzzy subalgebra for short.

Proposition 2. A fuzzy subset A of X is a generalized M – fuzzy subalgebra of X if and only if it satisfies:

1. $A(x*y) \lor \lambda \ge A(x) \land A(y) \land \mu, \forall x, y \in X;$

2.
$$A(mx) \lor \lambda \ge A(x) \land \mu, \forall x \in X$$
.

Proof. Suppose that A is a generalized M – fuzzy subalgebra of X. We first verify that

$$A(x * y) \lor \lambda \ge A(x) \land A(y) \land \mu, \forall x, y \in X.$$

Suppose there exists $x_0, y_0 \in X$ such that $A(x_0 * y_0) \lor \lambda < A(x_0) \land A(y_0) \land \mu$, choose t such that $A(x_0 * y_0) \lor \lambda < t < A(x_0) \land A(y_0) \land \mu$, then $A(x_0 * y_0) < t, \lambda < t < \mu$, $A(x_0) \gt t$ and $A(y_0) \gt t$, therefore $(x_0)_t \in A, (y_0)_t \in A$. Based on Definition 6, $(x_0 * y_0)_t \in \lor q_{(\lambda,\mu)}A$, but we have $A(x_0 * y_0) < t$, therefore $A(x_0 * y_0)_t t \le t + t < 2\mu$, this is a contradiction, therefore we have $A(x * y) \lor \lambda \ge A(x) \land A(y) \land \mu, \forall x, y \in X$. We shall now show that $A(mx) \lor \lambda \ge A(x) \land \mu, \forall x \in X$.

Suppose there exists $x_0 \in X$ such that $A(mx_0) \lor \lambda < A(x_0) \land \mu$, choose t such that $A(mx_0) \lor \lambda < t < A(x_0) \land \mu$, then $A(x_0) \gt t$, therefore $(x_0)_t \in A$. Based on Definition 6, $(mx_0)_t \in \lor q_{(\lambda,\mu)}A$, but we have $A(mx_0) < t$, therefore $A(mx_0) + t \le t + t < 2\mu$, this is a contradiction, therefore we have $A(mx) \lor \lambda \ge A(x) \land \mu, \forall x \in X$. Conversely, assume that A satisfies condition 1, 2.

1). If $(x)_{t_1} \in A, (y)_{t_2} \in A, \forall x, y \in X, t_1, t_2 \in [0,1],$ then $A(x) \ge t_1, A(y) \ge t_2$, choose $T = t_1 \land t_2$, since A is a generalized M – fuzzy subalgebra of X, we have

$$A(x*y) \lor \lambda \ge A(x) \land A(y) \land \mu > t_1 \land t_2 \land \mu$$
,

if $T \le \mu$, then $A(x*y) \ge T$, so we have $(x*y)_T \in A$, if $T > \mu$, then $A(x*y) \ge \mu$, thus $A(x*y) + T \ge \mu + T > 2\mu$, then $(x*y)_T q_{(\lambda,\mu)} A$, therefore we have $(x*y)_T \in \vee q_{(\lambda,\mu)} A$.

2). If $x_t \in A, \forall x \in X, t \in [0,1]$, then $A(x) \ge t$, since A is a generalized M – fuzzy subalgebra of X, then $A(mx) \lor \lambda \ge A(x) \land \mu$, if $t \le \mu$, then $A(mx) \lor \lambda \ge t$, since $\lambda < t$, so we have $A(mx) \ge t$, hence $(mx)_t \in A$, if $t > \mu$, then $A(mx) \lor \lambda \ge \mu$, since $\lambda < \mu$, so we have $A(mx) \ge \mu$, hence $A(mx) + t \ge \mu + t > 2\mu$, thus $A(mx) + t \ge \mu + t > 2\mu$.

Example 1. If A is a generalized M – fuzzy subalgebra of X, then X_A is a generalized M – fuzzy subalgebra of X, define X_A by

$$X_A: X \to [0,1], X_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A. \end{cases}$$

Proof. (1) For all $x, y \in X$, if $x, y \in A$, then $x * y \in A$, thus

$$X_A(x*y) \lor \lambda = 1 \ge X_A(x) \land X_A(y) \land \mu$$

if there exists at least one which does not belong to A between x and y, for example $x \notin A$, thus

$$X_{A}(x * y) \lor \lambda \ge 0 = X_{A}(x) \land X_{A}(y) \land \mu.$$

(2) For all $x \in X$, $m \in M$, if $x \in A$, then $mx \in A$, therefore

$$X_{A}(mx) \lor \lambda = 1 \ge X_{A}(x) \land \mu,$$

if $x \notin A$, then $X_A(mx) \lor \lambda \ge 0 = X_A(x) \land \mu$, therefore X_A is a generalized M – fuzzy subalgebra of X.

Proposition 3. *A* is a generalized M – fuzzy subalgebra of X if only if A_t is a M – subalgebra of X, where A_t is a non-empty set, define X_A by $A_t = \{x \mid x \in X, A(x) \ge t\}, \forall t \in (\lambda, \mu].$

Proof. Suppose A is a generalized M – fuzzy subalgebra of X, A_t is a non-empty set, $t \in (\lambda, \mu]$, then we have $A(x*y) \lor \lambda \ge A(x) \land A(y) \land \mu$. If $x \in A_t$, $y \in A_t$, then $A(x) \ge t$, $A(y) \ge t$, thus $A(x*y) \lambda \ge A(x) \land A(y) \land \mu \ge t$, thus we have $x*y \in A$.

For all $x \in X, m \in M$, if A is a generalized M – fuzzy subalgebra of X, hence $A(mx) \lor \lambda \ge A(x) \land \mu \ge t$, thus $mx \in A_t$, therefore A_t is an M – subalgebra of X. Conversely, suppose A_t is an M – subalgebra of X, then we have $x * y \in A_t$. Let

A(x) = t, then $A(x * y) \lor \lambda \ge t = A(x) \ge A(x) \land A(y) \land \mu$. For all $x \in X$, $m \in M$, if A_t is an M – subalgebra of X, then we have $A(mx) \lor \lambda \ge t = A(x) \ge A(x) \land \mu$, therefore A is a generalized M – fuzzy subalgebra of X.

Proposition 4. Suppose X,Y are M-BCI-algebras, f is a mapping from X to Y, if A is a generalized M-fuzzy subalgebra of the Y, then $f^{-1}(A)$ is a generalized M-fuzzy subalgebra of X.

Proof. Let $y \in Y$, suppose f is a epimorphism, then there exists x in X, we have y = f(x). If A is a generalized M – fuzzy subalgebra of Y, then we have

$$A(x*y) \lor \lambda \ge A(x) \land A(y) \land \mu; A(mx) \lor \lambda \ge A(x) \land \mu.$$

For all $x, y \in X, m \in M$, we have $(1) f^{-1}(A)(x * y) \lor \lambda = A(f(x) * f(y)) \lor \lambda$ $\ge A(f(x)) \land A(f(y)) \land \mu = f^{-1}(A)(x) \land f^{-1}(A)(y) \land \mu;$ $(2) f^{-1}(A)(mx) \lor \lambda = A(f(mx)) \lor \lambda = A(mf(x)) \lor \lambda$

$$\geq A(f(x)) \wedge \mu = f^{-1}(A)(x) \wedge \mu.$$

Therefore $f^{-1}(A)$ is a generalized M – fuzzy subalgebra of X.

IV. GENERALIZED FUZZY IDEALS OF BCI-ALGEBRAS WITH

Definition 7. $\langle X; *, 0 \rangle$ is an M – BCI-algebra, let A be a fuzzy subset of X, if it satisfies:

- 1. $x_t \in A$ implies $0_t \in \vee q_{(\lambda,\mu)}A, \forall x \in X, t \in [0,1];$
- 2. $(x*y)_t \in A$ and $y_r \in A$ implies $x_{t \wedge r} \in \forall q_{(\lambda,\mu)} A, \forall x, y \in X, t, r \in [0,1];$
- 3. $x_t \in A$ implies $(mx)_t \in \forall q_{(\lambda,\mu)}A, \forall x \in X, t, \in [0,1].$

Then A is called a $M - (\in, \in \lor q_{(\lambda,\mu)})$ – fuzzy subalgebra or a generalized M – fuzzy subalgebra for short.

Proposition 5. A fuzzy subset A of X is a generalized M – fuzzy ideal of X if and only if it satisfies:

- 1. $A(0) \lor \lambda \ge A(x) \land \mu, \forall x \in X;$
- 2. $A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu, \forall x, y \in X$;
- 3. $A(mx) \lor \lambda \ge A(x) \land \mu, \forall x \in X$.

Proof. Suppose that A is a generalized M – fuzzy ideal of X. We first verify that $A(0) \lor \lambda \ge A(x) \land \mu, \forall x \in X$. Suppose there exists $x_0 \in X$ such that $A(0) \lor \lambda < A(x_0) \land \mu$, choose t such that $A(0) \lor \lambda < t < A(x_0) \land \mu$, then $A(x_0) \gt t$ and $x_0 < t < \mu$, therefore $(x_0)_t \in A$. Based on Definition 7, $x_0 \in A$, but we have $x_0 \in A$ therefore $x_0 \in A$ therefore $x_0 \in A$ therefore $x_0 \in A$ therefore $x_0 \in A$ this is a contradiction, therefore we have $x_0 \in A$ this is a contradiction, therefore we have $x_0 \in A$ therefore we have $x_0 \in A$ this is a contradiction, therefore we have $x_0 \in A$ therefore we have $x_0 \in A$ this is a contradiction, therefore we have $x_0 \in A$ therefore $x_0 \in A$ therefore we have $x_0 \in A$ therefore $x_0 \in A$ therefore we have $x_0 \in A$ therefore $x_$

$$A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu, \forall x, y \in X.$$

Suppose there exists $x_0, y_0 \in X$ such that $A(x_0) \lor \lambda < A(x_0 * y_0) \land A(y_0) \land \mu$, choose t such that $A(x_0) \lor \lambda < t < A(x_0 * y_0) \land A(y_0) \land \mu$, then $A(x_0) < t, \lambda < t < \mu$, $A(x_0 * y_0) > t$ and $A(y_0) > t$, therefore $(x_0 * y_0)_t \in A, (y_0)_t \in A$. Based on Definition 7, $(x_0)_t \in \forall q_{(\lambda,\mu)}A$, but we have $A(x_0) < t$, therefore $A(x_0) + t \le t + t \le 2\mu$, this is a contradiction, therefore we have $A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu, \forall x, y \in X$.

Next, we shall show that $A(mx_0) \lor \lambda \ge A(x) \land \mu, \forall x \in X$. Suppose there exists $x_0 \in X$ such that $A(mx_0) \lor \lambda < A(x_0) \land \mu$, choose t such that $A(mx_0) \lor \lambda < t < A(x_0) \land \mu$, then $A(x_0) \lor t$, therefore $(x_0)_t \in A$. Based on Definition 7, $(mx_0)_t \in \lor q_{(\lambda,\mu)}A$, but we have $A(mx_0) < t$, therefore $A(mx_0) + t \le t + t < 2\mu$, this is a contradiction, therefore we have $A(mx) \lor \lambda \ge A(x) \land \mu, \forall x \in X$. Conversely, assume that A satisfies condition 1, 2, 3.

- 2). If $(x*y)_{t_1} \in A, y_{t_2} \in A, \forall x, y \in X, t_1, t_2 \in (\lambda, 1]$, then $A(x*y) \ge t_1, A(y) \ge t_2$, choose $T = t_1 \wedge t_2$, since A is a generalized M fuzzy ideal of X. We have $A(x) \lor \lambda \ge A(x*y) \land A(y) \land \mu > t_1 \land t_2 \land \mu$, if $T \le \mu$, then $A(x) \ge T$, so we have $x_T \in A$, if $T > \mu$, then $A(x) \ge \mu$, thus $A(x) + T \ge \mu + T > 2\mu$, then $x_T q_{(\lambda, \mu)} A$, therefore we have $x_T \in \lor q_{(\lambda, \mu)} A$.
- 3). If $x_t \in A, \forall x \in X, t \in (\lambda, 1]$, then $A(x) \ge t$, since A is a generalized M fuzzy ideal of X. We have $A(mx) \lor \lambda \ge A(x) \land \mu$, if $t \le \mu$, then $A(mx) \lor \lambda \ge t$, since $\lambda < t$, so we have $A(mx) \ge t$, hence $(mx)_t \in A$, if $t > \mu$, then $A(mx) \lor \lambda \ge \mu$, since $\lambda < \mu$, so we have $A(mx) \ge \mu$, hence $A(mx) \ne \mu$, thus $A(mx) \ne \mu$, therefore we have $A(mx) \ne \mu$, thus $A(mx) \ne \mu$, therefore we have $A(mx) \ne \mu$, thus $A(mx) \ne \mu$, therefore we have $A(mx) \ne \mu$, thus $A(mx) \ne \mu$, therefore we have $A(mx) \ne \mu$, therefore we have $A(mx) \ne \mu$. So, A is a generalized $A(mx) \ne \mu$, therefore we have

Example 2. If A is a generalized M – fuzzy ideal of X, then X_A is a generalized M – fuzzy ideal of X, define X_A by

$$X_A: X \to [0,1], X_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A. \end{cases}$$

Proof. (1) For all $x, y \in X$, if $x, y \in A$, then $x * y \in A$, thus

$$\begin{split} X_{A}(0) \vee \lambda &= 1 \geq X_{A}(x) \wedge \mu, \\ X_{A}(x) \vee \lambda &= 1 \geq X_{A}(x * y) \wedge X_{A}(y) \wedge \mu, \end{split}$$

if there exists at least one which does not belong to A between x and y, for example $x \notin A$, thus

$$X_{A}(0) \lor \lambda = 1 \ge X_{A}(x) \land \mu,$$

$$X_A(x) \lor \lambda \ge X_A(x * y) \land X_A(y) \land \mu = 0;$$

(2)For all $x \in X$, $m \in M$, if $x \in A$, then $mx \in A$, thus $X_A(mx) \lor \lambda = 1 \ge X_A(x) \land \mu$. If $x \notin A$, then $X_A(mx) \lor \lambda \ge 0 = X_A(x) \land \mu$, therefore X_A is a generalized M – fuzzy ideal of X.

Proposition 6. A is a generalized M – fuzzy ideal of X if only if A_t is an M – ideal of X, where A_t is non-empty set, define A_t by $A_t = \{x \mid x \in X, A(x) \ge t\}, \forall t \in (\lambda, \mu]$.

Proof. Suppose A is a generalized M – fuzzy ideal of X, A, is non-empty set, $t \in (\lambda, \mu]$, then we have $A(0) \lor \lambda \ge A(x) \land \mu \ge t$, thus $0 \in A_t$. If $x * y \in A_t$, $y \in A_t$, then $A(x * y) \ge t$, $A(y) \ge t$, thus $A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu \ge t$, thus we have $x \in A_t$. For all $x \in X$, $m \in M$, if A is a generalized M – fuzzy ideal of X, hence $A(mx) \lor \lambda \ge A(x) \land \mu \ge t$, thus $mx \in A_t$, therefore A_t is an M-ideal of X. Conversely, suppose A, is an M-ideal of X, then we have $0 \in A_t, A(0) \ge t$. Let A(x) = t, thus $x \in A_t$, we suppose $A(0) \lor \lambda \ge t = A(x) \land \mu$ there $A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu$, then there exist $x_0, y_0 \in X$, we have $A(x_0) \lor \lambda < A(x_0 * y_0) \land A(y_0) \land \mu$, let $t_0 = A(x_0 * y_0) \land A(y_0) \land \mu$, then $A(x_0) \lor \lambda < t_0 = A(x_0 * y_0) \land A(y_0) \land \mu$, if $x_0 * y_0 \in A_L$, $y_0 \in A_L$, then we have $x_0 \in A_{t_0}$ then $A(x_0) \ge t_0$, which is inconsistent with $A(x_0) \vee \lambda < t_0 = A(x_0 * y_0) \wedge A(y_0) \wedge \mu,$ $A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu$. For all $x \in X, m \in M$, if A_t is an M - ideal of X, then we have $A(mx) \lor \lambda \ge t = t \land \mu = A(x) \land \mu$, therefore A is a generalized M – fuzzy ideal of X.

Proposition 7. Suppose X,Y are M – BCI-algebras, f is a mapping from X to Y, A is a generalized M – fuzzy ideal of Y, then $f^{-1}(A)$ is a generalized M – fuzzy ideal of X.

Proof. Let $y \in Y$, suppose f is an epimorphism, then there exists $x \in X$, we have y = f(x). If A is a generalized M – fuzzy ideal of Y, then we have

$$A(0) \lor \lambda \ge A(y) \land \mu; A(x) \lor \lambda \ge A(x * y) \land A(y) \land \mu;$$

 $A(mx) \lor \lambda \ge A(x) \land \mu.$

For all $x, y \in X, m \in M$, we have

$$(1)f^{-1}(A)(0) \lor \lambda = A(f(0)) \lor \lambda = A(0) \lor \lambda$$

$$\geq A(f(x)) \land \mu = f^{-1}(A)(x) \land \mu;$$

$$(2)f^{-1}(A)(x) \lor \lambda = A(f(x)) \lor \lambda \geq A(f(x)*f(y)) \land A(f(y)) \land \mu$$

$$= A(f(x*y)) \land A(f(y)) \land \mu = f^{-1}(A)(x*y) \land f^{-1}(A)(y) \land \mu;$$

$$(3)f^{-1}(A)(mx) \lor \lambda = A(f(mx)) \lor \lambda = A(mf(x)) \lor \lambda$$

$$\geq A(f(x)) \land \mu = f^{-1}(A)(x) \land \mu.$$

Therefore $f^{-1}(A)$ is a generalized M – fuzzy ideal of X.

V. GENERALIZED FUZZY QUOTIENT BCI-ALGEBRAS WITH OPERATORS

Definition 8. Let A be an $M - \left(\in, \in \lor q_{(\lambda,\mu)} \right)$ -fuzzy ideal of X, for all $a \in X$, fuzzy set A_a on X defined as: $A_a : X \to [0,1]$ $A_a \left(x \right) = A \left(a * x \right) \land A \left(x * a \right) \land \mu, \forall x \in X.$ Denote $X/A = \left\{ A_a : a \in X \right\}; A(x) \ge \lambda.$

Proposition 8. Let $A_a, A_b \in X/A$, then $A_a = A_b$ if only if $A(a*b) \wedge A(b*a) \wedge \mu = A(0) \wedge \mu$.

Proof. Let $A_a = A_b$, then we have $A_a(b) = A_b(b)$, thus $A(a*b) \wedge A(b*a) \wedge \mu = A(b*b) \wedge A(b*b) \wedge \mu = A(0) \wedge \mu$, that is $A(a*b) \wedge A(b*a) \wedge \mu = A(0) \wedge \mu$. Conversely, suppose that $A(a*b) \wedge A(b*a) \wedge \mu = A(0) \wedge \mu$. For all $x \in X$, since $(a*x)*(b*x) \leq a*b, (x*a)*(x*b) \leq b*a$. It follows from Proposition 1 that

$$A(a*x) = A(a*x) \lor \lambda \ge A(b*x) \land A(a*b) \land \mu,$$

$$A(x*a) = A(x*a) \lor \lambda \ge A(x*b) \land A(b*a) \land \mu.$$

Hence

$$A_{a}(x) = A(a*x) \wedge A(x*a) \wedge \mu$$

$$\geq A(b*x) \wedge A(x*b) \wedge A(a*b) \wedge A(b*a) \wedge \mu$$

$$= A(b*x) \wedge A(x*b) \wedge A(0) \wedge \mu = A(b*x) \wedge A(x*b) \wedge \mu$$

$$= A_{b}(x),$$

that is $A_a \ge A_b$. Similarly, for all $x \in X$, since

$$(b*x)*A(a*x) \le b*a,(x*b)*A(x*a) \le a*b.$$

It follows from Proposition 1 that

$$A(b*x) = A(b*x) \lor \lambda \ge A(a*x) \land A(b*a) \land \mu,$$

$$A(x*b) = A(x*b) \lor \lambda \ge A(x*a) \land A(a*b) \land \mu.$$

Hence

$$A_{b}(x) = A(b*x) \wedge A(x*b) \wedge \mu$$

$$\geq A(a*x) \wedge A(x*a) \wedge A(b*a) \wedge A(a*b) \wedge \mu$$

$$= A(a*x) \wedge A(x*a) \wedge A(0) \wedge \mu$$

$$= A(a*x) \wedge A(x*a) \wedge \mu$$

$$= A(a*x) \wedge A(x*a) \wedge \mu$$

$$= A_{a}(x),$$

that is $A_b \ge A_a$. Therefore, $A_a = A_b$. We complete the proof. **Proposition 9.** Let $A_a = A_{a'}, A_b = A_{b'}$, then $A_{a*b} = A_{a'*b'}$. **Proof.** Since

$$((a*b)*(a'*b'))*(a*a') = ((a*b)*(a*a'))*(a'*b')$$

$$\leq (a'*b)*(a'*b') \leq b'*b,$$

$$((a'*b')*(a*b))*(b*b') = ((a'*b')*(b*b'))*(a*b)$$

$$\leq (a'*b)*(a*b) \leq a'*a.$$

Hence

$$A((a*b)*(a'*b')) = A((a*b)*(a'*b')) \lor \lambda$$

$$\ge A(a*a') \land A(b'*b) \land \mu,$$

$$A((a'*b')*(a*b)) = A((a'*b')*(a*b)) \lor \lambda$$

$$\ge A(b*b') \land A(a'*a) \land \mu.$$

Therefore

$$A((a*b)*(a'*b')) \wedge A((a'*b')*(a*b)) \wedge \mu$$

$$= A(a*a') \wedge A(a'*a) \wedge \mu \wedge A(b*b') \wedge A(b'*b) \wedge \mu \wedge \mu$$

$$= A(0) \wedge \mu.$$

it follows from Proposition 8 that $A_{a*b} = A_{a'*b'}$, we completed the proof. Let A be a generalized M – fuzzy ideal of X, the operation "*" of R/A is defined as follows: $\forall A_a, A_b \in R/A, A_a*A_b = A_{a*b}$. By Proposition 8, the above operation is reasonable.

Proposition 10. Let A be a generalized M – fuzzy ideal of X, then $R/A = \{R/A; *, A_n\}$ is an M – BCI-algebra.

Proof. For all $A_x, A_y, A_z \in R/A$,

$$\begin{split} \left(\left(A_{x}*A_{y}\right)*\left(A_{x}*A_{z}\right)\right)*\left(A_{z}*A_{y}\right) &= A_{\left((x*y)*(x*z)\right)*(z*y)} = A_{0};\\ \left(A_{x}*\left(A_{x}*A_{y}\right)\right)*A_{y} &= A_{\left(x*(x*y)\right)*y} = A_{0};\\ A_{x}*A_{y} &= A_{x*x} = A_{0}; \end{split}$$

if $A_x*A_y=A_0, A_y*A_x=A_0$, then $A_{x*y}=A_0, A_{y*x}=A_0$, it follows from Proposition 8 that A(x*y)=A(0), A(y*x)=A(0), hence $A(x*y)\wedge A(y*x)\wedge \mu=A(0)\wedge \mu$, then $A_x=A_y$. Therefore $R/A=\{R/A,*,A_0\}$ is a BCI-algebra. For all $A_x\in R/A, m\in M$, we define $mA_x=A_{mx}$. Firstly, we verify that $mA_x=A_{mx}$ is reasonable. If $A_x=A_y$, then we verify $mA_x=mA_y$, that is to verify $A_{mx}=A_{my}$. We have

$$A(mx*my) \wedge \mu = A(m(x*y)) \wedge \mu \geq A(x*y) \wedge \mu = A(0) \wedge \mu,$$

$$A(my*mx) \wedge \mu = A(m(y*x)) \wedge \mu \geq A(y*x) \wedge \mu = A(0) \wedge \mu,$$

so we have $A(mx*my) \wedge A(my*mx) \wedge \mu = A(0) \wedge \mu$, that is,

 $A_{mx} = A_{my}$. In addition, for all $m \in M$, A_x , $A_y \in R/A$,

$$m(A_x * A_y) = mA_{x*y} = A_{m(x*y)} = A_{(mx)*(my)}$$

= $A_{mx} * A_{my} = mA_x * mA_y$.

Therefore $R/A = \{R/A; *, A_0\}$ is an M - BCI-algebra.

Definition 9. Let μ be a generalized M – fuzzy subalgebra of X, and A be a generalized M – fuzzy ideal of X, we define a fuzzy set of X/A as follows:

$$\mu/A: X/A \to [0,1],$$

$$\mu/A(A_i) \lor \lambda = \sup_{A_i = A_i} \mu(x) \land \mu, \forall A_i \in X/A.$$

Proposition 11. μ/A is a generalized M – fuzzy subalgebra of X/A.

Proof. For all $A_x, A_y \in X/A$, we have

$$\mu/A(A_x * A_y) \lor \lambda = \mu/A(A_{x*y}) \lor \lambda = \sup_{A_z = A_{x*y}} \mu(z) \land \mu$$

$$\geq \sup_{A_z = A_x, A_z = A_y} \mu(s*t) \land \mu \geq \sup_{A_z = A_x, A_z = A_y} \mu(s) \land \mu(t) \land \mu$$

$$= \sup_{A_z = A_x, \mu(s)} \mu(s) \land \sup_{A_z = A_y, \mu(t)} \mu(t) \land \mu = \mu/A(A_x) \land \mu/A(A_y) \land \mu.$$

For all $m \in M$, $A_{r} \in R/A$, we have

$$\mu/A(A_{mx}) \vee \lambda = \sup_{A_{mz} = A_{mx}} \mu(mz) \wedge \mu$$

$$\geq \sup_{A_{x} = A_{x}} \mu(z) \wedge \mu = \mu/A(A_{x}) \wedge \mu.$$

Therefore μ/A is a generalized M – fuzzy subalgebra of X/A.

REFERENCES

- Y. Imai and K. Iseki, "On axiom system of propositional calculus," Proc Aapan Academy, vol. 42, pp. 26-29,1966.
- [2] K. Iseki, "On BCI-algebras," Math. Sem. Notes, vol. 8, pp.125-130, 1980.
- [3] O.G.Xi, "Fuzzy BCK-algebras," Math Japon, vol. 36, pp. 935-942, 1991.
- [4] J. Meng, Y.B. Jun and H.S. Kim, "Fuzzy implicative ideals of BCK-Algebras," Fuzzy sets syst, vol. 89, pp. 243-248, 1997.
- [5] W. X. Zheng, "On BCI-algebras with operators and their isomorphism theorems," Journal of Qingdao University, vol. 6, pp. 17-22, 1993.
- [6] Y.L.Liu and J. Meng, "Fuzzy ideals in BCI-algebras," Fuzzy Sets and Systems, vol. 123, pp. 227-237, 2001.
- [7] J. Meng, "Fuzzy ideals of BCI-algebras," SEA Bull. Math, vol. 18, pp. 401-405, 1994.
- [8] Y. L. Liu, "Characterizations of some classes of quotient BCI-algebras" Journal of Quan zhou Normal College (Natural Science Edition),vol. 20, pp. 16-20, 2002.
- [9] Y.B. Jun, "On (α,β)-fuzzy ideals of BCK/BCI-algebras," Sci. Math. Japon. vol. 60, pp. 613-617, 2004.
- [10] J. Liu and S.Q. Sun, "Generalized fuzzy ideals of BCI-algebra," Journal of Qingdao University of Science and Technology (Natural Science Edition), vol. 32, pp. 211-215, 2011.
- [11] Z.H. Liao and H. Gu, " $(\in, \in \lor q_{(\lambda,\mu)})$ -fuzzy normal subgroup," Fuzzy

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934 Vol:11, No:10, 2017

- Systems and Mathematics.vol.20, pp. 47-53,2006.
 [12] J. Zhan, Y.B. Jun and B. Davvaz, "On (€, € ∨ q)-Fuzzy ideals of BCI-algebras," Iranian Journal of Fuzzy Systems, vol. 6, pp. 81-94. 2009.
 [13] P.P. Ming and L.Y. Ming, "Neighbourhood structure of a fuzzy point and Moore-Smith convergence," J. Math. Anal. Appl. vol. 76, pp. 571-599, 1980.
 [14] Y.I. Hu, and S.O. Sim, "f. Structure of the str
- [14] Y.L.Hu and S.Q. Sun, "fuzzy subalgebras and fuzzy ideals of BCI-algebras with operators," International Science Index, Mathematical and
- Computational Science, vol. 6, pp. 220-226. 2017.
 [15] L.A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.