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 
Abstract—In this paper, we have considered Friedmann-

Robertson-Walker (FRW) metric with generalized Chaplygin gas 
which has viscosity in the context of Lyra geometry. The viscosity is 
considered in two different ways (i.e. zero viscosity, non-constant  
(rho)-dependent bulk viscosity) using constant deceleration parameter 
which concluded that, for a special case, the viscous generalized 
Chaplygin gas reduces to modified Chaplygin gas. The represented 
model indicates on the presence of Chaplygin gas in the Universe. 
Observational constraints are applied and discussed on the physical 
and geometrical nature of the Universe. 

 
Keywords—Bulk viscosity, Lyra geometry, generalized 

Chaplygin gas, cosmology. 

I. INTRODUCTION 

NE of the most important cosmological observations 
obtained by type Ia supernova is that the Universe is 

dominated by dark energy with negative pressure which 
provides the accelerated phase of expansion of the Universe 
[1]-[3]. Nowadays, the accelerated expansion of the Universe 
is a hot topic as it depends upon the theoretical model for 
interpretation. Also, maximum models are associated with 
multi-scalar fields in the presence of a cosmic fluid. The 
cosmic fluid (otherwise known as “dark energy”) with a 
negative pressure is responsible for the accelerated expansion 
of the Universe. There are several models to discuss on dark 
energy such as phantom [4], tachyon [5], holographic dark 
energy [6], K-essence [7] and various models of Chaplygin 
gas. Here, we are interested to represent the Chaplygin gas 
(CG) as a model of dark energy [8]-[10] and to extend the 
General Chaplygin gas to the modified Chaplygin gas[11]. As, 
we know the bulk viscosity plays an important role to drive 
the present acceleration of the universe. The interaction of 
Chaplygin gas with bulk viscosity first proposed by [12] and 
bulk viscous effect and Chaplygin gas in FRW cosmology for 
the case of flat space-time and Freidman equation due to CG 
which has bulk viscosity is considered by [13]. The viscous 
generalized Chaplygin gas model is considered as a proposed 
model to describe the observed accelerated expansion of the 
universe. Also, the effect of viscous fluid in modified gravity 
theories is discussed to showcase the accelerating expansion 
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of the universe [14], [15]. In recent years, there has been a lot 
of interesting results on viscous generalized Chaplygin gas 
interaction with different modified theories of the Universe is 
discovered. Many researchers has investigated on generalized 
Chaplygin gas such as Chaubey [16], [17] has obtained the 
role of modified Chaplygin gas in Bianchi type-I universe, 
Saadat [18] has investigated on generalized Chaplygin gas 
with varying bulk viscosity in FRW universe, Baffou [19] 
studied generalized Chaplygin gas with varying bulk viscosity 
in f(R,T) gravity etc. Inspired by the above authors, we have 
studied on bulk viscous Chaplygin gas in Lyra Geometry [20]. 
The paper is organized as follows: In Section II, we described 
the necessary field equations of Lyra geometry and energy 
momentum tensor for the model with their derived solutions. 
The physical significance and brief discussion of the model 
are represented in Section III. 

II. FIELD EQUATIONS AND THEIR SOLUTIONS 

Here, we have considered FRW metric in the form  
 

𝑑𝑠ଶ ൌ െ𝑑𝑡ଶ ൅ 𝑎ሺ𝑡ሻଶሺ𝑑𝑟ଶ ൅ 𝑟ଶ𝑑Ωଶሻ,  (1) 
 

where 𝑑Ωଶ ൌ 𝑑𝜃ଶ ൅ 𝑠𝑖𝑛ଶ𝜃𝑑𝜙ଶand 𝑎 represents the scale 
factor. The 𝜃 𝑎𝑛𝑑 𝜙 parameters are the usual azimuthal and 
polar angles of spherical co-ordinate with 0൑ 𝜃 ൑ 𝜋 and 
0൑ 𝜑 ൑ 2𝜋, the co-ordinates ሺ𝑡, 𝑟, 𝜃, 𝜑ሻ are called commoving 
coordinates. 

The Einstein’s field equations for Lyra geometry proposed 
by Sen [21] in normal gauge can be written as  
 

 𝑅௜
௝ െ ଵ

ଶ
𝑅𝑔௜

௝ ൅ ଷ

ଶ
𝜑௜𝜑௝ െ ଷ

ସ
𝑔௜

௝𝜑௞𝜑௞ ൌ െ𝑇௜
௝      (2) 

 
The energy momentum tensor for bulk viscosity can be 

defined as 
 

𝑇௜
௝ ൌ ሺ𝑝̅ ൅ 𝜌ሻ𝑢௜𝑢௝ െ 𝑝̅𝑔௜

௝           (3)   
  
where 𝑝̅ ൌ 𝑝 െ 3𝜉𝐻, and 𝜉 stands for viscosity. Here, the 
viscosity is taken as a function of energy density 𝜌 in two 
different cases. 

For the Chaplygin gas, we here introduced the EoS of 
Chaplygin gas 
 

 𝑝 ൌ െ
஺

ఘഀ.                              (4) 

 
𝜑௜ is the displacement vector given by 

 
 𝜑௜ ൌ ሺ0,0,0, 𝛽ሺ𝑡ሻሻ   (5) 
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and other symbols have their usual meaning as in Riemannian 
geometry. 

Einstein field equations of Lyra geometry for the space-time 
(1) can be calculated using the fluids description of energy 
momentum tensor as  
 

12𝐻ଶ െ 3𝛽ଶ ൌ 4𝜌  (6) 
 

 8𝐻ሶ ൅ 3𝐻ଶ ൅ 3𝛽ଶ ൌ െ𝑝̅      (7) 
 
where an over dot stands for derivatives of corresponding field 

variable w.r.t. cosmic time t. 𝐻 ൌ ௔ሶ

௔
 is the Hubble parameter 

and 𝑎ሺ𝑡ሻ is average scale factor. The energy conservation 
equation leads to  
 

𝜌ሶ ൅ 3𝐻ሺ𝜌 ൅ 𝑝̅ሻ ൌ 0                         (8) 
 

  2𝛽𝛽ሶ ൅ 6𝐻𝛽ଶ ൌ 0                     (9) 
 

Equation (9) immediately reduces to  
 

𝜌ሶ ൅ 3𝐻 ቀ𝜌 െ ஺

ఘഀ െ 3𝜉𝐻ቁ ൌ 0    (10) 

 
𝛽 ൌ 𝛽଴𝑎ିଷ  (11) 

 
where 𝛽଴ is the integrating constant or rest displacement 
vector for present time. The accelerated expansion in the 
present epoch is usually accredited to a fluid with negative 
pressure and hence, the bulk viscosity has greater impact than 
the usual pressure. However, the pressure of an exotic dark 
energy form leads to a negative pressure of the universe which 
simulates on anti-gravity effect that drives accelerated 
expansion. We here considered the deceleration parameter as a 
constant to treat the Einstein field equations in a simpler way, 

which gives 𝐻 ൌ ଵ

ሺఊାଵሻ௧
. As per the recent observations, the 

universe is in accelerated trend. So, we can consider the 
deceleration parameter as a negative constant that less than 
one. Now, (6) and (7) together gives 
 

3𝛽ଶ ൅ 4𝐻ሶ ൌ െ2 ቀ𝜌 െ
஺

ఘഀ െ 3𝜉ሺ𝜌ሻ𝐻ቁ                (12) 

 
Here, we proceed our study using two different cases. In 

case-I, we will study the model for zero viscosity and for the 
case-II we will study the behavior of the model by assuming 
the viscosity coefficient as a function of energy density that is 
proportional to𝜌௡. 

A. Case-I Here We Choose 𝝃ሺ𝝆ሻ ൌ 𝟎 

Equation (12) leads to 
 

𝜌ఈାଵ ൅ 𝜌ఈ ൬ଷ

ଶ
𝛽଴

ଶ𝑡ି
ల

ംశభ െ ଶ

ሺఊାଵሻ௧మ൰ െ 𝐴 ൌ 0. (13) 

 
Let us consider 

𝜒ሺ𝑡ሻ ൌ ଷ

ଶ
𝛽଴

ଶ𝑡ି
ల

ംశభ െ ଶ

ሺఊାଵሻ௧మ          (14) 

 

Here, one can notice that (13) is well defined for 𝛾 ് െ1. 
For 𝛼 ൌ 1, 
 

 𝜌 ൌ ିఞሺ௧ሻേඥఞమሺ௧ሻାସ஺

ଶ
                               (15) 

 
Since 𝜒ଶሺ𝑡ሻ ൅ 4𝐴 ൒ 0, (15) leads two distinct values of 𝜌. 
The effective pressure for 𝜶 ൌ 𝟏, 
 

𝑝̅ ൌ െ𝐴 ൬ିఞሺ௧ሻേඥఞమሺ௧ሻାସ஺

ଶ
൰                       (16) 

 
For 𝛼 ൌ െ1,  

 

𝜌 ൌ ଷሺఊାଵሻఉబ
మ௧

మሺംషమሻ
ംశభ ିସ

ଶሺఊାଵሻ௧మሺ஺ିଵሻ 
                       (17) 

 
Here, we noticed that the energy density is diverges for 

supper-explosion and the value of the energy density is 
positive later on.  

The effective pressure for 𝜶 ൌ െ𝟏, 
 

𝑝̅ ൌ െ ൮
஺൭ଷሺఊାଵሻఉబ

మ௧
మሺംషమሻ

ംశభ ିସ൱

ଶሺఊାଵሻ௧మሺ஺ିଵሻ
൲                  (18) 

 

 

Fig. 1 Variation of energy density 𝜌 ൌ
ିఞሺ௧ሻାඥఞమሺ௧ሻାସ஺

ଶ
, 𝛼 ൌ 1 versus 

time for case-I 

B. Case-II Here We Choose 𝝃ሺ𝝆ሻ ൌ 𝝃𝟎𝝆𝒏 

Using this assumption, (12) leads to  
 

𝜌ఈାଵ ൅ 𝜌ఈ𝜒ሺ𝑡ሻ െ
ଷకబ

ሺఊାଵሻ௧
𝜌ఈା௡ ൌ 𝐴   (19) 

 
One can notice that (19) does not have a solution for 𝛾 ൌ

െ1. For𝛼 ൌ െ1 and 𝑛 ൌ 1, 
 

𝜌 ൌ ଷሺఊାଵሻఉబ
మ௧

మሺംషమሻ
ംశభ ିସ

ଶ௧ሼሺఊାଵሻሺ஺ିଵሻ௧ାଷకబሽ
                     (20) 
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The effective pressure for 𝛼 ൌ െ1 𝑎𝑛𝑑𝑛 ൌ 1 
 

𝑝̅ ൌ െ ൮
൭ଷሺఊାଵሻఉబ

మ௧
మሺംషమሻ

ംశభ ିସ൱൫ሺఊାଵሻ஺௧ାଷకబ൯

ଶሺఊାଵሻሼሺఊାଵሻሺ஺ିଵሻ௧ାଷకబሽ௧మ ൲      (21) 

 
For𝛼 ൌ െ1 and n = 2,  
 

𝜌 ൌ
ሺଵି஺ሻേඨሺଵି஺ሻమሺఊାଵሻమ௧యା଺కబ൥ଷሺఊାଵሻఉబ

మ௧
మሺംషమሻ

ംశభ ିସ൩

଺కబ√௧
     (22) 

 
Here, the effective pressure for𝛼 ൌ െ1 and 𝑛 ൌ 2 

 

𝑝̅ ൌ െ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

଺ሺఊାଵሻ஺௧
య
మቐሺଵି஺ሻേඨሺଵି஺ሻమሺఊାଵሻమ௧యା଺కబ൥ଷሺఊାଵሻఉబ

మ௧
మሺംషమሻ

ംశభ ିସ൩ቑ

ାଷకబቐሺଵି஺ሻേඨሺଵି஺ሻమሺఊାଵሻమ௧యା଺కబ൥ଷሺఊାଵሻఉబ
మ௧

మሺംషమሻ
ംశభ ିସ൩ቑ

మ

ଷ଺ሺఊାଵሻకబ௧మ

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

(23) 
 
For𝛼 ൌ 1 𝑎𝑛𝑑𝑛 ൌ 1, 

 

𝜌 ൌ ିఞሺ௧ሻേඥఞమሺ௧ሻାସ஺ఞభሺ௧ሻ

ଶఞభሺ௧ሻ
        (24) 

 
where 

𝜒ଵሺ𝑡ሻ ൌ 1 െ ଷకబ

ሺఊାଵሻ௧
  (25) 

 
The effective pressure for 𝛼 ൌ 1 and 𝑛 ൌ 1 is  

 

𝑝̅ ൌ െ ቆ
ଶ஺ఞభሺ௧ሻ

ିఞሺ௧ሻേඥఞమሺ௧ሻାସ஺ఞభሺ௧ሻ
൅

ଷకబቀିఞሺ௧ሻേඥఞమሺ௧ሻାସ஺ఞభሺ௧ሻቁ

ଶሺఊାଵሻఞభሺ௧ሻ௧
ቇ  (26) 

 
For𝛼 ൌ 1 𝑎𝑛𝑑𝑛 ൌ 2 (10) reduces to’ 

 
ሺ𝜒ଵሺ𝑡ሻ െ 1ሻ𝜌ଷ ൅ 𝜌ଶ ൅ 𝜌𝜒ሺ𝑡ሻ െ 𝐴 ൌ 0     (27) 

 
It is a difficult task for us to find the roots of (27), as it 

contains highly nonlinear variable coefficients. 
For representative case we considered 𝛽଴ ൌ 2.1, 𝐴 ൌ

0.5 and 𝝃𝟎 ൌ 0.3.  
 
On observing Fig. 3, we noticed that the effective pressure 

is diverges initially that indicates the presence of initial 
singularities (may be called as Big Bang singularity) and it is 
negative for 𝑡 ∈ ሺ1.06, 9.72ሻ which is concluded that our 
model is fit to the recent observational data. 

Here, we observed that both effective pressure and energy 
density maintain initial singularities. The effective pressure 
remain negative initially and later for a while it became 
positive. Further, it remains negative throughout the life span 
of Universe. 

 

Fig. 2 The variation of 𝜌 ൌ
ିఞሺ௧ሻିඥఞమሺ௧ሻାସ஺

ଶ
, 𝛼 ൌ 1 versus time t for 

case-I 
 

 

Fig. 3 The variation of Effective pressure 𝑝ഥ  for 𝛼 ൌ െ1 for case-I 
versus time 

 

 

Fig. 4 Variation of Energy density 𝜌 versus cosmic time t for 𝛼 ൌ െ1 
for case-I versus time 
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Fig. 5 Variation of effective pressure 𝑝̅ density𝜌 versus time for 𝛼 ൌ
െ1, n=1 for case-II 

 

 

Fig. 6 Variation of Energy density 𝜌 versus time for 𝛼 ൌ െ1, n=1 for 
case-II  

III. CONCLUSIONS 

In this paper, we have investigated on the model using the 
generalized Chaplygin gas with bulk viscosity with the help of 
Bianchi Type-I Universe in the context of Lyra geometry. In 
case-I, we considered a zero-viscosity model at 𝛼 ൌ 1 and 
obtained two representations for energy density 𝜌 (See Fig.1 
and Fig. 2) and observed in Fig. 1, initially the energy density 
is diverging in nature, and after the explosion of the Universe 
behaves as an increasing function of time and remain positive 
throughout the Universe. But in Fig. 2, we found the energy 
density is divergent at the beginning and leads to an increasing 
function for a period of time. Hence, the first one concludes to 
a consistent result. For 𝛼 ൌ െ1 in case-I, the effective 
pressure and energy density is studied in Figs. 2 and 3. From 
Fig. 2, we observed the effective pressure and energy density 
are diverge at the beginning for all value of 𝛾. But for 𝛾 ൐ 3.6 
both the energy density and effective pressure are consistent. 
The case-II represents an unique model which concludes (see 

Figs. 3 and 4) that both the effective pressure and energy 
density maintain initial singularity which coincides with the 
recent observational data, i.e. Supernova Ia (otherwise known 
as Big-bang singularity) and later on it oscillates for some 
time, furthermore, it approaches to a constant.  
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