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Generalisation of Kipnis and Shamir
Cryptanalysis

of the HFE public key cryptosystem
Omessaad Hamdi, Ammar Bouallegue, and Sami Harari

Abstract — In [4], Kipnis and Shamir have cryptanalised
a version of HFE of degree 2. In this paper, we describe the
generalization of this attack of HFE of degree more than 2.
We are based on Fourier Transformation to acheive partially
this attack.

Keywords — Public, cryptosystem, cryptanalisis, HFE.

I. INTRODUCTION

PUBLIC key cryptography depends on a handful of alge-
braic problems which try to achieve security. The original
RSA problem requires large blocs sizes. Other altenatives with
small size have been proposed: Elliptic curves and recently the
family of quadratic multivariate schemes such as HFE (Hidden
Field Equations)[3][1].
The security of this system is based on the difficulty of
solving large systems of quadratic multivariate polynomial
equations[2]. This problem is NP-hard over any field. The most
efficient attack is the one of Kipnis and Shamir that consist in
determining the secret key from the public key.
This attack is based on a non standard representation of the
HFE. In this paper, we generalise the idea of Kipnis and
Shamir to attack partially the HFE cryptosystem of degree
3.

II. HFE SCHEME

The encoder takes a finite field K = GF (q) of a cardinal
q and a characteristic p (q = pm), Ln is an extension field
of degree n. Ln is also a GF (q)vector space of dimension
n over K or nm over GF (p). Next, he choose a generic
polynomial of degree d.
p : Fn

q −→ Fn
q

x �→
n−1∑
i,j=0

aijx
qi+qj

+
n−1∑
i=0

bix
qi

+ γ0 aijs, bi and γ0∈ Ln.
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In addition, he choose two secret affine transformations; ie;
two invertible matrix S = {sij} and t = {tij} with entries
in GF (q) and two constant vectors s = (s1, s2, ..., sn) and
t = (t1, t2, ..., tn) and sets

t(x) = T.x + t and s(x) = S.x + s.

The attack of Kipnis and Shamir is an attack that consists
to guess the secret key from the public key. In this attack,
the original HFE scheme is simplified, in particularly, they
consider only homogenous polynomial p and linear mappings
S and T .

A. Keys

• Secret items: T, p, S
• Public entities:

T (p(S(x))) = (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)) =
g(x).

B. Encryption

Let m = (m1, . . . , mn) be the clear to encode bourred by
bits of redundancy from a hash function or a linear code.
The ciphering consists to evaluate the message m by the
public equations. We obtain therefore (y1, . . . , yn) with yi =
gi(m1, . . . , mn); i = 1, . . . , n.
The decrypted message is y = (y1, y2, ..., yn).

C. Decryption

The decoder receives the encoded message
y = (y1, . . . , yn) = T (f(S(m))). It decrypts:

1) T−1(y) = f(S(m)).
2) solves

f(z) − a = 0 (1)

a ∈ Fqn , a = T−1(y)
3) Apply S−1 to the gotten solution.

The equation (1) can admit more than one solution. The
redundancy permits to determine the good solution.
The attacker who hasn’t S, T and p can not use ths procedure.
Kipnis and Shamir introduce a new technique to decode:

1) Transform S and T from matrix representations to poly-
nomial representations.

2) Convert the n quadratic polynomials in a matrix repre-
sentation.

3) Solve the fundamental equation.
4) Use the condition of the rank of the polynomial p to

determine T , p, S.
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III. POLYNOMIAL REPRESENTATION OF S AND T

Lemma 1: Let A : Fn
q −→ Fn

q

f(x1, . . . , xn) �→ (y1, . . . yn)
A is a linear application only if ∃(a1, . . . an) so that

y =
n∑

i=1

aix
qi

with x =
n∑

i=1

xiwi, y =
n∑

j=1

yjwj ;

(w1, . . . , wn) is a basis of Fn
q .

Proof:

xqi

is linear over Fn
q therefore

n∑
i=1

aix
qi

is linear ∀ai ∈ Fq .

On the other hand, Fn
q is an extension field of the field Fq .

∃ an element β ∈ Fqn so that (β, βq, . . . , βqn−1

) is a basis of
Fn

q . So, all elements of Fqn can be decomposed in this basis.

Thus, x =
n∑

i=1

βqi

xi and y =
n∑

i=1

βqi

yi; xi, yi are elements

of Fq . By hypothesis, y is linear in x,

yi =
∑n−1

j=0 tijxj , tij ∈ Fq

y =
n−1∑
j=0

(
n−1∑
i=0

tijxi)βqj

=
n−1∑
i=0

xi(
n−1∑
j=0

tijβ
qj

)

y =
n−1∑
i=0

xiPi(β) (2)

In other hand, y =
n−1∑
j=0

ajx
qj

=
n−1∑
j=0

aj(
n−1∑
i=0

xiβ
qi

)qj

=
n−1∑
i=0

xi(
n−1∑
j=0

ajβ
qi+j

)

From (2), it is sufficient to show that ∀Pi(β); i =

0 · · ·n − 1, ∃ aj , j = 0 · · ·n−1 so that Pi(β) =
n−1∑
j=10

ajβ
qi+j

.

The matrix M = (mij), mij = trace(βqi

βqj

) is regular.
∀ P = (P0(β), . . . , Pn−1(β)), ∃R = (R0(β), . . . , Rn−1(β)))
so that

RM = P

RM =
n−1∑
i=0

(Rimij) =
n−1∑
i=0

Ri(
n−1∑
k=0

βqi+k

βqj+k

) =

n∑
k=1

(
n∑

i=1

Riβ
qi+k

)βqj+k

= Pj(β)

We choose ak =
n−1∑
i=0

Riβ
i+k.

From this lemma, we can represent the two standard applica-
tions of the cryptosystem HFE by the polynomial representa-
tions.

IV. UNIVARIATE REPRESENTATION OF A SYSTEM OF

MULTIVARIATE EQUATIONS

Lemma 2:
let (P0, · · · , Pn−1) a multivariate polynomial system over Fq .
yj = Pj(x0, · · · , xn−1); j = 0 . . . n − 1 only if

∃(a0, a2, · · · , aqn−1) ∈ Fqn so that y =
n−1∑
i=0

aix
i with

x =
n−1∑
i=0

xiwi, y =
n−1∑
i=0

yiwi, (w1, . . . , wn) is Fqn basis.

Proof
yj = Pj(x0, · · · , xn−1), j = 0 . . . n − 1.

Pj(x0, · · · , xn−1) = tj,0 +
n−1∑
i0=0

tj,i0xi0 +

n−1∑
i0,i1=0

tj,i0,i1xi0xi1

+ . . . +
n−1∑

i0,i1,···,im

tj,i0,···,imxi0xi1 . . . xim

A term of degree m can be written as:
�(n−1)m∑

�im=�0

tj,�im
x�im

with x�im
= xi0 . . . xim−1

and �im = (i0, · · · , im−1)

so yj = Pj(x0, . . . , xn−1) =
∑
m

�(n−1)m∑
�im=�0

tj,�im
x�im

.

Or, y =
n−1∑
j=0

yjβ
qj

=
∑
m

�(n−1)m∑
�im=�0

(
n−1∑
j=0

tj,�im
βqj

)x�im

=
∑
m

�(n−1)m∑
�im=�0

P�im
(β)x�im

Thus, a term of degree m has the following form:∑
i0,···,im

Pi0,···,im(β)xi0xi1 . . . xim

In other hand, y =
qn−1∑
l=0

alx
l with x =

n−1∑
i=0

xiβ
qi

.

∀l = 0 . . . n − 1; l can be written in one way:
l = γ0 + γ1q + . . . + γn−1q

n−1 with 0 <= γ < q
The set of definition of l is E = {0, · · · , qn − 1}.
∀l ∈ E, we associate the vector �γ = (γ0, · · · , γn−1). we
divide the whole E equivalence classes:
l ∈ Em if γ0 + . . . + γn−1 = m; 0 <= m < n(q − 1).
So, ∀l ∈ E, l ∈ Em; E = E1 ∪ E2 ∪ ... ∪ En(q−1).
These classes are disconnected since if l ∈ Ei ; l /∈ Ej ,
∀l ∈ Em; l = γ0 + γ1q + . . . + γn−1q

n−1 with
γ0 + γ1 + · · · + γn−1 = m.
Let’s show that there are integers
j0, · · · , jm−1; jk ∈ {0, 1, · · · , n − 1} so that
l = qj0 + . . . + qjm−1.
Indeed, l = q0 + . . . + q0

︸ ︷︷ ︸
γ0

+ q1 + . . . + q1

︸ ︷︷ ︸
γ1

+ . . . +

qn−1 + . . . + qn−1

︸ ︷︷ ︸
γn−1

; γ0 + . . . + γn−1 = m;

m < n(q − 1).
∀l ∈ Em; we can associate a vector
�jm = (j0, · · · , jm−1) so that l = qj0 + qj1 + . . . + qjm−1 ;
jk ∈ {0, · · · , n − 1}
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qn−1∑
l=0

alx
l =

∑
l∈E0

alx
l +

∑
l∈E1

alx
l + · · · +

∑
l∈Em

alx
l.

Or,
∑

l∈Em

alx
l =

�(n−1)m∑
�jm =�0

a�jm
xqj0

.xqj1 · · ·xqjm−1

.

xqjk = (
n−1∑
i=0

xiβ
qi

)qjk

=
∑n−1

i=0 xiβ
qi+jk .

⇒
∑
l∈El

alx
l =

�(n−1)∑
�jm=�0

a�jm
(
n−1∑
i0

xi0β
qj0+i0 )..(

n−1∑
im−1

xim−1
βqjm−1+im−1 )

=

�(n−1)∑
�im=�0

(

�(n−1)∑
�jm=�0

a�jm
βq

�im+�jm
)x�im

.

It is necessary to show that ∀ P�im
(β);�im = (i0, i1, · · · , im−1),

∃ a�jm
; �jm = (j0, j1, · · · , jm−1) so that

∑
�jm

a�jm
βq

�jm+�im
= P�im

Lets the matrix M = mij ;
mij = trace(βqi

βqj

) =
∑n−1

k=0 βqi+k

βqj+k

.
The matrix N = M ⊗ M ⊗ . . . ⊗ M is regular, so, there is a
vector R = {R�km

} so that R.N = P .

⇒
∑
�km

R�km
.m�km,�jm

= P�jm

m�km,�jm
= (

∑
j0

βqj0+k0

.βqi0+j0 ) . . .

(
∑
jm

βqjm+km
.βqim+jm

). =
∑
�jm

βq
�jm+�km

.βq
�jm+�im

∑
�km

R�km
m�km,�jm

=
∑

�km
R�km

∑
�jm

βq
�jm+�km

βq
�jm+�im

we puts a�jm
=

∑
�km

R�km
βq

�jm+�km
.

From this last expression, the transformation is feasible
for all degrees of the hidden polynomial p provided that it is
homogeneous.

A. Example

We consider the quadratic equation system

y0 = x1x2 + x0x1

y1 = x1x2 + x0x2

y2 = x0x2

y =
∑

i yiβ
qi

=
x0x1 βq0

︸︷︷︸
p10

+x1x2 (βq0

+ βq1

)︸ ︷︷ ︸
p12

+x0x2 (βq1

+ βq2

)︸ ︷︷ ︸
p02

If we choose the normal basis (βq0

, βq1

, ..., βqnn−1) so that:
trace(βqi

βqj

) = γij

The matrix M is I3 and the matrix N is I9.
RN = P ⇔ R = P

The transformation in a matrix representation consists in
determining the aij ; i, j = 0, 1, 2 which verify: aij =∑
k,l

pklβ
qi+j+k+l

which represent the coefficients of the matrix.

V. SHAMIR AND KIPNIS ATTACK

The principle of the crypting consists in applying the
transformation g to the ciphered

g(x) = T (p(S(x)) (3)

From [3],

p(S(x)) = xWPW txt; W = wij = sqi

j−i; p = pij (4)

T−1(g(x)) = xG′xt; (5)

G′ =
n−1∑
k=0

tkG∗k; G∗k = (gqk

i−k,j−k) (6)

(5) et (6)⇒
G′ = WPW t (7)

(7) is the fundamental equation.
The first stage of the attack consists in determining T by
resolving (7), than S and finally p. Their hypotheses are:

• rang(p) = r << n
• rang(W ) = n

VI. HFE OF DEGREE 3

We have T (f(S(x))) = G(x);
T is invertible so T−1 exists and it has the same form as T .

⇒ T−1(G(x)) = P (S(x)) (8)

P (x) =
n−1∑

ijk=0

xqi+qj+qk

, S(x) =
∑n−1

k skxqk

.

⇒ P (S(x)) =
n−1∑

ijk=0

pijk(S(x))qi+qj+qk

=
n−1∑

w,k=0

(xWPkW txt)sqk

w−kxqw

In other hand,
t−1(g(x)) = =

∑
k

(xG′
kxt)xqk

with G′
k =

∑n−1
l=0 tlG

∗l
k and G∗l

k = gql

i−l,j−l,k−l

so (9) becomes

n−1∑
w,k=0

(xWPkW txt)sqk

w−kxqw

=
∑

k

(xG′
kxt)xqk

(9)

There is no obvious matrix representation ?
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VII. FOURIER TRANSFORMATION

We tried to use fourier transformations to attack HFE of
degree 3.
From (8), we have the following equality:∑
uvw

(
∑

h

thgqh

u−h,v−h,w−h)xqu+qv+qw

=
n−1∑

ijk=0

pijk(
∑

u,v,w

sqi

u−is
qj

v−js
qk

w−kxqu+qv+qw

)

∀x ; (
∑

h

thgqh

u−h,v−h,w−h) =
n−1∑

ijk=0

pijk(sqi

u−is
qj

v−js
qk

w−k)

If we permute i −− > j −− > k −− > i
and u −− > v −− > w −− > u:

=⇒ (
∑

h

thgqh

i−h,j−h,k−h) =
n−1∑

ijk=0

pijk(sqi

u−is
qj

v−js
qk

w−k)

=
n−1∑

ijk=0

pijk(sqj

v−js
qk

w−ksqi

u−i) =
n−1∑

ijk=0

pijk(sqk

w−ksqi

u−is
qj

v−j)

= H
We are in F2n so, H + H + H = H

=⇒
n−1∑

jki=0

(pijk + pjki + pkij)(
∑

v,w,u

sqj

v−js
qk

w−ksqi

u−i) =

∑
ijk

∑
h

thgqh

i−h,j−h,k−h

If we apply fourier transformation :
n−1∑

ijk=0

βijk(
∑

v,w,u

sqj

v−js
qk

w−ksqi

u−iX
uY vZw)

=
∑

h

th(
∑
ijk

gqh

i−h,j−h,k−hXiY jZk)

⇒ ∑
ijk βijkRi(X)Rj(Y )Rk(Z) =

∑
h Eh(X,Y, Z)th

⇒ ∑
ijk βijkRi(X)Rj(Y )Rk(Z)

=
∑

abc XaY bZcPabc(t0, t1, ..., tn−1)
However,
Pabc(t0, t1, ..., tn−1) = Pbca(t0, t1, ..., tn−1)
= Pcab(t0, t1, ..., tn−1)
Thus, we get 2n equations with n variables. the resolution in
ti becomes very simple.

VIII. CONCLUSION

In this paper we are interressted to the generalization of the
attack of Kipnis and Shamir for HFE of degree more than 2.
We have introduceda new technique to finish this attack which
permits to determine the transformation T . This technique is
based on Fourier transformation .
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