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Abstract—Cancers could normally be marked by a number of
differentially expressed genes which show enormous potential as
biomarkers for a certain disease. Recent years, cancer classification
based on the investigation of gene expression profiles derived by
high-throughput microarrays has widely been used. The selection of
discriminative genes is, therefore, an essential preprocess step in
carcinogenesis studies. In this paper, we have proposed a novel gene
selector wusing information-theoretic measures for biological
discovery. This multivariate filter is a four-stage framework through
the analyses of feature relevance, feature interdependence, feature
redundancy-dependence and subset rankings, and having been
examined on the colon cancer data set. Our experimental result show
that the proposed method outperformed other information theorem
based filters in all aspect of classification errors and classification
performance.
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[. INTRODUCTION

IGH-THROUGHPUT  screening technologies like

microarrays have been widely adopted in recent
transcriptome analysis to investigate complete gene expression
profiles of cells of interest in response to physiological and
genetic changes in many different organisms. Owing to the
interrogation of tens of thousands of oligonucleotide probes in
parallel, the analysis of the high-throughput data has shown
enormous potential for the discovery of biological markers in
carcinogenesis studies and in the diagnoses of different types of
diseases [1]. By selecting genes with the power of
discrimination between cells of normal and tumor, or various
tumorigenesis stages, the genome-wide expression-based
tumor classification and biomarker discovery derived from
these -omics data can be performed. The identification of
subsets of these discriminative genes most dedicating to the
good predictive classification of cancers is so called gene
signatures, and are subject to change [2]. Typically, a small
number of signature genes out of the abundance of thousand
mRNAs in a tissue sample are very much in favor to establish a
final subset, and this is due to significant savings in time and
expenses.

The domain of differentially expressed gene selection in
bioinformatics is, in fact, an analogy to feature selection that is
devised for the need of dimensionality reduction, commonly
termed in the context of data mining and machine learning [3].
Feature subset selection techniques aim at reducing the variable

H.-M. Lai and K. Steinhdfel are with the Department of Informatics, King’s
College London, Strand, London WC2R 2LS, United Kingdom (e-mail:
hung-ming.lai@kcl.ac.uk, kathleen.steinhofel@kcl.ac.uk).

A. Albrecht is with the School of Science and Technology, Middlesex
University, Burroughs, London NW4 4BT, United Kingdom (e-mail:
A.Albrecht@mdx.ac.uk).

dimension of input instances without the change of their initial
representation, and searching for the minimal feature subset
that maximizes the classification performance or the predictive
power. In terms of knowledge discovery, this is actually based
on the principle of parsimony [4] that leads to a fact that a
model having variables as small as possible to sufficiently fit
with the data is preferred — it is exactly what gene signature
identification ideally requires. However, the clinical cancer
studies using high-throughput biochips merely includes tens to
a hundred of samples in their experimental designs and each
sample frequently has a large number of questioned features
from thousands to tens of thousands of genes [5]. Since feature
subset selection is known to be an NP-complete problem [6],
the curse of dimensionality would increase the level of the
presence of noises that are unavoidable and doomed from the
early stages of sample preparation, extraction and
hybridization. Microarray-based significant gene selection,
therefore, faces a considerable challenge for the model
optimization where the removal of large amounts of irrelevant
genes could be accomplished.

There are three categories of feature/gene selection methods
over the past few years, depending on their connection with the
classification method [3]. They are filter, wrapper and
embedded techniques. Filter approaches are independent of the
classification algorithm and evaluate features relevant to
phenotype classes only by interpreting the intrinsic
characteristics of the data within an experiment. Filter can be
further divided into univariate and multivariate methods.
Conventionally, the former covers parametric statistics like
paired/unpaired student t-test & ANOVA and nonparametric
statistical tests like Wilcoxon rank sum, and considering each
feature independently (i.e. neglect of feature interaction).
Feature correlations are taken into account to some extent in the
multivariate filters which are sometimes referred to as space
search filters [7]. Wrapper approaches assess the classification
performance or the prediction error of selected feature subsets
using a base classifier and search procedures are carried out
until satisfactory accuracy is reached. The wrapper usually has
a high risk of overfitting and a need of heavy computational
demands; on the other hand, it is capable of coping with feature
dependence and of interacting with the classifier during the
search of feature subset. There are two subclasses of the
wrapper, deterministic and randomized methods on the basis of
the nature of search algorithms. Typical examples of the former
are sequential forward selection and backward elimination
while simulated annealing and genetic algorithms dominate the
latter [8], [9]. The embedded approach could be viewed as a
variant of the wrapper, and having similar properties. The
major difference is that feature subset selection is built into the
classifier constructions so the embedded method is much less
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computationally expensive than the wrapper. The most popular
embedded feature selection is known as SVM-RFE and its
variants [10]-[12], where the feature rankings were obtained
from the weight vector of a hyperplane using a linear SVM and
a preferred feature subset was constructed by a process of
recursive feature elimination.

Recently, various feature selection approaches based on
information theory have been proposed to measure the
correlation among features and the selected feature subset.
Here, we briefly introduce three popular space search filters
frequently discussed in the research community and will be
compared with our new filtered-based gene selector. They all
are information theory oriented multivariate methods and seek
for the optimal feature subset by taking account of both
feature-phenotype correlation and feature-feature dependency.
Ding and Peng [13] proposed the minimum-Redundancy
Maximum-Relevance framework (mRMR) to reduce mutual
redundancy within the feature subset that could capture broader
characteristics of classes. Mutual information was exploited in
mRMR framework and experimental results showed that their
criterion using a combination of relevance and redundancy
could lead features to the least redundancy. Fleuret [14]
proposed the CMIM feature selection filter and used
conditional mutual information as its evaluation criterion to
select features maximizing their mutual information with the
class given the already selected feature set. Although CMIM
claimed that the selected features are not only informative but
also weakly pairwise dependency, more potential features
might not be captured by the most informative selected features
since their procedure would select features having more
information about the target class repeatedly. The third feature
selector is called FCBF designed by Yu and Liu [15] to
efficiently remove large amounts of irrelevant and redundant
features. Unlike mRMR and CMIM, FCBF did not introduce an
evaluation criterion but incorporated symmetrical uncertainty
into an approximate Markov blanket for the feature removal.
Thus, FCBF normally chooses fewer features than the other
two and it certainly tends to discard some less relevant but
important features that might interest the domain expert. In
brief, these information theoretic based feature selectors
providle a low-dimensional approximation with the
consideration of feature relevance and feature redundancy.
However, feature interdependence has been neglected in favor
of recent feature selection methods. This attribute may
sometimes lead to an important feature that are strongly
discriminating when accompanied by other features even
though the feature is individually weakly relevant — this is
especially meaningful to post-genomic gene selection.

In this article, we proposed a multivariate gene selection
method guided by interdependent feature pairs that could seem
strongly relevant to cancer cell lines or phenotypes. This new
gene filter is named iRDA and it provides a four-step
framework based on information theory and k-mean clustering.
While the calculation of symmetrical uncertainty measures the
feature relevance, the devices of k-mean clustering and joint
symmetrical uncertainty quantify the strong relevance of
feature pairs leading to potentially significant interdependence

among features within a selected feature subset. The proposed
filter also contains redundant and dependent feature analysis
using conditional mutual information and an approach of
low-dimensional approximation. Finally, iRDA is able to
generate multiple gene signatures and three-way mutual
information is applied to ranking these gene subsets for the high
level analysis of clinical cancer-related findings. It was
observed that our gene selector could find a small number of
genes with multiple gene signatures and have remarkable
classification accuracy, performance and biological findings on
a microarray based gene expression profiling data set.

II. PRELIMINARIES

A. Minimum Feature Selection for Gene Expression Data

A gene expression dataset D from high-throughput
technologies can normally be depicted as the following
representation. Let D ={X € R™, C € R} = {(x;, ¢;)}}=;
denote a training set of n labeled samples, where X; is a sample
vector in the feature (gene) space R™ , i.e.x = {Xj1, ., Xim}>
and C is a class vector to label each extracted sample in an
experiment. In a word, the input data of finding minimal
significant genes for clinically cancer classification typically
consists of a sample matrix and a label vector, illustrating in
Figs. 1 (a) and (b). To address the issue of distinctive gene
identification at the expression level, we can refer to it as
feature subset selection problem. Given F = {f;}[%,, feature
subset selection aims to choose the minimal feature subset
G c F that maximizes the classification accuracy;namely
being an output of gene selection from the dataset D,G has the
most discriminative power with respect to the class variable as

Fig. 1 (c).

(a) (b)
Genel Gene2 Gene3 - Gene m-1 Genem Class

Samplel 2036.28 2253.36 2490.87 - 1015.91 1459.10 1
Sample2 1618.65 1066.84 1006.21 - 853.443 734.529 -1
Sample3 1597.28 1144.69 1139.63 792.214 1133.24 3

Sample n-1 4143.38 7256.52 7761.75 - 2472.23 4906.45 -1
Samplen 286318 3036.59 369551 - 1533.80 3030.32 1

fe) {Gene 2, Gene 4, Gene 18, Gene 33, Gene 60}

Fig. 1 Cancer classification using high-throughput screening
technologies (a) An example of gene expression profiling data. The
experimental dataset contains n samples and each sample has m
interrogated genes (m>>n) (b) The extracted samples of an experiment
are labeled according to their phenotypes or different types of cell
lines. Both a gene expression matrix and a class vector form the inputs
of gene selection for cancer classification (c) A subset G of significant
genes is obtained as an output for a certain cancer classification, which
is so called a gene signature

B. Information Theory

Being an intuitive quantity, entropy is the basic concept of
information theory to measure the uncertainty of a random
variable and is not calculated according to the real value but at
the probability distribution of the variable instead [16]. Given a
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nominal random variable X, entropy is defined based on the
representation of Shannon entropy as below

HX) = = Xxex p(x) logp(x) (M

where X denote possible nominal values of the random variable
described in its alphabet X and p(x) is the marginal
probability distribution of X. Without loss of generality, the
alphabet of a random variable won’t be referred to any longer in
this article. The benefit of entropy-based measures is that no
prior assumption to be satisfied such as whether data is
normally distributed. The information amounts of other events
can also be considered by applying the notion of probability
theory to information-theoretic entropy. The conditional
entropy of X given Y is represented as

HX|Y) = =X p() X p(x|y) logp(x|y) 2

where p(x|y) is the conditional probability of X when the
observed values of Y are given. One could conceive that this
measure quantifies the amount of remaining uncertainty of X
after the result of Y has been learnt. Similarly, the joint entropy
of two random variables X and Y is denoted as

HXY) =-Y Y p(x,y)logp(x,y) 3)

where p(x,y) is the joint probability distribution of the two
variables. This is useful to quantify the uncertainties when two
variables should be considered together. Having these entropies
defined, we could introduce an essential measure to represent
the amount of information shared by two random variables X
and Y, mutual information, defined by

MI(X,Y) = H(X) — HX|Y) = Y X p(x,y) log p—i’,ﬁj‘,;{i) “)

One can regard mutual information as the information
quantity that one variable supplies about the other so that this
measure is symmetric. Additionally, the value of mutual
information is zero, implying that the two variables are
statistically independent. Like entropy, the mutual information
can be conditioned between X and Y given Z, conditional
mutual information, and its definition is as follows

CMI(X,Y|Z) = H(X|Z) — H(X|Y,Z) =

p(x.y1z)
2pP(@) L 2p(xy1z) log p(x12)p(ylz) )

The quantity represents the information shared between X
and Y after Z is known. Besides the above measures, there is
another important quantity in information theory, called
symmetrical uncertainty that could be seen as a sort of
normalized mutual information, defined as

SUKXY) = 2 [w]

HO)+H(Y) (6)

It should be noted that joint symmetrical uncertainty can also
be computed if X is a joint random variable in the same way as
joint entropy.

C.Feature Relevance

Based on conditional probability distribution, features can be
classified as strong relevance, weak relevance and irrelevance
proposed and defined by Kohavi and John[17]. Given a full set
of features F and a feature f;, the subset of features F; = F\f;
denotes a full set of features excluding feature i. The following
feature definitions (Def 1-3) have been introduced by Kohavi
and John.

Definition 1: Strongly Relevant Feature
A feature f; is strongly relevant to C iff

p(Clfu F) # p(C|Fy). (N

Definition 2: Weakly Relevant Feature
A feature f; is weakly relevant to C iff

p(Clf;, F;) = p(C|F;) and
3F] c F;such that p(C|f;, F}) # p(C|F}). (8)

Definition 3: Irrelevant Feature
A feature f; is irrelevant to C iff

VF, € F, p(CIfi, F}) = p(CIF)). ©®

The above definitions could imply that it is compulsory to
always include strongly relevant features and some weakly
relevant features that are not redundant to one another in an
optimal feature subset, and irrelevant features are certainly
excluded. Similar to these considerations over a single feature,
one can define the strong relevance of a feature pair i and j
using joint random variables f; f; (or sometimes denoted as f;).

Definition 4: Strongly Relevant Feature Pair
A feature pair f;; is strongly relevant to C iff

p(Clfij, Fij) # p(C|F;j) (10)

where F;; is a full feature set that has excluded feature i and j,
and this means that one can view a feature pair as a
united-individual when selecting features. The notion of
strongly relevant feature pairs will be fundamental to the
proposed filter-based gene selection where feature pairs with
strong relevant to the target class would be included as many as
possible in the selected procedure.

III. 1IRDA— A NOVEL GENE SELECTION FILTER

A new feature selection filter named interdependence-guided
gene selection with redundant and dependent analysis (iIRDA),
shown in Algorithm 1, is proposed for high-throughput
screening gene selection. This method is based on
information-theoretic = measures including symmetrical
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uncertainty (SU), mutual information (MI) and conditional
mutual information (CMI) to find potential gene subsets which
has the most power of discrimination for cancer cell
classification and biomarker discovery. As mentioned in
preliminaries, the optimal gene subset has to contain all
features of strong relevance and some ones of weak relevance.
A gene can hardly ever function itself, but co-regulation
between genes is always the case in a cell line instead.
Interdependence between features is, therefore, a matter when
it comes to significant gene subsets.

The proposed gene selector is a four-stage filter that contains
the analyses of feature relevance, feature interdependence,
redundancy-dependence, and subset rankings. In practice, it is
quite impossible to make use of Kohavi and John’s definitions
to find and filter useful features, in particular in large-scale
feature selection. In order to examine features for their extent of
relevance with the target classes, symmetrical uncertainty of a
random variable (feature f;) with respect to given labels is
calculated for each feature, SU; . (line 2). These correlations
are first sorted in descending order and then k-mean clustering
is proceeded on the sorted list to disclose the degree of feature
relevance. Due to the characteristic of relatively small number
of expressed genes in large scale gene expression profiles, the
sorted correlations are actually exponentially distributed. Thus,
five clusters are chosen to draw up different scales in terms of
relevance, representing Very Strong (R1), Strong (R2), Weak
(R3), Very Weak (R4) and Irrelevant (R5) feature types (lines
3-5). The drawn scales are a perquisite of performing primary
idea of iRDA, interdependent feature analysis.

Although high-order gene interactions are ideally targeted, it
would often result in a disaster of a larger number of
time-consuming calculations. Only is interdependence between
two features considered here, and we utilize symmetrical
uncertainty of a joint random variable of two features f; f; with
respect to target classes to gain their correlations for any two
features, SU;; . The aim in the step of interdependent analysis
is to seek for strongly relevant feature pairs whose joint SU
values are greater than a thresholde (line 11). Those features in
the R1 cluster colliding with another feature in the clusters of
R1, R2, R3 and R4, with a view to tackling high dimensional
two-way interdependence, are regarded as candidate pairs
(lines 7-16). Through the scheme of relevance partition, the
value of ¢ is also easily to be estimated — the mean of joint SU
values of the most strongly relevant feature in the very strong
cluster crashing with the other features in the clustersR1-R4,
the irrelevant cluster excluded, i.e.SU;,.. The successful
feature pairs are then added into a subset of G, guided by a
common feature, called a kernel, among feature pairs in order
of relevance. It should be noted that the kernel feature is added
once in the same subset.

ALGORITHM 1. iRDA Filter

Given: D = {X € R™,C € R} = {(x;, )}y and F = {f}7,
Parameters: k, €
Find: gene signatures G

1 Relevance:

2 for each f; in FcalculateSU; . and sort them in the descending order

3 Perform k-mean clustering (k=5) on the list of the sorted SU; ., and tag
4 them in sequence, Very Strong(R1), Strong(R2), Weak (R3), Very Weak
5 (R4) and Irrelevance (RS).

6 Interdependence:

7 t=1

8 for i=1 to sup(R1)

9 G =0

10 for j=i+1 to sup(R4)

11 if SU;; >¢, where ¢ is estimated by ST, .

12 add feature pairs f;f; into G, in order of relevance,

13 where f; is a kernel and added once

14 end

15 t=t+1

16 end

17 Redundancy and Dependence:

18  Let Gpye = {G¢|G; # B}, VG, € Gy, G is kernel-guided
19  for each G, do

20 for each f; € G, in a less relevant sequence do
21 f; is removed instantly if CMI(f;; C|G,)=0
22 G, = @ if CMI(kernel; C|G,)=0

23 end

24 end

25 for eachfierner,;j in Gpre, add fierner into the subset guided by f; if

26  applicable
27  perform lines 19-24 again

28 Let Gposr = {G¢|G, # B, #G, > 1}
29  Subset Rankings:

30  Rank each G; in Gp4 using (11), and top K gene signatures are selected

31  to establish G

As soon as feature pairs are gained from the second stage,
features can be able to line up in a row after a common feature
(kernel) guiding other interdependent features to form a subset,
G.. A set of these feature subsets, Gy, would then be carried
on the step of redundant and dependent analysis (line 18). For
all possible subsets, conditional mutual information of a feature
fi and labels C given a selected subset G € Gpre ,
CMI(f;; C|Gy), is exploited to measure if a feature is redundant
in its residential subset (lines 19-24). A backward elimination
and less relevant feature first policy is the main approach of
redundancy approximation during this stage. A feature with the
lower value of SU; ., i.e. less relevance, is first examined and if
its CMI value is zero, the feature is removed instantly and
followed by checking the next less relevant feature; the
procedure goes on until all features in the same subset are
checked. If a kernel is removed, the subset guided by the kernel
will be eliminated; otherwise features remain in a retained
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subset will be viewed as dependents of the kernel. Also, for
each kernel-connected feature pairs, fiernerj in Gpre, W€ may
add the kernel feature into the subset guided by feature j if
applicable. Following this post-process of subset formation,
iRDA need to perform the second round of CMI examination
and the potential subsets would then be collected (lines 25-28).
Briefly speaking, through the mechanism of dependents
following after the same interdependence-guided gene,
interdependence between two genes could reveal more
sophisticated interaction among multiple genes when a subset
survives the redundant-dependent stage. A set consisting of
these subset survivals, Gy, finally go forward to the last step
where ranking is applied to each candidate subset (lines 30-31).

Since our method does not target on individual genes but
gene subsets instead, subset rankings are the issue and cell
classification can be predicted not only by one of top-ranking
subsets but also by an ensemble means across multiple subsets.
The latter is in particular suitable for large scale gene selection
with small sample size. Mutual information of three random
variables (kernel, subset and labels) is used to measure the
subset ranking and low-dimensional approximation of this joint
Ml is also devised as the following equation.

MI(kernel,Gy; C) = #—étZZMI(fifj:C) + MI(fi; C) + ,%Gtzdep(fk.f;)(l 1)

where dep(fi, f;) = [CMI(fi, £;|C) = MI(fi. f;)] 10 (fior f) -
fi: kernel feature, h(f},): entropy, h(f, fj) joint entropy, #G,:
cardinality of G;.

When subset rankings are performed, domain users can
select top K subsets as candidates of biological interests. To
illustrate how biological discovery might be found using
multiple gene signatures, we exploit first three ranks of subsets
and then classification could be predicted by an ensemble
means across the three rankings (say S;, S, and S;). In general,
majority voting is our approach. We would accept minority of
classification if likelihood of minority was greater than the
maximum of likelihood of majority; otherwise the consequence
of majority voting would be accepted.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the novel gene selection
filter, we selected a publicly available microarray-based colon
cancer data set. This data set was introduced by Alon et al. [18]
and frequently used to validate the performance of cancer
classification and gene selection in the research community.
The colon cancer data set consists of 62 samples from the
patients of colorectal cancer (CRC), where 22 normal labels are
extracted from healthy tissues and 40 abnormal biopsies are
extracted from colon tumors. Out of more than 6,500 genes in
the original design of experiment, 2,000 genes were selected by
the authors for clustering functional genes and classifying
tissues. In this article, the experiment of colon cancer gene
selection was performed in the environment of Matlab 7.14
with the third party tool, MIToolbox [19], upon the computer of
Intel Core i5 with 2.50 GHz processor and 8GB RAM. For the
better calculation of information theoretic measures, features

were discretized to three bins as suggested by Ding and Peng
[13] and each bin was then designated by a discrete value such
as 1,3 and 5.

TABLE I
FEATURE SELECTORS ON CRC DATA SET
Filter Error AUC Genes Authors
mRMR  13/10  0.8256/0.8199 11/2 Ding andPeng[13]
CMIM  12/10  0.8398/0.8432 11/4 Fleuret[14]
FCBF 9 0.8778 9 Yu and Liu[15]
iRDA 4 0.9176 11

LOOCYV gene selection was performed on 3NN classifier

Working on the CRC data set, we evaluated our method,
iRDA, with three model-free feature filters of mRMR, CMIM
and FCBF to know the characteristics of the proposed gene
selector in terms of classification error and performance.
Because of the curse of dimensionality, the conventional
training-test data partition given a ratio (say 60-40%) is not
very appropriate for the assessment of gene selection
approaches in the domain of high-throughput gene expression
data. In the study, the procedure of leave-one-out
cross-validation (LOOCYV) was used to assess the performance
of selectors and the classification error estimation during a
selection procedure. Additionally, a reference classifier is also
needed to induct the selected feature selectors into a learning
process. This is due to their independence of learning methods.
We utilized the k-nearest-neighbor (k-NN) classifier (k=3) to
establish classification models after gene selectors had been
performed. The experimental result of the four filters using the
colon cancer data set is shown in Table I. In the clinical cancer
study, not only false-positive (FP) but also false-negative (FN)
errors are vital to be estimated since they have different
operating characteristics for cancer classification. Here, we
simply calculated FP and FN as classification errors.

To understand the classification performance of different
feature selection methods, we employed the area under a
Receiver Operating Characteristic (ROC) curve, abbreviated as
AUC. AUC is able to summarize the ROC curve which is a plot
of the sensitivity against 1 —specificity to visualize the power of
a classifier. Since iRDA is a multiple gene signatures oriented
selector, the proposed method in general identified two more
genes than FCBF where nine genes or so are maximally
filtered. Apart from the best results of the four filters, their
performances and classification errors at the level of the
same/similar number of signature genes were reported. Table I
shows that iRDA had four misclassifications and more than
90% classification performance at the AUC level while the
other three had about ten classification errors and their
prediction performances were from 82% to 88%, much worse
than that of iRDA. The minimal signature genes of mRMR and
CMIM were quite few (2 and 4 respectively), but their
predictive power would be viewed as a moderate degree of
success (82% and 84% respectively) even if they increased the
number of selected genes up to fifty. Although the significant
genes found by iRDA were slightly more than those filtered by
FCBF, it seems still reasonable to have the scale of the
selection. In sum, one can easily find that iRDA is by far the
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most promising gene selector among them on the study of CRC
data set.

TABLE II
SUMMARY OF GENE SIGNATURES
Set Gene Name
1 HSPDI1, SPARC, S100P, ZNF117
2 MYL2, EIF2S2, RPL24, A2M

3 SPARC, HSPD1, CDH3, HIVEP2, PSMC2

By applying the iRDA gene selector into the whole sample
sets of previous CRC data, we can obtain multiple colon cancer
associated gene signatures and the first three subsets ranked by
iRDA are summarized in Table II. These could be candidates of
clinical interest to the domain expert. To illustrate how well the
novel gene selector operates in practice from biological point of
view, one of gene signatures identified by iRDA was studied
through literatures and KEGG signaling pathway. The
signature contains four genes of MYL2, EIF2S2, RPL24 and
A2M. From the queries of KEGG, We found that MYL2 and
A2M belong to the pathway of immune system that is a
subclass of organismal systems and both EIF2S2 and RPL24
participate in the translation process of genetic information
processing. We noticed that A2M was filtered only by iRDA so
it might be interesting to know if this gene is biologically
significant to the CRC development. Ghilardi et al. reported
that MMP-7-181 G/G genotype is involved in colon cancer and
tumor progression in Italians [20] while Yang et al. claimed that
MMP-7 also plays an important role in tumor development and
progression process in CRC patients in China [21]. And a
recent report showed that the main inhibitor of MMPs in tissue
fluids is a2-macroglobulin (A2M) [22]. On the other hand, we
also noticed that one of significant genes, named HSPD1, was
filtered by all of the four selectors and most recent research
summarized that HSP60 (i.e. HSPD1) could be a potential
biomarker in CRC [23]. Thus, it is believed that the proposed
method could have a high capacity of finding the majority of
significant genes that most filters would also identify and of
finding other important genes involved in gene regulation that
most selectors could ignore.

V.CONCLUSIONS AND FUTURE RESEARCH

The proposed filter-based gene selector has successfully
been tested on one of typical clinical cancer classification
experiments, colon cancer data set. By using this data set, we
have compared iRDA with three filters (mMRMR, CMIM and
FCBF) that are widely used and also based on information
theorem. Our experimental results show that iRDA
outperformed them in all aspects of classification errors and
classification performance and could have great potential for
biomarker discovery. Large dimensional variables with small
sample size would cause that the optimal gene subset could not
be a unique. iRDA provides multiple feature subsets with
different rankings could be more suitable for large-scale gene
expression profiling analysis. This is very different from
conventional filter methods where various K genes are selected
and form a subset for high level gene analysis. In addition to

having multiple gene signatures, the new filter method is able to
find an important feature that is individually weakly relevant
but has strong interdependence between features. This type of
genes accompanied by other significant genes would more
contribute to the phenotype than they appear solely at the
expression level. Unfortunately, most recent filter-based
feature selectors could not search for these features that may
attract the interest of the domain user. Although an early
microarray cancer data set was performed for the effectiveness
of the proposed gene selector, we could still reveal several
significantly biological findings on the colorectal cancer
research or discover potential biomarkers using the iRDA filter
with recent literature studies and signal pathway databases.
There are a couple of issues that will be addressed for our
future research. Experimental mRNA expression data is cursed
by its nature of small sample size with large dimensional
features. The unavoidable problem always leads to unstable
gene signatures which has recently attracted many researchers’
attention. Being a developer of gene selectors, we will have to
deal with this matter to see how robust the proposed method
could be and whether any skills could be well incorporated into
it if the developed selector is not stable enough. Although the
effectiveness of iRDA has been successfully validated on the
colon cancer data set, most recent gene expression profiling
data for other tumor-associated classification are required.
Most cancer classification data sets, like Alon’s CRC data set,
were introduced at an early age of microarray where better
preprocessing techniques and experimental designs were still
limited, and the two events also have a high impact on the
removal of experimental noises. Therefore, it is worth
connecting iRDA with up-to-date cancer-related classification
data generated from high-throughput technologies to further
understand the characteristics of the proposed gene selector.
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