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Abstract—Cancers could normally be marked by a number of 

differentially expressed genes which show enormous potential as 
biomarkers for a certain disease. Recent years, cancer classification 
based on the investigation of gene expression profiles derived by 
high-throughput microarrays has widely been used. The selection of 
discriminative genes is, therefore, an essential preprocess step in 
carcinogenesis studies. In this paper, we have proposed a novel gene 
selector using information-theoretic measures for biological 
discovery. This multivariate filter is a four-stage framework through 
the analyses of feature relevance, feature interdependence, feature 
redundancy-dependence and subset rankings, and having been 
examined on the colon cancer data set. Our experimental result show 
that the proposed method outperformed other information theorem 
based filters in all aspect of classification errors and classification 
performance. 
 

Keywords—Colon cancer, feature interdependence, feature subset 
selection, gene selection, microarray data analysis. 

I. INTRODUCTION 
IGH-THROUGHPUT screening technologies like 
microarrays have been widely adopted in recent 

transcriptome analysis to investigate complete gene expression 
profiles of cells of interest in response to physiological and 
genetic changes in many different organisms. Owing to the 
interrogation of tens of thousands of oligonucleotide probes in 
parallel, the analysis of the high-throughput data has shown 
enormous potential for the discovery of biological markers in 
carcinogenesis studies and in the diagnoses of different types of 
diseases [1]. By selecting genes with the power of 
discrimination between cells of normal and tumor, or various 
tumorigenesis stages, the genome-wide expression-based 
tumor classification and biomarker discovery derived from 
these -omics data can be performed. The identification of 
subsets of these discriminative genes most dedicating to the 
good predictive classification of cancers is so called gene 
signatures, and are subject to change [2]. Typically, a small 
number of signature genes out of the abundance of thousand 
mRNAs in a tissue sample are very much in favor to establish a 
final subset, and this is due to significant savings in time and 
expenses. 

The domain of differentially expressed gene selection in 
bioinformatics is, in fact, an analogy to feature selection that is 
devised for the need of dimensionality reduction, commonly 
termed in the context of data mining and machine learning [3]. 
Feature subset selection techniques aim at reducing the variable 
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dimension of input instances without the change of their initial 
representation, and searching for the minimal feature subset 
that maximizes the classification performance or the predictive 
power. In terms of knowledge discovery, this is actually based 
on the principle of parsimony [4] that leads to a fact that a 
model having variables as small as possible to sufficiently fit 
with the data is preferred – it is exactly what gene signature 
identification ideally requires. However, the clinical cancer 
studies using high-throughput biochips merely includes tens to 
a hundred of samples in their experimental designs and each 
sample frequently has a large number of questioned features 
from thousands to tens of thousands of genes [5]. Since feature 
subset selection is known to be an NP-complete problem [6], 
the curse of dimensionality would increase the level of the 
presence of noises that are unavoidable and doomed from the 
early stages of sample preparation, extraction and 
hybridization. Microarray-based significant gene selection, 
therefore, faces a considerable challenge for the model 
optimization where the removal of large amounts of irrelevant 
genes could be accomplished. 

There are three categories of feature/gene selection methods 
over the past few years, depending on their connection with the 
classification method [3]. They are filter, wrapper and 
embedded techniques. Filter approaches are independent of the 
classification algorithm and evaluate features relevant to 
phenotype classes only by interpreting the intrinsic 
characteristics of the data within an experiment. Filter can be 
further divided into univariate and multivariate methods. 
Conventionally, the former covers parametric statistics like 
paired/unpaired student t-test & ANOVA and nonparametric 
statistical tests like Wilcoxon rank sum, and considering each 
feature independently (i.e. neglect of feature interaction). 
Feature correlations are taken into account to some extent in the 
multivariate filters which are sometimes referred to as space 
search filters [7]. Wrapper approaches assess the classification 
performance or the prediction error of selected feature subsets 
using a base classifier and search procedures are carried out 
until satisfactory accuracy is reached. The wrapper usually has 
a high risk of overfitting and a need of heavy computational 
demands; on the other hand, it is capable of coping with feature 
dependence and of interacting with the classifier during the 
search of feature subset. There are two subclasses of the 
wrapper, deterministic and randomized methods on the basis of 
the nature of search algorithms. Typical examples of the former 
are sequential forward selection and backward elimination 
while simulated annealing and genetic algorithms dominate the 
latter [8], [9]. The embedded approach could be viewed as a 
variant of the wrapper, and having similar properties. The 
major difference is that feature subset selection is built into the 
classifier constructions so the embedded method is much less 
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nominal random variable X, entropy is defined based on the 
representation of Shannon entropy as below 
 

HሺXሻ ൌ െ∑ ሻݔሺ݌ log ࣲאሻ௫ݔሺ݌  (1) 
 

where x denote possible nominal values of the random variable 
described in its alphabet ࣲ  and ݌ሺݔሻ  is the marginal 
probability distribution of X. Without loss of generality, the 
alphabet of a random variable won’t be referred to any longer in 
this article. The benefit of entropy-based measures is that no 
prior assumption to be satisfied such as whether data is 
normally distributed. The information amounts of other events 
can also be considered by applying the notion of probability 
theory to information-theoretic entropy. The conditional 
entropy of X given Y is represented as 
 

HሺX|Yሻ ൌ െ∑݌ሺݕሻ∑݌ሺݕ|ݔሻ log  ሻ          (2)ݕ|ݔሺ݌
 

where ሻݕ|ݔሺ݌   is the conditional probability of X when the 
observed values of Y are given. One could conceive that this 
measure quantifies the amount of remaining uncertainty of X 
after the result of Y has been learnt. Similarly, the joint entropy 
of two random variables X and Y is denoted as 
 

HሺX, Yሻ ൌ െ∑∑݌ሺݔ, ሻݕ log ,ݔሺ݌  ሻ (3)ݕ
 

where ݌ሺݔ,  ሻ is the joint probability distribution of the twoݕ
variables. This is useful to quantify the uncertainties when two 
variables should be considered together. Having these entropies 
defined, we could introduce an essential measure to represent 
the amount of information shared by two random variables X 
and Y, mutual information, defined by 
 
MIሺX, Yሻ ൌ HሺXሻ െ HሺX|Yሻ ൌ ሻݕ,ݔሺ݌∑∑  log ሻݕ,ݔሺ݌

 ሻ (4)ݕሺ݌ሻݔሺ݌

 
One can regard mutual information as the information 

quantity that one variable supplies about the other so that this 
measure is symmetric. Additionally, the value of mutual 
information is zero, implying that the two variables are 
statistically independent. Like entropy, the mutual information 
can be conditioned between X and Y given Z, conditional 
mutual information, and its definition is as follows 

 
CMIሺX, Y|Zሻ ൌ HሺX|Zሻ െ HሺX|Y, Zሻ ൌ 

,ݔሺ݌∑∑ሻݖሺ݌∑ ሻݖ|ݕ log ௣ሺ௫,௬|௭ሻ
௣ሺ௫|௭ሻ௣ሺ௬|௭ሻ

. (5) 

 
The quantity represents the information shared between X 

and Y after Z is known. Besides the above measures, there is 
another important quantity in information theory, called 
symmetrical uncertainty that could be seen as a sort of 
normalized mutual information, defined as 

 
SUሺX, Yሻ ൌ 2 ቂHሺXሻെHሺX|YሻHሺXሻ൅HሺYሻ ቃ. (6) 

 

It should be noted that joint symmetrical uncertainty can also 
be computed if X is a joint random variable in the same way as 
joint entropy. 

C. Feature Relevance 
Based on conditional probability distribution, features can be 

classified as strong relevance, weak relevance and irrelevance 
proposed and defined by Kohavi and John[17]. Given a full set 
of features F and a feature ௜݂, the subset of features ܨ௜ ൌ \ܨ ௜݂ 
denotes a full set of features excluding feature i. The following 
feature definitions (Def 1-3) have been introduced by Kohavi 
and John. 
Definition 1: Strongly Relevant Feature 
A feature ௜݂ is strongly relevant to C iff 
 

|ሺC݌ ௜݂, ௜ሻܨ ്  ௜ሻ. (7)ܨ|ܥሺ݌
 

Definition 2: Weakly Relevant Feature 
A feature ௜݂ is weakly relevant to C iff 
 

|ሺC݌ ௜݂, ௜ሻܨ ൌ  ௜ሻ andܨ|ܥሺ݌
 

௜ᇱܨ׌ ؿ |ሺC݌ ௜such thatܨ ௜݂, ௜ᇱሻܨ ്  ௜ᇱሻ. (8)ܨ|ܥሺ݌
 

Definition 3: Irrelevant Feature 
A feature ௜݂ is irrelevant to C iff 
 

௜ᇱܨ׊ ك |ሺC݌ ,௜ܨ ௜݂, ௜ᇱሻܨ ൌ  ௜ᇱሻ. (9)ܨ|ܥሺ݌
 

The above definitions could imply that it is compulsory to 
always include strongly relevant features and some weakly 
relevant features that are not redundant to one another in an 
optimal feature subset, and irrelevant features are certainly 
excluded. Similar to these considerations over a single feature, 
one can define the strong relevance of a feature pair i and j 
using joint random variables ௜݂ ௝݂ (or sometimes denoted as ௜݂௝). 
 
Definition 4: Strongly Relevant Feature Pair 
A feature pair ௜݂௝ is strongly relevant to C iff 
 

|ሺC݌ ௜݂௝, ௜௝ሻܨ ്  ௜௝ሻ (10)ܨ|ܥሺ݌
 
where ܨ௜௝ is a full feature set that has excluded feature i and j, 
and this means that one can view a feature pair as a 
united-individual when selecting features. The notion of 
strongly relevant feature pairs will be fundamental to the 
proposed filter-based gene selection where feature pairs with 
strong relevant to the target class would be included as many as 
possible in the selected procedure. 

III. IRDA– A NOVEL GENE SELECTION FILTER 
A new feature selection filter named interdependence-guided 

gene selection with redundant and dependent analysis (iRDA), 
shown in Algorithm 1, is proposed for high-throughput 
screening gene selection. This method is based on 
information-theoretic measures including symmetrical 
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uncertainty (SU), mutual information (MI) and conditional 
mutual information (CMI) to find potential gene subsets which 
has the most power of discrimination for cancer cell 
classification and biomarker discovery. As mentioned in 
preliminaries, the optimal gene subset has to contain all 
features of strong relevance and some ones of weak relevance. 
A gene can hardly ever function itself, but co-regulation 
between genes is always the case in a cell line instead. 
Interdependence between features is, therefore, a matter when 
it comes to significant gene subsets. 

The proposed gene selector is a four-stage filter that contains 
the analyses of feature relevance, feature interdependence, 
redundancy-dependence, and subset rankings. In practice, it is 
quite impossible to make use of Kohavi and John’s definitions 
to find and filter useful features, in particular in large-scale 
feature selection. In order to examine features for their extent of 
relevance with the target classes, symmetrical uncertainty of a 
random variable (feature ௜݂ ) with respect to given labels is 
calculated for each feature, ܵ ௜ܷ,௖  (line 2). These correlations 
are first sorted in descending order and then k-mean clustering 
is proceeded on the sorted list to disclose the degree of feature 
relevance. Due to the characteristic of relatively small number 
of expressed genes in large scale gene expression profiles, the 
sorted correlations are actually exponentially distributed. Thus, 
five clusters are chosen to draw up different scales in terms of 
relevance, representing Very Strong (R1), Strong (R2), Weak 
(R3), Very Weak (R4) and Irrelevant (R5) feature types (lines 
3-5). The drawn scales are a perquisite of performing primary 
idea of iRDA, interdependent feature analysis. 

Although high-order gene interactions are ideally targeted, it 
would often result in a disaster of a larger number of 
time-consuming calculations. Only is interdependence between 
two features considered here, and we utilize symmetrical 
uncertainty of a joint random variable of two features ௜݂ ௝݂ with 
respect to target classes to gain their correlations for any two 
features, ܵ ௜ܷ௝,௖. The aim in the step of interdependent analysis 
is to seek for strongly relevant feature pairs whose joint SU 
values are greater than a thresholdε (line 11). Those features in 
the R1 cluster colliding with another feature in the clusters of 
R1, R2, R3 and R4, with a view to tackling high dimensional 
two-way interdependence, are regarded as candidate pairs 
(lines 7-16). Through the scheme of relevance partition, the 
value of ε is also easily to be estimated – the mean of joint SU 
values of the most strongly relevant feature in the very strong 
cluster crashing with the other features in the clustersR1-R4, 
the irrelevant cluster excluded, i.e. ܵ ଵܷఫ,௖തതതതതതതത . The successful 
feature pairs are then added into a subset of ܩ௧ guided by a 
common feature, called a kernel, among feature pairs in order 
of relevance. It should be noted that the kernel feature is added 
once in the same subset. 

 
 
 
 
 
 

ALGORITHM 1. iRDA Filter 

Given: ܦ ൌ ሼܺ א Թ௠, ܥ א Թሽ ൌ ሼሺݔ௜, ܿ௜ሻሽ௜ୀଵ௡  and ܨ ൌ ሼ ௜݂ሽ௜ୀଵ௠  
Parameters: k, ε 
Find: gene signatures G 
1 Relevance: 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 

12 

13 
14 
15 
16 
17 

18 

19 
20 
21 
22 
23 
24 

25 

26 

27 

28 

29 

30 

31 

for each ௜݂ in Fcalculateܵ ௜ܷ,௖ and sort them in the descending order 
Perform k-mean clustering (k=5) on the list of the sorted ܵ ௜ܷ,௖, and tag 
them in sequence, Very Strong(R1), Strong(R2), Weak (R3), Very Weak 
(R4) and Irrelevance (R5). 
Interdependence: 
t=1 
for i=1 to sup(R1) 

௧ܩ ൌ  ׎
   for j=i+1 to sup(R4) 

      if ܵ ௜ܷ௝,௖>ε, where ε is estimated by ܵ ଵܷఫ,௖തതതതതതത 

add feature pairs ௜݂ ௝݂ into ܩ௧ in order of relevance, 

where ௜݂ is a kernel and added once 
   end 
   t=t+1 
end 
Redundancy and Dependence: 

Let ܩ௣௥௘ ൌ ሼܩ௧|ܩ௧ ് ௧ܩ׊ ,ሽ׎ א ௣௥௘ܩ  ௧ is kernel-guidedܩ ,

for each ܩ௧ do 
   for each ௜݂ א  ௧ in a less relevant sequence doܩ

௜݂  is removed instantly if ܫܯܥሺ ௜݂;  ௧ሻ=0ܩ|ܥ
௧ܩ ൌ ;݈݁݊ݎሺ݇݁ܫܯܥ if ׎  ௧ሻ=0ܩ|ܥ

   end 
end 

for each ௞݂௘௥௡௘௟,௝ in ܩ௣௥௘, add ௞݂௘௥௡௘௟  into the subset guided by ௝݂ if 

applicable 

perform lines 19-24 again 

Let ܩ௣௢௦௧ ൌ ሼܩ௧|ܩ௧ ് ,׎ ௧ܩ# ൐ 1ሽ 
Subset Rankings: 

Rank each ܩ௧ in ܩ௣௢௦௧ using (11), and top K gene signatures are selected 

to establish G 

 
As soon as feature pairs are gained from the second stage, 

features can be able to line up in a row after a common feature 
(kernel) guiding other interdependent features to form a subset, 
 ௣௥௘, would then be carriedܩ ,௧. A set of these feature subsetsܩ
on the step of redundant and dependent analysis (line 18). For 
all possible subsets, conditional mutual information of a feature 
௜݂  and labels C given a selected subset ܩ௧ א ௣௥௘ܩ , 
CMIሺ ௜݂;  ௧ሻ, is exploited to measure if a feature is redundantܩ|ܥ
in its residential subset (lines 19-24). A backward elimination 
and less relevant feature first policy is the main approach of 
redundancy approximation during this stage. A feature with the 
lower value of ܵ ௜ܷ,௖, i.e. less relevance, is first examined and if 
its CMI value is zero, the feature is removed instantly and 
followed by checking the next less relevant feature; the 
procedure goes on until all features in the same subset are 
checked. If a kernel is removed, the subset guided by the kernel 
will be eliminated; otherwise features remain in a retained 
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subset will be viewed as dependents of the kernel. Also, for 
each kernel-connected feature pairs, ௞݂௘௥௡௘௟,௝ in ܩ௣௥௘, we may 
add the kernel feature into the subset guided by feature j if 
applicable. Following this post-process of subset formation, 
iRDA need to perform the second round of CMI examination 
and the potential subsets would then be collected (lines 25-28). 
Briefly speaking, through the mechanism of dependents 
following after the same interdependence-guided gene, 
interdependence between two genes could reveal more 
sophisticated interaction among multiple genes when a subset 
survives the redundant-dependent stage. A set consisting of 
these subset survivals, ܩ௣௢௦௧, finally go forward to the last step 
where ranking is applied to each candidate subset (lines 30-31). 

Since our method does not target on individual genes but 
gene subsets instead, subset rankings are the issue and cell 
classification can be predicted not only by one of top-ranking 
subsets but also by an ensemble means across multiple subsets. 
The latter is in particular suitable for large scale gene selection 
with small sample size. Mutual information of three random 
variables (kernel, subset and labels) is used to measure the 
subset ranking and low-dimensional approximation of this joint 
MI is also devised as the following equation. 
 
,݈݁݊ݎሺ݇݁ܫܯ ;௧ܩ ሻܥ ൌ భ

#ಸ೟
∑∑ெூሺ௙೔௙ೕ;஼ሻ ൅ ሺܫܯ ௞݂; ሻܥ ൅ భ

#ಸ೟
∑ௗ௘௣ሺ௙ೖ,௙ೕሻ(11) 

 
where ݀݁݌൫ ௞݂, ௝݂൯ ൌ ൫ܫܯܥൣ ௞݂, ௝݂หܥ൯ െܫܯ൫ ௞݂, ௝݂൯൧ /h ൫ ௞݂, ௝݂൯ , 
௞݂: kernel feature, ݄ሺ ௞݂ሻ: entropy, h൫ ௞݂, ௝݂൯: joint entropy, #ܩ௧: 

cardinality of ܩ௧.  
When subset rankings are performed, domain users can 

select top K subsets as candidates of biological interests. To 
illustrate how biological discovery might be found using 
multiple gene signatures, we exploit first three ranks of subsets 
and then classification could be predicted by an ensemble 
means across the three rankings (say S1, S2 and S3). In general, 
majority voting is our approach. We would accept minority of 
classification if likelihood of minority was greater than the 
maximum of likelihood of majority; otherwise the consequence 
of majority voting would be accepted. 

IV. EXPERIMENTAL RESULTS 
To demonstrate the effectiveness of the novel gene selection 

filter, we selected a publicly available microarray-based colon 
cancer data set. This data set was introduced by Alon et al. [18] 
and frequently used to validate the performance of cancer 
classification and gene selection in the research community. 
The colon cancer data set consists of 62 samples from the 
patients of colorectal cancer (CRC), where 22 normal labels are 
extracted from healthy tissues and 40 abnormal biopsies are 
extracted from colon tumors. Out of more than 6,500 genes in 
the original design of experiment, 2,000 genes were selected by 
the authors for clustering functional genes and classifying 
tissues. In this article, the experiment of colon cancer gene 
selection was performed in the environment of Matlab 7.14 
with the third party tool, MIToolbox [19], upon the computer of 
Intel Core i5 with 2.50 GHz processor and 8GB RAM. For the 
better calculation of information theoretic measures, features 

were discretized to three bins as suggested by Ding and Peng 
[13] and each bin was then designated by a discrete value such 
as 1, 3 and 5. 

 
TABLE I 

FEATURE SELECTORS ON CRC DATA SET 
Filter Error AUC Genes Authors 

mRMR 13/10 0.8256/0.8199 11/2 Ding andPeng[13] 
CMIM 12/10 0.8398/0.8432 11/4 Fleuret[14] 
FCBF 9 0.8778 9 Yu and Liu[15] 
iRDA 4 0.9176 11  

LOOCV gene selection was performed on 3NN classifier 
 
Working on the CRC data set, we evaluated our method, 

iRDA, with three model-free feature filters of mRMR, CMIM 
and FCBF to know the characteristics of the proposed gene 
selector in terms of classification error and performance. 
Because of the curse of dimensionality, the conventional 
training-test data partition given a ratio (say 60-40%) is not 
very appropriate for the assessment of gene selection 
approaches in the domain of high-throughput gene expression 
data. In the study, the procedure of leave-one-out 
cross-validation (LOOCV) was used to assess the performance 
of selectors and the classification error estimation during a 
selection procedure. Additionally, a reference classifier is also 
needed to induct the selected feature selectors into a learning 
process. This is due to their independence of learning methods. 
We utilized the k-nearest-neighbor (k-NN) classifier (k=3) to 
establish classification models after gene selectors had been 
performed. The experimental result of the four filters using the 
colon cancer data set is shown in Table I. In the clinical cancer 
study, not only false-positive (FP) but also false-negative (FN) 
errors are vital to be estimated since they have different 
operating characteristics for cancer classification. Here, we 
simply calculated FP and FN as classification errors. 

To understand the classification performance of different 
feature selection methods, we employed the area under a 
Receiver Operating Characteristic (ROC) curve, abbreviated as 
AUC. AUC is able to summarize the ROC curve which is a plot 
of the sensitivity against 1 −specificity to visualize the power of 
a classifier. Since iRDA is a multiple gene signatures oriented 
selector, the proposed method in general identified two more 
genes than FCBF where nine genes or so are maximally 
filtered. Apart from the best results of the four filters, their 
performances and classification errors at the level of the 
same/similar number of signature genes were reported. Table I 
shows that iRDA had four misclassifications and more than 
90% classification performance at the AUC level while the 
other three had about ten classification errors and their 
prediction performances were from 82% to 88%, much worse 
than that of iRDA. The minimal signature genes of mRMR and 
CMIM were quite few (2 and 4 respectively), but their 
predictive power would be viewed as a moderate degree of 
success (82% and 84% respectively) even if they increased the 
number of selected genes up to fifty. Although the significant 
genes found by iRDA were slightly more than those filtered by 
FCBF, it seems still reasonable to have the scale of the 
selection. In sum, one can easily find that iRDA is by far the 
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most promising gene selector among them on the study of CRC 
data set. 

 
TABLE II 

SUMMARY OF GENE SIGNATURES 
Set Gene Name 
1 HSPD1, SPARC, S100P, ZNF117 
2 MYL2, EIF2S2, RPL24, A2M 
3 SPARC, HSPD1, CDH3, HIVEP2, PSMC2 

 
By applying the iRDA gene selector into the whole sample 

sets of previous CRC data, we can obtain multiple colon cancer 
associated gene signatures and the first three subsets ranked by 
iRDA are summarized in Table II. These could be candidates of 
clinical interest to the domain expert. To illustrate how well the 
novel gene selector operates in practice from biological point of 
view, one of gene signatures identified by iRDA was studied 
through literatures and KEGG signaling pathway. The 
signature contains four genes of MYL2, EIF2S2, RPL24 and 
A2M. From the queries of KEGG, We found that MYL2 and 
A2M belong to the pathway of immune system that is a 
subclass of organismal systems and both EIF2S2 and RPL24 
participate in the translation process of genetic information 
processing. We noticed that A2M was filtered only by iRDA so 
it might be interesting to know if this gene is biologically 
significant to the CRC development. Ghilardi et al. reported 
that MMP-7-181 G/G genotype is involved in colon cancer and 
tumor progression in Italians [20] while Yang et al. claimed that 
MMP-7 also plays an important role in tumor development and 
progression process in CRC patients in China [21]. And a 
recent report showed that the main inhibitor of MMPs in tissue 
fluids is α2-macroglobulin (A2M) [22]. On the other hand, we 
also noticed that one of significant genes, named HSPD1, was 
filtered by all of the four selectors and most recent research 
summarized that HSP60 (i.e. HSPD1) could be a potential 
biomarker in CRC [23]. Thus, it is believed that the proposed 
method could have a high capacity of finding the majority of 
significant genes that most filters would also identify and of 
finding other important genes involved in gene regulation that 
most selectors could ignore. 

V. CONCLUSIONS AND FUTURE RESEARCH 
The proposed filter-based gene selector has successfully 

been tested on one of typical clinical cancer classification 
experiments, colon cancer data set. By using this data set, we 
have compared iRDA with three filters (mRMR, CMIM and 
FCBF) that are widely used and also based on information 
theorem. Our experimental results show that iRDA 
outperformed them in all aspects of classification errors and 
classification performance and could have great potential for 
biomarker discovery. Large dimensional variables with small 
sample size would cause that the optimal gene subset could not 
be a unique. iRDA provides multiple feature subsets with 
different rankings could be more suitable for large-scale gene 
expression profiling analysis. This is very different from 
conventional filter methods where various K genes are selected 
and form a subset for high level gene analysis. In addition to 

having multiple gene signatures, the new filter method is able to 
find an important feature that is individually weakly relevant 
but has strong interdependence between features. This type of 
genes accompanied by other significant genes would more 
contribute to the phenotype than they appear solely at the 
expression level. Unfortunately, most recent filter-based 
feature selectors could not search for these features that may 
attract the interest of the domain user. Although an early 
microarray cancer data set was performed for the effectiveness 
of the proposed gene selector, we could still reveal several 
significantly biological findings on the colorectal cancer 
research or discover potential biomarkers using the iRDA filter 
with recent literature studies and signal pathway databases. 

There are a couple of issues that will be addressed for our 
future research. Experimental mRNA expression data is cursed 
by its nature of small sample size with large dimensional 
features. The unavoidable problem always leads to unstable 
gene signatures which has recently attracted many researchers’ 
attention. Being a developer of gene selectors, we will have to 
deal with this matter to see how robust the proposed method 
could be and whether any skills could be well incorporated into 
it if the developed selector is not stable enough. Although the 
effectiveness of iRDA has been successfully validated on the 
colon cancer data set, most recent gene expression profiling 
data for other tumor-associated classification are required. 
Most cancer classification data sets, like Alon’s CRC data set, 
were introduced at an early age of microarray where better 
preprocessing techniques and experimental designs were still 
limited, and the two events also have a high impact on the 
removal of experimental noises. Therefore, it is worth 
connecting iRDA with up-to-date cancer-related classification 
data generated from high-throughput technologies to further 
understand the characteristics of the proposed gene selector. 
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