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Abstract—Classification is an interesting problem in functional 

data analysis (FDA), because many science and application problems 
end up with classification problems, such as recognition, prediction, 
control, decision making, management, etc. As the high dimension 
and high correlation in functional data (FD), it is a key problem to 
extract features from FD whereas keeping its global characters, which 
relates to the classification efficiency and precision to heavens. In this 
paper, a novel automatic method which combined Genetic Algorithm 
(GA) and classification algorithm to extract classification features is 
proposed. In this method, the optimal features and classification model 
are approached via evolutional study step by step. It is proved by 
theory analysis and experiment test that this method has advantages in 
improving classification efficiency, precision and robustness whereas 
using less features and the dimension of extracted classification 
features can be controlled. 

 
Keywords—Classification, functional data, feature extraction, 

genetic algorithm, wavelet. 

I. INTRODUCTION 
ITH the development of data collection and storage 
technology, more and more functional data (FD) are 

generated in the fields of industry control, information 
management, Internet and simulation experiment. These kinds 
of information are often in the form of long time series, 
continuous factors depending, etc. Much potential information 
contained in the FD and the successful cases of the Functional 
Data Analysis (FDA) have suggested its advantage.  

Moreover, classification is an important branch of statistics 
application. Many scientific and real questions end up with a 
classification problem, such as recognition, prediction, control, 
decision making and management. An observation is usually a 
collection of numerical measurements represented by a 
d -dimensional vector. However, in many real-life problems, 
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input data are in fact (sampled) functions rather than standard 
high dimensional vectors, and this casts the classification 
problem into the class of FDA [1]. Functional data 
classification (FDC) is one of two common goals in application 
of FDA [2]. 

There are two barriers to handle functional situation using 
classical methods: the high dimension and the correlation. It is 
a key problem of FDA, including FDC, to reduce dimensions 
and correlation of FD simultaneously whereas keeping its 
functional features, such as integrality and smoothness. More 
and more studies show that wavelet-based methods are suitable 
to solve the problem above as the nice properties of wavelet: 
multi-scale time-frequency decomposition, smoothness, 
orthogonality, vanishing moments [1], [3]-[5], etc.  

Shrinkage method [1] is popular for dimension reduction in 
wavelet based FDC. The shrinkage method presents good 
performance to keep global characters and denoise in 
low-dimension FD representation. It reduces the infinite 
dimension of the observations by considering only the first 
coefficients, with large power, of the data expanded on an 
appropriate wavelet basis. However, the aim of feature 
extraction for discriminant is to minimize the misdiscriminant 
ratio via supervised learning, which is not concerned in the 
shrinkage method. Some of the discarded features with small 
power may be non-trivial discriminatory and some of the 
reserved features are useless for classification. To extract 
optimal features according to specific problem (e.g., 
classification or decision based on low dimension 
representation) will benefit on the effect and precision of 
solving these problems. 

In this paper, a novel automatic method using Genetic 
Algorithm (GA) to extract classification features from wavelet 
coefficients of FD is proposed, which combined GA and 
classification algorithm together. The optimal features and 
classification model are approached via evolutional study step 
by step in this method. It is proved by theory analysis and 
experiment test that this method has advantages in improving 
classification efficiency, precision and robustness whereas 
using less features and the dimension of extracted classification 
features can be controlled. 

II. PROBLEM DEFINITION AND BACKGROUND 
A. Basic Definition and Hypothesis 

The problem of classification (pattern recognition or 
discrimination) is about guessing or predicting the unknown 
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class of an observation. An observation is a collection of 
measurements represented by functional data in the field of 
FDA. 

Data are named to be functional means there is a potential 
function x  giving rise to the observed data. 

Def1： Functional Data (FD) 

A functional variable χ  takes values in an infinite 
dimensional space. An observation x  of χ  is called a FD [6]. 
In practice, FD are usually observed and recorded discretely as 
n pairs ( , )j jt y , denoted by X , and jy is a snapshot of the 

function at time jt , possibly blurred by observational error or 

noise described as follows: 
( )j j jy x t ε= +  

where the term jε denotes noise, disturbance, error, 

perturbation or otherwise exogenous which contributes a 
roughness to the raw data. 

In general, a collection or sample of FD is concerned in 
practice, rather than just a single function x. Specifically, the 
record or observation iX  of the function ix  might consist of 

( , ), 1, 2, ,ij ij it y j n= L . The argument values ijt  may take 

the same values or vary from record to record. Similarly, the 
interval Τ over which data are collected may also varies from 
record to record. However, these inconsistent problems can be 
handled using corresponding method in FDA. It is thereby 
assumed that ijt  do not vary from different records in this 

paper. Normally, the construction of the functional 
observations ix  using the discrete data ijy  observed 

separately or independently for every record i . 
There are two categories in classification problem: the 

dual-class problem and multi-class problem. As the multi-class 
one can be translated into dual-class problem, only dual-class 
problem is discussed in this paper.  
Def2： Dual-Value Functional Data Classification  

Given F is some abstract Hilbert space, and keep in mind  

2 ([0,1])F L= (i.e., the space of all square integrable 

functions on [0,1] ) will be a leading example throughout the 
paper. The data consist of a sequence of n m+  i.i.d. random 

variables on {0,1}F × , denoted by { } 1
( , ) n m

i i i
X Y

+

=
, where 

'iX s  are the observations and 'iY s  are the labels. Note that 
the data are usually artificially grouped into two independent 
sequences, the training sequence of length n , and the testing 
sequence of length m .  

Def3： Classification Rule (CR) 

A Classification rule is a (measurable) function :g  

( {0,1}) {0,1}n mF F +× × → . It classifies a new observation 

x F∈  as coming from class 

1 1( , ( , ), , ( , ))n m n mg x X Y X Y+ +L , denoted by ( )g x  for the 
sake of convenience. 
Def4： Bayes Probability of Error (BPE) 

The probability of error of a given rule g  is 

1 1( ) { ( ) | ( , ), , ( , )}n m n m n mL g P g X Y X Y X Y+ + += ≠ L , 

where ( , )X Y  is independent of the data sequence and is 

distributed as ( , )i iX Y  [1]. 

B. Wavelet-Based Functional Representation via Features 

Functional representation is the process to represent the 

observations { }
1

( , ) in

ij ij j
t y

=
 of ix  in the form ( )y f t=  in 

FDA. Basis function procedures usually represent a function 
( )f t  by a linear expansion in terms a series of known basis 

functions ( )v tφ , i.e., 

( ) ( )v vv
f t a tφ= ∑ .                                                    (1) 

Functional representation is actually a process of smooth 
fitting, which is convenient for FD reduction whereas keeping 
functional characters such as continuity. The coefficients { }va  
character the information of functional data corresponding to 
different basis functions { }vφ . It is important to extract 
features effectively for classification problem, because it will 
impact on the FD reduction and classification. 

The most popular basis systems are spline basis, Fourier 
basis and wavelet basis. High dimension and high correlation 
are correlative characters of FD which are also the difficult 
problems that should be resolved in FDA. A standard answer to 
both problems of FD is to extend PCA [7] or ICA [8] method as 
well as to extend wavelet method [1], [9]. Wavelet-based 
methods solve both of the problems simultaneously and 
automatically. Additionally, they are computationally faster 
and automatically adapt to spatial and frequency 
inhomogeneities of the FD. Therefore, wavelet basis is used for 
representation and feature extraction in this paper. 

Wavelet based function fitting is also named wavelet 
transform or decomposition. Wavelet basis can be constructed 
by dilate and translate the scaling function and mother wavelet 
function [10]. Given wavelet function ( )tϕ , a series of 
orthonormal basis can be formed to represent a signal function 

 as follow: 

                   (2)  
where  is the set of all integers {0, 1, 2, }± ± L , the 

coefficients , ,( ) ( )L k L kc f t t dtφ= ∫  are considered as the 

coarser-level coefficients characterizing smoother data 

patterns, and , ,( ) ( )j k L kd f t t dtϕ= ∫  are viewed as the 
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finer-level coefficients describing (local) details of data 
patterns. In practice, the following finite version of the wavelet 
series approximation is used: 

                           (3)  
where J L>  and L  correspond to the coarsest resolution 
level. 

Consider a sequence of data 1( ( ), , ( ))Ny t y t ′=y L  taken 

from ( )f t or obtained as a realization of ( ) ( ) ty t f t ε= +  

equally spaced discrete time points 'it t s= , where 't sε  are 
independent and identically distributed (i.i.d.) noises. The 
discrete wavelet transform (DWT) of y  is defined as 

d = Wy , where W  is the orthonormal N N×  
DWT-matrix. According to (3), the coefficients are denoted by 

1( , , , , )L L L J+=d c d d dL , where ,0 ,2 1
( , , )LL L L
c c

−
=c L , 

,0 ,2 1
( , , ),LL L L
d d

−
=d L  ,0 ,2 1

( , , )JJ J J
d d

−
=d L  are 

called scales or subbands. Using the inverse DWT, the 1N ×  
vector y  of the original signal curve can be reconstructed as 

′=y W d . The process of transforming a data set via the DWT 
closely resembles the process of computing the Fast Fourier 
Transformation (FFT) of that data set. 

If considering the FD as a random process, its Hurst 
exponents H can be estimated and usually falls in 
[1 2, 2] (especially, 1/ 2H =  when data is not with long 

memory). As k k′− → ∞ , the correlation between two 

coefficients ,j kd  and ,j kd ′ ′  decreases asymptotically as: 

.      (4). 
With no confusion, the coefficient c,d will be presented 

uniformly in the following section:  

1 2( , , , )i i i ij iNd d d d=d L L ,                                        (5) 

where j  is the index of wavelet basis, id is corresponding 

to ix , and 2JN = . 
Note that discrete-wavelet-based methods assume that all 

functions are observed at the same points, which is a normal 
situation. This is not a restrictive problem since we can always 
fit a basis and estimate the functions at the desired points. 

C. Functional Data Classification and Feature extraction 

Classification procedure can be split into two stages: the first 
stage is to abstract features for classification and the second 
stage is to construct classification rules. A feature vector is 
associated with each functional observation (FExtr stage) and 
this finite-dimensional vector is employed in the classification 
stage. Classification model is built via integrating the features 
and rules together.  

There are two main kinds of methods of feature abstraction 

according to the conclusion in [11]: feature selection in which 
we select the best possible subset of input features and FExtr 
consisting in finding a transformation to a lower dimensional 
space [9], [12], [13]. These two methods will be combined in 
this paper: apply wavelet transform to the data and then select 
classification feature in the space transformed. 

Features of data are mainly abstracted by learning in the data 
set. A universal aim of feature abstraction is to reduce 
dimension of data whereas the aim of feature abstraction for 
discriminant is to minimize the misdiscriminant ratio via 
supervised learning. Note that if ideal discriminant features are 
extracted (each class is represented by a region of the feature 
space which is well separated from the regions representative 
of other classes), the task of the classifier should be trivial [8]. 
Thus feature abstraction is a key step of classification 
procedure and the ability to correctly classify the test 
observations depend mostly on the output of the FExtr. 
Reference [8] discusses how to transform each observation into 
an appropriate vector of characteristics that represents data 
better. This kind of preprocessing is a powerful method for 
improving the performance of a learning algorithm, instead of 
using the raw features [14]. 

Wavelet based reduction is one of filtering method. Roughly, 
filtering reduces the infinite dimension of the observations by 
considering only the first coefficients of the data expanded on 
an appropriate wavelet basis. This approach was used by [1], 
[3]-[5], etc. Using wavelet based shrinkage reduction, a low 
dimension representation of FD can be obtained, whereas 
preserving as much information of data as possible, reducing to 
as low dimension as possible. Additionally, each component of 
the representation lays out the characters of data from various 
view point and is independent to others. 

All wavelet based shrinkage methods follow these two 
principles: First, the reconstructed signals using fewer number 
of wavelet coefficients provide a very reasonable 
approximation to the original data. In other words, the selected 
wavelet coefficients are rather representative in most of the 
data analysis. Second, the large magnitude wavelet coefficients 
(in their absolute value) will characterize each signal patterns 
better and retain more information. 

III. GA BASED FEATURE EXTRACTION  
To extract useful features is the important way to reduce 

classification error and enhancing classification efficiency. 
Shrinkage methods represent data with low dimension whereas 
denoising, which is useful in reducing computing complexity 
of classification model. However, it has less use on the main 
purpose of FDC, i.e., to reduce classification error. Thereby, it 
is asked for a new rule of FExtr in classification problem. 

It is a combination optimization problem, also a NP-hard 
problem, to select segment coefficients from thousands of them 
for minimizing the classification error. Lots of papers have 
shown that GA is useful to solve the combination optimization 
problem without prior knowledge. 
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A. Definition of Optimization Problem of Feature 
Extraction 

Coefficients 1 2( , , , , , )i i i ij iNd d d d=d L L corresponding 

to iX  are obtained via transforming all FD iX  on wavelet 

basis funcgtions 1 2 N{ , , , }ϕ ϕ ϕL . Then FExtr procedure is 
executed to select fractional coefficients 

1 2
ˆ ( , , , , , )

l Li is is is isd d d d=d L L for classification, where  

  
The selected features should be comparable between 

different functions. Therefore, the selection of wavelet 
coefficients should be consistent, that is, i∀ ， S  represents 
the same basis positions across different functions. 
Def5： Feature extraction Vector (FEV) 

Suppose that 
1 2

ˆ ( , , , )
Mi is is isd d d=d L  is the classification 

feature vector, 1( , , )NI a a= L  is defined as the FEV, where 

1ja =  if ls S∃ ∈  s.t. ls j= , otherwise 0ja = . 

Obviously, there is a determinate FEV associated with each 
selection scheme; hence, selecting the best classification 
features is equivalent to find the optimal FEV.  
Def6： Optimization Object of Feature extraction  

FExtr and classification is of the same object: minimizing the 
classification error. Therefore, the optimal object of FExtr is 
defined as follow:  

( )( )[ ( ) ]
1

1( ) min[ 1 ]SS
i iN

n m

g X YS S
i n

f S
m

+

≠∈
= +

= ∑ ,                               (6) 

where ( )S
lX  denotes the classification features of iX  

extracted via the FEV S  and ( )sg  is the classification rule 

function with S  under certain classifier. 
Moreover, considering the number limit of features under 

certain condition, the object function can be attached with a 
penalization term  ( ) /C S Nλ  where ( )C S is the number of 

elements in S . 

Def7： Optimization Problem of FExtr (OPFE) 

According to the definition above, the FExtr problem can be 
transformed into an optimization problem to which the GA 
adopted:  

       (7) 

B. GA Based Solution of Optimal Feature Extraction 
Vector 

Considering the FEV I  defined in  Def5： as independent 
variable’s chromosome, the OPFE is transformed into an 

optimization problem (7) which can be solved via GA. 
Step1: Confirm the Solution Space 
Normally, the dimension N  of coefficients obtained by 

wavelet transform of FD is very large. Therefore, the solution 
space of (7) is extremely huge. Some effective pretreatment of 
solution space can help to reduce searching complexity. 

Note the properties of wavelet coefficient in  II.B, wavelet 
basis 1 2 N{ , , , }ϕ ϕ ϕL can be reordered according to Vertical 
Energy Method (or Seperability Method) into  

1 2 Nk k k{ , , , }ϕ ϕ ϕL .                                                           (8) 

Meanwhile, the basis of little vertical energy 
1

2

vjd (or 

seperability 12 ( )kJ d ) can be ignored. Generally, the 

coefficients of former H  basis 
1 2 Hk k k{ , , , }ϕ ϕ ϕL  are 

sufficient to cover the information for classification. The value 
of H  can be decided by repetitive experiments in which the 
dimension of feature increases following the order (8). Then, 
the space is reduced to a space with H -dimension, i.e., 

1 2{ , , , , , }l LS s s s s= ⊂L L 1 2{ , , , }Hk k kL . Accordingly, 

FEV 1( , , )HI e e= L  is a binary valued vector of H  

dimension. Take I  as the independent variable, the solution 
space is {0,1}H . 

Step2: Confirm the Original Solution Population  
Since the unknown label of sample will be determined by 

only a few features commonly, the number L  of nonzero je  

in original solution 1( , , )HI e e= L  is set to be a relative 
small value (e.g., 5,10 or 20 according to the problem). The 
population size is not  recommended to be large, and usually 10 
or 20 will be OK. 

Step3: Confirm the Optimal Features 
The approximate optimal solution * * *

1( , , )HI e e= L  is 
approached via solving problem (7) by GA. According to 
 Def5 ： , we can get the optimal vector of features 

* * * *
1 2arg min ( ) { , , , }

N

L
S S

S f S s s s ′
∈

= = L , where L′  is the 

dimension of the features. Moreover, according to definitions 
in  III. A, coefficient vector of optimal features is easy to extract 

as follows: * * *
1 2

*ˆ ( , , , )
i Lis is is

d d d
′

=d L . 

Note that over fitting often arises in the optimal FExtr 
process, i.e., the features are selected optimally depending on 
the training data whereas losing the features of classification 
problem itself or mistaking disturbed features. This abates the 
efficiency of classifying new testing data as a result. There are 
two ways to avoid over fitting: firstly, adopt the policy of 
reserving multi-priority-solutions (PRMPS); secondly, 
increase amount of training data to reflect the character of 
classification problem itself. 

Firstly, PRMPS means to save and refresh the best r  
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solutions 1{ , , }rI IL  through out the genetic evolution 

process. The optimal FEV is defined as *
1 rI I I= ∨ ∨L , 

where ∨  is the extract symbol of bitwise OR operation. 
Secondly, the learning result will be closer to the real model if 
training samples are increased. However, it is a remaining 
problem to determine amount of training examples. 

Step4: Search for the Optimization in GA 
The optimization search process is similar to the common 

optimization problem, which follows the flow as shown in . 
Other than the classical GA flow, fitness is obtained by 

classifier, which calculated the misclassification rate via 
training and testing the training set according to every 
independent variable I . The classifier and its parameters are 
fixed along with the whole flow as shown in Fig. 1. 

 

 
 

Fig. 1 Flow of Optimization Search Process 

C. Convergence Analysis of Classification Error 

Given rule g , the error ( )n mL g+  is expected as smaller as 
possible. However, it is proved by theorem 2.1 in [15] that 

( )n mL g+ is larger than the Bayes probability of error *L :  
*

: {0,1}
inf { ( ) }

g F
L P g X Y

→
= ≠ .                                       (9) 

The goal of learning process is to construct rules with 
probability of error as close as possible to *L . Reference [1] 
shows the convergence result of classification error based on 
vertical energy scheme: 

( ) ( )

* * * ( )

1, ,

*

ˆ{ ( )} { inf ( )}

8log(4 (2 )) 22 { }
log(4 (2 ))

d d
n

n

n

d
n m N nd N

g D

N
C

N N
C

E L g L L L E L g

S m
L E

m m S m

+ =
∈

− ≤ − + −

+ +

L

.   (10) 

And it also has proved that *ˆlim lim { ( )}n m
N n

E L g L+→∞ →∞
= . 

The same convergence result of method proposed in this 
paper can also be proved by similar process. 

Theorem 1  

Given problem with the same assumptions as Corollary 2.1 

in [1], 
ˆ( )ˆ Sg  is the optimal rule associated with the optimal 

FEV in (7) obtained from GA based training process, then rule 
ˆ( )ˆ Sg  consistent for ( )S

nD  in the sense 
ˆ( ) *ˆlim lim { ( )}S

n m
N n

E L g L+→∞ →∞
= .                                     (11) 

Proof:  From the definition of wavelet transform and its 
decorrelation property, we know that the seperability of 
features is approximately additive. According to the definition 
of optimization problem (7), assume that the classification 

feature vector gained by GA is denoted by Ŝ  and the 
classification rule function is denoted by ĝ′  when the 
dimension problem is not considered simultaneously in 
optimization process (i.e., 0λ = ), then we have: 

( ) ( )

( ) ( )

( ) ( )

ˆ( ) ( )

( )

( )

,

( )

1, ,2 ,

ˆ ˆ{ ( )} {min ( )}

{min (arg min ( ))}

{ ( arg min ( ))}

{ ( arg min ( ))}

ˆ{ ( )}

N

S SN
n

S S
N n

J d d
n

S S
n m n mS S

S
n m n mS S g D

S
n m n m

S S g D

d
n m n m

d g D

n m

E L g E L g

E L L g

E L L g

E L L g

E L g

+ +∈

+ +∈ ∈

+ +
∈ ∈

+ +
= ∈

+

≈

=

=

≤

=
L

.                  (12) 

According to (10) and (12), the claim of the theorem follows 
via the same method of [1]. 

Moreover, inequation (12) accounts for stronger and faster 
convergence property as well as better classification effect, 
which own to using GA-base FExtr method. These also can be 
proved by experiment result analysis. 

It takes longer time to training because of GA’s application. 
However, fewer features are extracted and better effect of 
classification is obtained yet. As a result, it takes a little time to 
classify new coming observations. Commonly, the effect of 
classification for new examples attract more attentions in 
classification problem, whereas training time is not minded. So, 
the training time is not a balk. 

IV. EXPERIMENT ANALYSIS 
To test the performance of proposed feature extraction 

method, we applied it to the complex classification problem 
(Berlinet Classification for short) in [1]. 

A. Process of Experiment 

Step1: Randomly generate N  sample data according to the 
definition of Berlinet Classification problem [1] with some 
modification. 

Step2: Group example data into training set A , 
training-testing set 1C  and testing set 2C , which contain 
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examples of number 1N , 2N , and 3N  respectively. 
Step3: Set parameters of GA, including initial population 

size R , the number L  of nonzero bit in initial solution 
(dimension of classification features). The experiments use GA 
from GAOT toolbox with default operators of Selection, 
Intersection and Mutation. 

Step4: Search for optimal solution via evolution of GA: For 
every solution I  in population, select the features associated 
with I  and train on set A  to get the classification model. 
Then, test the model on set 1C  to get RCR ( )R I  as fitness of 

I . Choose optimal solution Î  in the generation as present 

optimal solution. Denote the RCR of 1C  by 
1

ˆ( )CR R I= . 

Combine A  and 1C  as a general training set. Select features 

according to Î  (or *I  defined under PRMPS in  III.B) and use 
these features to train the model of present generation. Test the 
model on set 2C  and get RCR 

2CR . The classifier K-NN (-k 3 

-d 0) of MATLAB Arsenal package is used in the experiment. 
Step5: Execute repetitive experiments by repeating step 1-4, 

then compute mean value
1CR ,

2CR  of all 
1CR ’s and 

2CR ’s. 

Step6: Use method of [1] to obtain the basis order 

1 2 Nk k k{ , , , }ϕ ϕ ϕL  as (8). Take coefficients of former 

FN ( {1,2, }FN = L ) wavelet basis as classification features 

and compute the RCRs 
1CR′ ,

2CR′  as well as their mean values 

1CR′ , 
2CR′  on sets 1C , 2C  respectively. 

Step7: Denote the generation time of step 4 as GT . Plot 

curves of 
1CR ,

2CR ,
1CR ,

2CR  along with GT  and curves of 

1CR′ ,
2CR′ ,

1CR′ ,
2CR′  along with FN . 

B. Experiment Result Analysis 

Four samples are shown in the following Fig. 2. Each curve 
is consisted of two different but symmetric signals, and the 
problem is to detect whether the two signals are close (class 1) 
or enough distant (class 2). 

 
Fig. 2 Demonstration of Berlinet classification data 

Using both methods proposed in [1] and in this paper 
respectively, the results with several parameters are shown in 
following Fig. 3-Fig. 6. 

In Fig. 3, the abscissa is the increasing dimension of selected 
classification features (FN) and the vertical is the right 
classification rate (RCR). Dash curve line1 and dash-dot line2 
show the RCR 

1CR′ , 
2CR′  of once experiment. Meanwhile, dot 

curve line3 and solid curve line4 represent 
1CR′ and

2CR′ , mean 

of RCR. 

 
Fig. 3 Classification result of Berlinet method 

 
Fig. 4 Classification result of this paper  

 
Fig. 5 Classification results using larger training set 
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In Fig. 4, the abscissa is the increasing generation time (GT) 
and the vertical is RCR. Dot curve line1, line2, line3 are 
corresponding to 

1CR , CR , 
2CR  respectively and solid curve 

line4, line5, line6 are corresponding to 
1CR , CR , 

2CR , mean 

RCR of present generation, where CR is mean of all 
1CR  in 

population of present generation and CR is the mean of CR ’s. 
In Fig. 5, the abscissa is the increasing generation time (GT) 

and the vertical is RCR. Solid curves line4, line5, and line6 
show the results 

1CR , CR , and 
2CR  when using larger training 

set. And dot curve line1, line2, line3 represent results 

1CR , CR ,
2CR  as same as in Fig. 4. 

 
Fig. 6 Classification result using PRMPS 

 
The solid curve in Fig. 6 show results of PRMPS. Other 

curves represent the same results as Fig. 5. 
According to line1 of Fig. 4, the method of this paper makes 

1CR
2CR  converge to 0.96 and 0.875 rapidly. Compared with 

Fig. 3 showing result of method from [1], the use of GA can 
extract optimal classification features faster and the efficiency 
of classification can be enhanced obviously when applying GA 
based FExtr method. According to the variance of CR , mean 
value of population, it is easy to find that RCR corresponding to 
FEV tends to approach to the optimum during evolution. Mean 
values 

1CR , CR ,
2CR  gained from repetitive experiments are 

also steady which is the reflection of effect of our method. On 
the other hand, 

2CR  of 2C  is higher compared with 
2CR′  

whereas relatively lower than 
1CR . This is the evidence that 

over fitting problem exists in optimization FExtr Fig. 5 and Fig. 
6 show the results using larger training set and PRMPS. These 
figures suggest that the gap between 

2CR  and 
1CR  gained by 

former methods shrinks relatively. The over fitting problem is 
solved in some sense. Over fitting is an inherent difficult 
problem of learning algorithm. It is a remaining problem that 

no method can solve completely.  

APPENDIX 

Definition of Berlinet Classification Problem 

For each 1, ,i n= L , the functional data and their class 

labels ( ( ), )i iX t Y  are generated via the following scheme: 
1 21

, ,50( ) (sin( ) ( ) sin( ) ( ))
i i i ii i i iX t F t f t F t f tμ σ μ σ ε′= + +

where ,fμ σ stands for the normal density with mean μ  and 

variance 2σ ; 1
iF and 2

iF are uniform random variables on 

[50,150] ; iμ  and iσ  are randomly uniform respectively on 

[0.1,0.4]  and [0,0.005] ; 1i iμ μ′ = − ; and the iε ’s are 
mutually independent normal random variables with mean 0 
and standard deviation 0.5. The label iY  associated to iX  is 

then defined to be 0iY =  when 0.25iμ ≤  and 1iY =  
otherwise. 
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