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Fuzzy T-Neighborhood Groups Acting on Sets
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Abstract—In this paper, The T-G-action topology on a set acted
on by a fuzzy T-neighborhood (T-neighborhood, for short) group is
defined as a final T-neighborhood topology with respect to a set of
maps. We mainly prove that this topology is a T-regular T-
neighborhood topology.
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I. INTRODUCTION

T-neighborhood topology on a set can be defined by

several method e.g., via closures, interiors, filters, etc.
Sometimes a T-neighborhood topology constructed out of
given T-neighborhood topologies may be useful. In the
classical theory of topological groups, when a topological
group G acts on a set X, it confers a topology on X, called the
G-action topology on X. In this paper we develop a fuzzy
extension of that notion, in the case G is a T-neighborhood
group. Varity of useful -characterizations of this T-
neighborhood topology are considered. We show that the T-G-

action topology 7 )T(_G coincides with the final T-

neighborhood topology 7, introduced on X by a set of

A
functions { g} ;

II. DEFINITION AND PRELIMINARIES
Definition 2.1. [8] A topological group G acts on a non-
empty set X, if to each geG and each xeX there
corresponds a unique element gx such that
2(2%) = (2:2)x V x eXandg, g €G
ex =x.

When G acts on a set X, two families of functions can

be defined as follows:

g:Go>X.

To each geG, we define g : X— X
g (x) =gx.

To each xeX, we define x : G — X,

X (g) =g
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We will use two important theorems  which
introduced in [7]. The first gives necessary and
sufficient conditions for a group structure and T-

neighborhood system to be compatible, and the second
gives necessary and sufficient conditions for a filter to
be the T-neighborhood filter of e in a T-neighbourhood

group.

Theorem 2.1 [7] Let (G, .) be a group and S a T-
neighborhood base on G. Then (G, .tf)) is a T-
neighborhood group if and only if the following are fulfilled:
(a) For every ae G we have

B (@={.w/uepE)
(tes. B (@)= {Ra(w) /u € f(e)}and

P (a)={C. (W] u € B(e)}is a T-neighborhood base at a.
(b) Forall 4 € f (e) and for all & € I there
v € f (e) such thatv - £_<,u_1, i.e., r is continuous at e.
(c) For all u € p (e) and for all ¢ € [there exists v € S (e)
such that v. v- € <y, i.e., m is continuous at (e, e).
(d) For all u € p (e), for all ¢ € [yand for all xe G there
exist v € f (e) such that 1. v.1, R <u, ie., int, is
continuous at e.

Where {; : G > G:z+> xz (resp. R, : G > G :z
> zx ) is the left ( resp. right ) translation.

exists

Theorem 2.2 [7] Let (G, .) be a group and J a family of
fuzzy subset of G such that the following hold:

(a) J is a filterbasis, such that u(e) = 1 forall y € I

(b) For all # € Jand for all & € [ythere exists v € J such
thatv -& _<,Lf1 .

(c) For all u € J and for all € € I, there exists v € J such
thatv.v-eg<p.

(d) Forall u € G forall ¢ €1, and for all x € G there
exists v € J such that /.. v.1, ;-& <pu.

Then there exists a unique T-neighborhood system f such
that J is T-neighborhood basis for the T-neighbourhood
system at e, f(e) and £ is compatible with the group structure.
This T-neighbourhood system is given by

Be) = {leu/ue T/ '=fu.l/ue 3 xe G.

III. T-NEIGHBORHOOD TOPOLOGIES INDUCED BY T-
NEIGHBORHOOD GROUP ACTIONS ON SET

Definition 3.1. Let (G, .) be a group acting on a set X,
then for all I'e I°, ue I, ge G and xe X we define for
allye X

Tuy) = sup {I' (T u(x): (g x) € G*X and gx = y/ (M
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Proposition 3.1. Let (G, .) be a group acting on a set X
and ¥, I'e IG,,ue I*  Then

@YAw <Py In particular
Y (Iwo) = (VD) uy)
b) T'ly= VM 'l

©) I'lyy) = sup {I(g): ge Gand g''y € M}
(D) I'L(y) = sup {I(g): g€ G and gx =y}
(e) Igu(y) = sup {u(x): xe X and gx = y}

=ug'y)
Proof: (b)-(e) follow immediately from Definition
3.1
(a) Forany ye X:

YIw) =sup {¥(g TIux): (g x) € G*X gx =y}
=sup {¥(g) Tsup {I'(h) T u(z): hz =x}: gx =y}
—sup (¥ (g) TT(h) T u(z): ghz =y}
(Y Or Duy)= sup {(P O (k) T u(z): kz = y}
= sup {sup { S’;{(g) T 11" (h): gh=kT uz):
zZ=Yy
=sup {¥(g) TI(h) Tu(z): (g h z)
€ GXG*X and ghz = y}

Hence Y(Tw)(y) = (¥ OrDu(y) < (Y.Du().
If both I, u are crisp, then I is also crisp and is given by

Tu={gx: g eand x e u}.
Note that Iy, I'1,, Ig,uGIX and '], (vy) = 0if y ¢ orbit of x.

Theorem 3.1. Let G be a T-neighborhood group acting
on a set X, and let R be a fundamental system of G at

e. For each x € X, let p= {I'l: I'e R}el”. Then

{Pfcex is a T-neighborhood basis on X. The resulting T-

T-G

neighborhood space is denoted byz, . Its fuzzy

closure operator ~ : I*—1I% is given by: For all g

el” xex

n(x) = inf sup (g )T77(gx) @
N geG
Proof. First, we verify that {f}iex is a T-

neighborhood basis in X. Letx € X, [,

Ve R, u=Tl.ep, =V ep
D) u@x) =T'l(x) =sup {I(g):g €Gandgx =x}

>T[(e) =1 (Because ex = x).

(ii) There exists 4 € R : I'A ¥ > A. Hence

UNL=TT. ANV, > A1,
which is in f,.
(iii) T-kernel condition:
Recall that {R 1,}¢cc is a T-neighborhood basis of the
T-neighborhood group G Theorem 2.2 . Let, as before,
i =1TI1, € p. By the T-kernel condition for

I € R, for all ¢ e I, there exists a family
[Tl e R Jocosuch thatforallg k € G
Tk) T (T () <I(g) +¢. (3)

We take v, =I,I,. Foreach y € X, if y ¢ orbit of x, take for
v, any element of 3,="R ,.
Ify € orbit of x, choose some /& & G such that y = Ax, and
0 + Ie(h) Z sup {I(k): kx =y} )
where d € I, is a real number that satisfies
b+3)T(c+9)<(bTc)+e
for all b, ce I. Such 0 exists by the uniform continuity
of T. Take v, = I',1, € f,. Then, if y& orbit of x, we find
for all z € X that
26+ u(2) 2 0.0) Toy(2)
because then v.(y) = (.1, )(y) = 0. And when yeorbit of
x, we find for all z&X:
2e + u(z) = 2¢ + (I'l)(z)
=etsupfe+1(g) gx =1z}
e +sup {I(h) T (I13)(g): gx =z} by (3)
> (I'e(h) +0) T sup {(I'y14)(g): gx = z}
> sup {Te(k): kx =y} T sup {(I')(gh™): (gh™)(hx) =z}
by (4) Since hx =y, then
2e +pu(z) 2 (Tel)(y) T sup {(T)(1):ty = z}
=(Tel)) T (Thl,)(z)
=) Tv(z).
Thus, the kernel condition holds for 1 € f, in both cases of

y. Finally, forall y € 1~
7 ()= inf sup u(y) Tn(y)

HEP yex

= infsup () T (T'lx)®)
T'eR yeX

inf sup 5@ Tsup {I(g): g € Gandgx =y}.

FeR yeorbitex

Because if y & orbit x, then (I"1,)(y) = 0. Thus,

7 (v = inf sup y(gy) T 1),
R geG

Rendering (2).

Proposition 3.2. Let I'el®, » CI° g € G x € X
then

(I'1)1,= (T'l,) lI*, and hence

(0.1 )1 =0l C I¥ .

Proof:

(T 1)1)() = sup {([1)(k): k € G and kx =y}
=sup {I'(kg): k € G and kg''gx = y}
=sup {I'(): t € G and tgx = y}

=Tlg) ().
This completes the proof.

Proposition 3.3. For each filterbasis F in /%and for

xeX.
iy reFpc {¥l :¥eF} c I (5

Proof: Let I" e F~ Then for all ¢ > 0 there exists 7
€ F such that I" + ¢ > I',. Then for all y € X we have
e+ (1)) =¢+sup {I(g): gx =y}
=sup { e +1(g): gx =y}
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> sup {I'(g): gx =y}

= )).
Thus, ¢ + I'l, > I, € {¥1-¥eF}. Hence I'l, € {¥1,:
¥ e F ). This proves (5).

Proposition 3.4. The fuzzy closure operator on X
defined in (2) does not depend on the particular choice

of a fundamental system R of e.

Proof: All fundamental systems R of G at e have
the same saturation R~ . Also, for each x € X
Bo={T:TeR}
c{.TreR}
C{ri:reRy=p04_.

As  {B}, {,BN} induce the same fuzzy

M closure

operator on X, then the fuzzy closure operator defined in
(2) is also given by

7(x) = inf sup T (g )T77(gx) ©)
e 8€G
Which is independent of the particular choice of a
fundamental system R of e.
The following definition is well phrased by virtue of
Theorem 3.1, and Proposition 3.4;

Definition 3.2. Let G be a T-neighborhood group acting
on a set X. A T-G-action-topology on X denoted by
Z')T{G is introduced through its closure operator °,
defined in (2).

Proposition 3.5. Let R be a fundamental system at e
of G,u € R . Then

I, Rl R (N

Proof: From condition (d) in Theorem 2.1, for all &
> () there exists v, € R such that
Ve— & < dgop. g

This proves that I,. t. I, € R”

Notion: In T-G-action topology

(1) We denote the T-neighborhood system at x € X by
NE).

(2) Let'R be the T-neighborhood system of G at e, x €
X. We denote R 1, by C(x). Recall that C” = & i.e C(x)
is a T-neighborhood basis at x for this space.

Definition 3.3. Let (X, ., #B) be a T-neighborhood
space, M be a non-empty set in X. Then u el Yis said
to be a T-neighborhood of M if u is a T-neighborhood
of all points x in M. It follows that the set of all T-
neighborhoods of M (called the T-neighborhood system

of M) istheset A N(x).
xeM

Proposition 3.6. Let ' 1%, g € G, z € Xthen
1) =, 0l

Proof:
1 (T)(y) = (I'1)(gY)
=sup {I'(h): h € G, hz = gy}
=sup {I(gk): k € G, kz =y}
(Ier. DL = sup {(1o.T)(H): kz =]
=sup {I(gk): k € G, kz =y}
Then
Ig-’(F]z) = (Ig_l. 1—)12

Theorem 3.2. Under this T-neighborhood topology the

A

functions { g } are homeomorphisms on X.

Proof: Without loss of generality, we take ‘R the
whole  T-neighborhood system at e. Then from
Proposition 3.5, 1,. R .1,; € R . Givenxe X,

g € G, NI, is a T-neighborhood basis atgx. Let u

e Ri, we have g W = u@) = Il wy), then

g'u)=1gu €1;," R 1,,and from Proposition 3.6

1 (R i) = (17" R)lg,
=(1;". R. 1)1, by Proposition 3.2
cR I
C NE).

A

ie, g7’ is a T- neighborhood of x.

by Proposition 3.5

So by Theorem
5.1 in [5] gis continuous at x for all x, and hence it is

continuous. Since (g7) = (g)’ Then (g)’ is also
continuous. Thus g is a homeomorphism.

Proposition 3.7. For any symmetric T-neighborhood A
ofe,andany MC X; x,ze X
(AL)(2) = (Al)(x)

Alw(x) = sup Tu(y) T (AL)(Y)-
ye

Proposition 3.8. For any subset M of X and any T-
neighborhood I" of e, I'ly is a T-neighborhood of M,
and

(1,) <riyer )

Proof: Since Iy - v I'l, then 1[Iy is
xeM

a T-neighborhood of all points of M, hence I'l), is a T-
neighborhood of M.
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Next, let I be a T-neighborhood of e. Then I'
contains a symmetric T-neighborhood A of e. For any
xeX
(/)"0 = inf sup 1,6 7i0y)

yeX

<supiu() TAIL®»)
yeX

=sup A L,(y)
yeM
=sup Al,(x) by Proposition 3.7
yeM

=(AIy)x)
< (I 1,)(x). This proves (8).

Proposition 3.9. Let ‘R be a fundamental system of T-
neighborhoods of e. For any subset M of X

I'eR

Proof: From Proposition 3.8, (1)
I'eR .Then

IN

'l for every

(1) < N T'ly
reo
Next we prove that

e reR™

Since R < R~ then

ANTTy> N Ty
FeR CeR™

Also, let I'eR™, for all ¢ > 0 there exists IR such
that e + 1 > T,
& +F1MZ((9+DIM2 Tdy> AN Tly

I'eR

Since this holds for all & > 0, then
I'eR

This inequality holds for all " eR ™.
Consequently,

AN Tly> NTly
TeR™ reR
Hence, equality holds.
It is clear that if O is the set of symmetric elements in
R~ then.
ATl, = AT1, < A Al
T'eR M TeR™ M AeO M
Conversely, let O is the set of symmetric elements

inR~ . Then O is a fundamental system at e:

( A ALy(x) = inf (AL)(x)
AeO AeO

= inf sup 7y(») T (41x)(y) by Proposition 3.7
AeO
yeX
= (1) (x)
because the set {4l, : A € O} is a T-neighborhood basis
at x.

Theorem 3.3. A T-G-action topology on X is a T-
regular T-neighborhood topology.

Proof: Let M < X and x € X. We establish condition
(N*-T-regularity) of Theorem 3.2 in [6], which is
equivalent to the T-regularity of X. For all

M C X, x € Xsuch that

Inf hgt (p Tv:p e C(M), v € Ol,)
< ing hgt (41T 41,)
Ae

<inf sup (A1) A 1))y € X)
= inf sup ((41,)6) A (A1)3)):y €X]
= inf sup fsup {A(): h < G, hy & M ]
A sup{A(k): k € G,y =k} y € X}
= inf sup fsup (A(h): h G, hy € M} A

sup{dk): k € G,y =kx}:y € orbit x}
So. (call y € kx)
Inf hgt (p Tv: p e (M), v € O1,)
siAng sup {sup {A(h): hkx € M} A A(k): k € G}

iAng sup {Ah) N\ Ak): h, k € G and hkx € M}

inf sup {(44)(g): g € G and gx € M}
AeO

= 1nf sup (44)(1,)(x)
AeO

But by Theorem 2.2 in [7], for every 4 € O, ¢ > 0 there
exists A; € O such that A; A;< A + . Hence,
Inf hgt (p Tv: p e C(M), v € Ol,)

< inf (U+¢ LK)
A€0,e>0
=inf (T'1)kx)
AeO
= A (1y(x) = (1y)(x) by Proposition 3.9.

T'eO
The opposite inequality is always valid.

Theorem 3.4.

with the final T-neighborhood topology
by the set of functions

T-G . .
T, ~ coincides
7, on X defined

A T-G-action-topology

{X:G > X xeX},x(g)=gx

Proof: For any x €X, the function
X:G—(X T)T(_G ) is continuous, because for all

g € G and for each neighborhood 77(1,) in the
fundamental system R I, of X(g) = gx, where I'e'R,
we have
X (T. 1)) =sup {(T. 1)(h): h € G, X (h) =y}

=sup {I"1)(h): h € G, hx =y}

= (I 1)1
then x (I'ly) = (T, )I, = I'l, and I.l, is a T-
neighborhood of g by Theorem 2.3 in [7]. Therefore
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Z')T(_G C 1 since 17, is the finest T-neighborhood

A
topology making all x continuous.

Next, let x € X, u a T-neighborhood of x in 7z Then
2w a T-neighborhood of e in G; ie. (X' W)l is a

T-neighborhood of x in T)T{G .

But (X7 Wil = XX W) = A Ly < &

This proves that x4 is a T-neighborhood of x inZ';G.

Then 1y C T)T{G . Hence, equality holds.
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