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Abstract—Our study proposes an alternative method in building
Fuzzy Rule-Based System (FRB) from Support Vector Machine
(SVM). The first set of fuzzy IF-THEN rules is obtained through
an equivalence of the SVM decision network and the zero-ordered
Sugeno FRB type of the Adaptive Network Fuzzy Inference System
(ANFIS). The second set of rules is generated by combining the
first set based on strength of firing signals of support vectors using
Gaussian kernel. The final set of rules is then obtained from the
second set through input scatter partitioning. A distinctive advantage
of our method is the guarantee that the number of final fuzzy IF-
THEN rules is not more than the number of support vectors in the
trained SVM. The final FRB system obtained is capable of performing
classification with results comparable to its SVM counterpart, but it
has an advantage over the black-boxed SVM in that it may reveal
human comprehensible patterns.
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I. INTRODUCTION

RTIFICIAL Neural Networks (ANN) and Support Vector

Machine (SVM) are great tools to approximate functions,
recognize patterns, or predict outcomes [12], [23]; However,
SVM are well accepted to be superior in performance over
ANN in many applications, especially in Optical Character
Recognition [18]. Despite their great performance, they both
suffer from their black-box characteristics [3], [8], [17]. As
a remedy to the problem, rule extraction is needed to make
them white-box.

A limited number of studies of rule extraction from SVM
have been conducted to obtain more understandable rules in
order to explain how a decision was made or why a certain
result was achieved. Much of the motivation for the field of
rule extraction from support vector machines carries over from
the more established area of rule extraction from artificial
neural networks [3], [17].

Techniques used in extracting rules from SVM are both
from the ones created specifically for SVM and the ones used
successfully in other systems but can be applied to SVM. Only
the techniques designed specifically for SVM will be related to
because they are more relevant to our study. Other techniques
can be found elsewhere [14].
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Techniques specifically intended as SVM rule extraction
techniques are based on translucency, which can be either
pedagogical or decompositional, and scope, which can be
either classification or regression. Pedagogical techniques are
those that try to relate inputs with outputs without making use
of system structure, but decompositional techniques do make
use of structure of the system. Classification techniques are
the ones trying to differentiate input patterns, but regression
techniques are trying to approximate function values. Pre-
vious studies on rule extraction techniques for SVM using
decompositional techniques are SVM + Prototype by Nunez
[20], Tree related method by Barakat [4], and Cubes and
separating hyperplane related by Fung [10], while the ones
using pedagogical techniques are Iter by Huysmans [13] and
Minerva also by Huysmans [14].

The technique used in our study is considered decompo-
sitional in translucency and classification in scope. Unlike
others, our technique makes use of strength of firing signal of
support vectors partly similar to the way SVM makes decision.
Moreover, our technique guarantees that the number of final
rules is no more than the number of support vectors obtained
by SVM. We also prove the equivalence of SVM and a type of
fuzzy system to legitimize the fuzzy IF-THEN rules obtained.

II. BACKGROUND

In decompositional techniques, Nunez et al. proposed a
method called SVM + Prototypes [20]. This decompositional
algorithm extracts interval classification rules from a trained
SVM using hypercubes. The SVM + Prototypes algorithm is
an iterative process that starts by training an SVM to obtain
support vectors. It then uses a clustering algorithm to find new
subsets and calculate the prototype (centroid) of each cluster
(in low dimensional space). For each centroid, it finds the
support vector located farthest from the prototype and uses
the prototype as center and the support vector as vertex to
create a hypercube in the input space. Then a partition test
on each of the hypercubes is performed. This partition test
is performed to minimize the level of overlapping between
cubes for which the predicted class is different. If all subsets
are processed, convert all of the current hypercubes into rules.
Ellipsoids can also be used in place of hypercubes. For another
decompositional technigue, decision tree is used by Barakat et
al. [4]. This method makes use of the information provided
by the support vectors and the parameters associated with
them. The approach handles the rule-extraction by first, in a
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learning stage, using labeled patterns to train an SVM and get
an SVM model (classifier) with acceptable accuracy, precision,
and recall. In the second stage of rule generation, the objective
of this stage is to express the concepts learned by the model
in a comprehensible form. The steps are firstly select the
patterns that become support vectors, but discard their class
label, then use the SVM model to predict the class label of
those patterns, hence a special synthetic data set is generated.
Finally the synthetic data set is used to train a machine learning
technique with explanation capability, hence symbolic rules
that represent the concepts learned by the SVM model are
generated. As the last decompositional technique mentioned,
Fung et al. proposed a method which only works when the
input data set is linearly separable [10]. All input data are
transformed into square observations in the interval O to 1.
Then the method searches for a cube with one vertex on
the separating hyperplane and the other located in the region
below the separating hyperplane. Optimal cubes can be found
from these cubes in two ways - volume maximization and
point coverage maximization. The optimal cube divides the
region below the separating hyperplane into two new regions
- region above and on the right hand side of the cube. For
an N-dimensional input space, one rule will create N new
regions. Then a new optimal cube is found recursively for each
new region. The algorithm stops after a predefined maximum
number of iterations.

Iter [13] is the first pedagogical method for SVM rule
extraction mentioned. The main idea of the algorithm is to
iteratively expand a number of hypercubes until they cover
the entire input space. The algorithm starts with the creation
of a user defined number of random starting cubes. These
cubes correspond to points in the input space. In each iteration,
the following steps are executed: firstly, for each hypercube
and for each input dimension, calculate how far the cube
can be expanded to both extremes of the dimension before it
intersects with another cube, call these distances LowerLimit
and UpperLimit. Secondly, for each hypercube and for each
input dimension, calculate the size of the update. The update
equals a user-specified constant, unless this size would result
in overlapping cubes. If this is the case then the update is
smaller such that the two blocks become adjacent. Thirdly,
for each hypercube and for each input dimension, create
two temporary cubes adjacent to the original cube along the
opposite sides of each input dimension with a width of update
value from the second step. For each of both cubes, create a
number of random points lying within the cube and calculate
the mean prediction for these points according to the trained
continuous regression model. Call the difference between each
of both means and the mean prediction for the original cube
respectively LowerDiff and UpperDiff. Lastly find the global
minimum over all cubes of these differences and combine the
temporary cube for which the difference was minimal with its
original cube. Update the mean prediction for this cube and
remove all other temporary cubes. Each of these cubes can
then be converted into a rule of the following form:

IF Var 1 € [ValuelLow ,ValuelHigh] AND Var 2
€ [Value2Low,Value2High] ... AND Var M € [ValueM-
Low,ValueMHigh] THEN predict some Constant

with M the dimension of the input space. Minerva [14] is
another pedagogical method for SVM rule extraction. Minerva
is similar to sequential covering algorithm. The covering algo-
rithm extracts a rule set by learning one rule first, removing the
input data covered by that rule, and iterating on the remainder
of the data. Starting from an empty rule set, the sequential
covering algorithm first looks for a rule that is highly accurate
for predicting a certain class. If the accuracy of this rule is
above a user-defined threshold, the rule is added to the set of
already found rules, and the algorithm is repeated over the rest
of the inputs that were not correctly classified by this rule. If
the accuracy of the rule is below this threshold, the algorithm
ends. Because the rules in the rule set can be overlapping, the
rules are first sorted according to their accuracy on the training
data before they are returned to the user. In Minerva, there
are differences compared to the sequential covering algorithms
above; the most important one is that the rules are required to
be non-overlapping. Another difference is that other sequential
covering algorithms stop if the performance of the rule is
below a certain threshold.

For our technique, we look for unbounded support vectors
which are the data points used as base locations to define sepa-
rating hyperplane (Fig. 1) and use the support vectors obtained
in the previous step to build trained SVM decision network to
classify testing data (Fig. 2). We show that SVM and a type
of FRB, called Adaptive Network Fuzzy Inference System
(ANFIS), are equivalent which means fuzzy IF-THEN rules
can represent SVM decisions without loss of functionality. The
first set of IF-THEN rules has equal sign in antecedent, e.g.,
IF 2 = ¢ THEN y = d, and this form will be called equality
conditional IF-THEN rules. Then many equality conditional
IF-THEN rules can be combined around support vectors based
on firing strength, as part of rule generation, to form our
FRB rules with range signs, e.g., IF £ > c1 AND z < ¢2
THEN y = d, this form will be called range conditional IF-
THEN rules. This second set of rules are modified further by
combining completely coincided ranges among the IF-THEN
conditionals (a process called input scatter partitioning), and
this set of rules is our final set needed.

III. METHOD

A. Finding Unbounded Support Vectors

We use non-linear SVM classifier [2], [6], [7], [19], [23]
in our study because it can handle both linear and non-
linear data sets. We are given an input of () data points
{(Xi,d;)},i=1,...,Q with input data X; € R" and binary
class labels d; € {—1,+1} the SVM classifier satisfies the
following conditions:

W.o(X)+wo > +1— &, d; = +1 (1)

Wo(X)+wo < —1+6&, di=-1 )

where W is weight vector, and the wg is a bias constant
value; the two values are obtained from training the SVM.
The function ®(.) is a non-linear function which maps the
low dimensional input space into high dimensional space. The
d; = +1 means the output is the class we want to identify,
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Fig. 1. Bounded and unbounded support vectors, misclassification vectors,
and separating hyperplane

and the d; = —1 means the output is the other class. The &;
is a slack variable to allow misclassification. The separating
hyperplane, which is the dividing line between the two classes,
is represented by an equation:

W.(X) 4 wo =0 3)

The margin between the two classes (Fig. 1) can be maximized
by minimizing:

L oy @
2 =
subject to
d;[WO(X)+we] —14+& >0, i=1,...,Q (5
§& >0 (6)

Separating hyperplane (W.®(X)+wo = 0) which is used in
main classification decision and formed from two boundaries -
class 1 boundary (W.®(X )+ wo = +1) and class 2 boundary
(W.®(X)+wo = —1) is shown in Fig. 1. Class 1 boundary is
formed from unbounded support vectors of class 1 (circles),
and class 2 boundary is formed from unbounded support
vectors of class 2 (squares). Margin is a distance between
the two boundaries which is equal to W Bounded support
vectors are support vectors which are not on the class boundary
but are closer to the separating hyperplane. Misclassification
vector of class 1 (W.®(X;)+wy > +1-&;) is a vector which is
considered to be class 1 even though it is located at a distance
1—¢; (or less) beyond separating plane into class 2 hyperspace.
Misclassification vector of class 2 (W.®(X;) +wo < —1+&)
is a vector which is considered to be class 2 even though it is
located at a distance 1 — &; (or less) beyond separating plane
into class 1 hyperspace.

The part involving || W ||? in the function maximizes the
margin between the two classes in the feature space while
the part involving C' and &; minimizes the misclassification
error. The positive real constant C' is a penalty parameter for
misclassification. The Lagrangian with primal variables to the
constraint optimization problem is given by

Q
1
Lp(W,wo, A, &, 1) = 3 ials +CZ&'+

Q
Z)\v‘,[di[W‘P(

i=1

)+w0 _1+§7

Z vk (1)

where A = (Ar,...,20) T, A > 0,T = (v1,...,79) T, >0
are the Lagrange multiplier vectors. The solution to the
optimization problem is given by the saddle point of the
Lagrangian where all partial derivatives with respect to W, wy,
and &; go to zero. The Karush-Kuhn-Tucker complementary
conditions,

Aildi(W.(X;) +wo) —14+&] =0, i=1,...,Q (¥

must also be satisfied.
This gives dual form of (7)'

Z Ai — Z Z AiXjdid; (
i=1 j=1
where (®(X;).®(X;)) = K(X;, X;) is called kernel function.
The kernel function must satisfy Mercers Condition which
is an existence of a mapping ®(X) and an expansion of a
symmetric kernel function,

X;).2(X;)) )

K(X;, X;5) =) (®(X,).9(X;)) (10)
iff '
/ K(Xi, X,)9(X:)g(X;)dX;dX; > 0 (11
For all g(X) such that
/gQ(X)dz < 0 (12)

There are a few kernel functions which satisfy Mercers
Condition. In this study, we use Gaussian kernel because it
will make the creation of equivalent fuzzy rule-based system
possible, and it has been proved to satisfy Mercers Condition.

To get support vectors, we need to maximize (9) subject to:

Q
> Nidi =0 (13)
=1

0< )\ <C, i=1,...,Q (14)

Any input vector with non-zero Lagrange multiplier is a
support vector.

There are two kinds of support vectors bounded and un-
bounded (Fig. 1). The unbounded support vectors are the ones
used for defining the separating hyperplane. These unbounded
support vectors guarantee maximal margin between the two
classes; in terms of calculations, they have Lagrange multi-
pliers greater than zero but less than the penalty parameter
C(X\; > 0, < C). The bounded support vectors are the ones
closer to the separating hyperplane than the unbounded support
vectors, so these vectors geometrically bound the two classes;
they have Lagrange multipliers equal to the penalty parameter
In this study, we only need the unbounded support vectors
because they are the ones defining the separating hyperplane,
and the unbounded support vectors from one side of the
separating hyperplane for the class being identified will be
used for generating fuzzy IF-THEN rules.

One last parameter we need before reaching our final
classifier equation is:

1 1
wy = —Z(d—k - W.Xx) (15)
k=1
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Fig. 2. An example of SVM decision network structure

K(X,XN)-Wy

where m = number of unbounded support vectors and

N

W = Z Ao X5 (16)
k=1

where N = number of all support vectors
We can now get the final classifier:

N
y(X) = sign()_ diXi K (X, X;) + wo) a7
i=1
where X, = unbounded support vector
This final equation will be used in the next step.

B. Constructing Trained SVM Decision Network

Equation (17) can be used to construct a trained SVM
decision network. We will create FRB in the next step to
be functionally equivalent to this SVM decision network to
make it legitimate that IF-THEN rules can represent SVM
decisions. Graphical representation of trained SVM decision
network, which can be used to classify input data, is shown
in Fig. 2.

C. Building Functionally Equivalent FRB from Trained SVM

The purpose of this part is to transform SVM decision
network into fuzzy IF-THEN rules, but before we do that,
we will make it legitimate that SVM decision network can be
transformed into IF-THEN rules without loss in functionality
by a formal proof of the functional equivalence between SVM
decision network and a simplified class of fuzzy inference
systems [15], [16].

1) Fuzzy IF-THEN Rules and Fuzzy Inference System Func-
tions: Fuzzy Rule-Based System (FRB) is a system which
contains IF-THEN rules [16], [22]. FRB is a fuzzy system
which is characterized by having language component easily
related to by human. The IF part contains antecedent (con-
dition), and the THEN part contains consequent (outcome).
The rule-based form uses linguistic variables as its antecedents
and consequents. The antecedents express an inference or the
inequality, which should be satisfied. The consequents are
those, which we can infer, and is the output if the antecedent

Layer 1
v

/ 1 \Layer 2
X\
2
t
Adaptive Node

Output Layer

(- OF

leed Node
leed Node

Input Layer

Fig. 3.  An example of adaptive network with layers of functional nodes
interconnected. Squares represent dynamic functional nodes, and circles
represent fixed functional nodes.

is satisfied. The fuzzy rule-based system uses IF-THEN rule-
based system, given by, IF antecedent, THEN consequent.
Each IF-THEN statement is a rule. An FRB usually contains
many rules.

There are two well-known types of fuzzy inference method.
Mamdanis fuzzy inference method is the most commonly seen
inference method; it was developed by Mamdani in 1975 [18].
Another inference method is Takagi-Sugeno method of fuzzy
inference process (TS method); this method was introduced
by Sugeno in1985 [16]. The main difference between the two
methods is in the consequent. Mamdani fuzzy systems use
fuzzy sets as rule consequent while TS fuzzy systems use
linear functions of input variables as rule consequent. Sugeno
type system can be further divided into zero-ordered and first-
ordered type. The zero-ordered type contains only constant
in its consequent, but the first-ordered type contains linear
equation with variables from the antecedent part.

There is a layered network system called Adaptive Network-
Based Fuzzy Inference System (ANFIS) [16] which can be
made functionally equivalent to ANN. ANFIS is based on
Adaptive Network (Fig. 3) which contains layers of functional
nodes with connectors; square nodes are dynamic nodes which
depend on node parameters, and circle nodes are fixed nodes
which have empty set of parameters. We can obtain fuzzy IF-
THEN rules from the ANFIS which is derived from ANN. In
this study, instead of making ANFIS equivalent to ANN, we
make the ANFIS equivalent to SVM.

Fuzzy inference system is composed of a set of fuzzy IF-
THEN rules, a database containing membership functions of
linguistic labels, and an inference mechanism called fuzzy
reasoning. Only TS FRB will be shown to be equivalent to
SVM using the following model as an illustration.

Suppose we have a rule base consisting of two fuzzy IF-
THEN rules of TS type:

Rule 1: If 21 is A; and x4 is By then f; = a1x1 +bi1xa 41

Rule 1: If &1 is As and x4 is By then f; = asxy +boxo+co

Then the fuzzy reasoning mechanism can be illustrated in
Fig. 4 where the firing strength of ith rule is obtained as the
T-norm (usually minimum or multiplication operator) of the
membership values on the premise part. In our case, we only
use multiplication operator in T-norm step. Strength after T-
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Fig. 4. An example of ANFIS equivalent to SVM, which uses Gaussian
kernel function with two input vectors

norm with multiplication operator is:
M; = pa,(X1)ps, (X2) (18)

Note that overall output can be chosen as the weighted sum
of each rules output:

R
FX)=> Miw; (19)
i=1

where R is the number of fuzzy IF-THEN rules. And the
decision equation is:

y(X) = sign(f(X) +b) (20)

In summary, layer 1 calculates membership values, layer
2 performs T-norm operation, layer 3 derives the product of
each rule’s output and corresponding normalized weight, layer
4 sums its inputs to form the overall output, and layer 5 makes
a decision by using signum function. The layer structure of this
FRB is the form of ANFIS mentioned earlier.

2) Required Conditions for Functional Equivalence: The
functional equivalence between a trained SVM decision net-
work (Fig. 2) and ANFIS (Fig. 4) can be established if the
following are true:

¢ The number of input patterns is equal to the number of
fuzzy IF-THEN rules.

o The output of each fuzzy IF-THEN rule is composed of
a constant.

o The membership functions within each rule are chosen
as Gaussian functions with the same variance.

o The T-norm operator used to compute each rules firing
strength is multiplication.

« Both the SVM decision network and the fuzzy inference
system under consideration use the weighted sum method
to derive their overall outputs.

3) Proof of functional equivalence between SVM decision
network and ANFIS: Firstly functions in SVM decision net-
work are stated:

Let P be a set of functions: P = {f1, fo, f3, fa}

Let X be a set of input vectors:

X = {X1, X2, X3,...,X,,} where n is the total number of
input vectors

Let S be a set of unbounded support vectors:

S = {51,52,55,...,Snv} where N is the total number of

unbounded support vectors
Let f1(z,y) be Gaussian kernel function; we obtain
(I X =5 1)*)

o2

f1(X, 8;) = exp , i=1,...,N (2D

Let fo(z,y) be multiplication function; we obtain
f2(f1(X, 8i),wi) = wi- fr(X, S;) (22)

Let f3(z) = Y1, 2, we obtain

f3(X) :Zfzi(X) (23)

Let f4(z) = sign(z + a), we obtain

fa=sign(fs +a) (24)

Let y be the output; we obtain

y = fa(f3(f2(f1(X,5:)))) = fao fzo fao f1(X,Si) (25)

Secondly functions in ANFIS are stated.
Let @ be a set of functions in ANFIS: Q = {g1, g2, 93,94}
Let X be a set of input vectors:
X ={X1,Xs,Xs,...,X,} where n is the total number of
input vectors
Let S be a set of unbounded support vectors:
S = {51,952,55,...,Snv} where N is the total number of
unbounded support vectors
Let g1 (X, S;) be Gaussian membership function with T-norm

operation
—(z1—ca,)?
pa, (z1) = exp {(172‘4)} (26)
01
where (4, (x1) is membership function
M; = pa,(21)ps, (22) 27
where M; is result of T-norm operation at ¢
We obtain

—(I x-S )?

gl(Xvst):&Tp|: 2 :|7 ZzlaaN (28)
g

Let go(x,y) be multiplication function; we obtain
92(g1(X, 53), w;) = wi.g1(X, S;) (29)

Let g3(x) = Y I, #;, we obtain

N
93(X) = Z g, (X) (30)

Let g4(z) = sign(z + a), we obtain
9a = sign(gs + a) @D
Let z be the output; we obtain
z = g4(93(92(91(X, 5:)))) = g1 0 gs 0 g2 0 g1(X, 5;) (32)

Proof: Since f1 = g1, f2 = g2, f3 = ¢3, and f4 = ¢4,
then y = z, and X and Si are the same input in both systems;
therefore, the two systems are functionally equivalent. ]
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Fig. 5. Rules generation algorithm based on kernel firing strength

4) Equality Conditional IF-THEN Rules: An example of
the equality conditional IF-THEN rules (Fig. 4) which is
equivalent to SVM is in the form:

IF xr1 = ay AND Ty = b1 THEN Yy = d1
IF T = ay AND To = b2 THEN Yy = d2

More generally, the equality conditional IF-THEN state-
ments are in the following form:
If 11 = ail AND T12 = A12 AND ..
If To1 = A21 AND Tog = A22 AND ..
If I31 — asy AND T3 = A32 AND ..

.T1p = a1, theny = vy
. Tan = Qg theny = vy
. T3y = a3p then y = vg

If rQ1 = aQi AND TQ2 = aQ2 AND ...
Y=

where a;; are constants in R, v; are binary values [—1,1]
signifying the two classes equivalent to SVM classification,
x;; are n dimensional input data, and () is total number of
input data patterns in the dataset.

TQn = AQn then

D. Rules Generation Based on Firing Strength

The purpose of this step is to generate preliminary rules
based on the strongest firing signals associated with un-
bounded support vectors in high dimensional space.

In Fig. 5, all input patterns are entered into system one at
a time. Gaussian kernel function as a membership function
is calculated between current input and each of the support
vectors, and the highest value is considered the strongest signal
which will be the only one fired, and the rest will be ignored.
The fired row then stores cumulative min and max value which
will be replaced by new min or new max if it occurs. After all
input patterns have been entered, min and max values in each
row will be used as a range in conditional of each IF-THEN
rule.

Schematic diagram of ANFIS implementing rule generation
from unbounded support vectors found from previous step is
shown in Fig. 5; X is input vector, and A; is Gaussian kernel
function of unbounded support vector and input vector.

The final min and max values of each row are used as
a range of the newly generated IF-THEN rules. The range
conditional IF-THEN statements are in the form:

Rule 1: If (1'11 > ail— AND T11 < a11+)
AND (LL'IQ > a19— AND T19 < a12+) AND ~-(~T1n >

a1n— AND z1, < a1p4+) THEN y = vy
Rule 2: If ((L‘gl > asi— AND T21 < (121+)
AND (IQQ > Q99— AND Tog < a22+) AND ..(l’gn >
aon— AND z9, < agns) THEN y = vy

Rule 3: If ($31 > asj— AND r31 < CL31+)
AND ($32 > azs— AND 32 < CL32+) AND ..({l}3n >
azn— AND z3, < agps) THEN y = vg

Rule N: If (le > an1-— AND rn1 < aN1+)
AND (iL'NQ > ana— AND N9 <aN2+) AND (an >

ANnp— AND TNn < aNn+) THEN Yy = UN

where a;;_ are lower range values (cumulative min) and a;;
are upper range values (cumulative max) in R. N is the total
number of unbounded support vectors, and n is the dimension
of input vectors.

E. Input Scatter Partitioning

The purpose of this step is to reduce generated rules
and refine rule extraction in low dimensional space. We
can combine many range conditional IF-THEN statements
from previous step together as long as it does not cause
misclassification. Algorithms pseudo code for input scatter
partitioning is:

[Pre-loop condition: Total number of IF-THEN rules equal
to total number of support vectors]
FORi=1TON
[N = total number of generated rules]
IF rule i was eliminated THEN NEXT i
DO WHILE (no class overlap from another class)
or (maximum value or minimum value of the input data set
reached)
Expand ranges of IF-THEN conditional at i by a
small value (less than 10% of min value of an attribute)
IF there is class overlap GOTO END WHILE
END IF
END WHILE
END IF
NEXT i
FORi=1TON
DO WHILE (there are still rules to merge for this i)
IF two ranges coincide then merge the two rules by
retaining the larger ranges
END IF
END WHILE
NEXT i
[Post-loop condition: Number of IF-THEN rules are the same
or less than rules in pre-condition]

We can use set membership symbol in place of greater than
and less than signs as our final form of rules.
IF z1; € [67,11,, CL11+] AND x5 € [alg,, a12+] AND
.. T1n € [@1p—, a1nt] THEN y = vy

IV. EXPERIMENTAL RESULTS

We perform classification using both SVM and our fuzzy
IF-THEN rules on five benchmark data sets which can
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TABLE I
COMPARISON OF ERRORS FROM SVM AND RULES

Data Characteristics SVM Rules

Data | N* [ CP | Type | Auc | USV | %Er? | Rules | %Er

Iris 150 3 R 4 37.07 2.89 7.27 6.22

Wine | 178 3 R 13 157.57 | 14.04 | 52.53 8.99

Wisc | 699 2 It 10 300.6 5.27 67.5 4.83

Haber | 306 2 1 4 105.7 29.08 63.7 | 46.41

Tonos | 351 2 LR 34 278.0 | 37.04 | 1654 | 6.84

@ Number of instances
b Number of classes

¢ Number of attributes
d Percent errors

€ Real

f Integer

be downloaded from UCI Machine Learning Repository at
http://www.ics.uci.edu; the five data sets are Iris [9], Wine [1],
Wisconsin Breast Cancer [24], Habermans Survival Data [11],
and Ionosphere [21]. These data sets are chosen to represent
different number of instances, number of classes, input data
type, and number of attributes. Ten-fold cross validation tech-
nique [5] is used in each data set. Data Characteristics are data
set name (Data), number of instances (N), number of classes
(C), data type (Type) which can be integer (I) or real (R),
and number of attributes (Att). Results from each data set are
average number of unsigned support vectors (USV), average
percent error from SVM, average number of rules from our
method, and average percent error from our method, and the
classification results are shown in Table I. SVM performs
classification with less error in Iris and Haberman (Haber) data
sets than our method, but our method performs better in Wine,
Wisconsin Breast Cancer (Wisc), and Ionosphere (Ionos) data
sets. Average number of rules in each data set is lower than
number of unsigned support vectors as claimed by our method.
The main reason why percent errors in SVM are different
from our method is because of the noise (misclassification
vectors) in the input data. SVM makes use of USV from
both class 1 and class 2 (see Fig. 1) to make classification
decisions, but our method uses only USV from class 1. If
there is more misclassification vectors in class 1 region in
hyperspace, our method performs worse than SVM. But if
there is more misclassification vectors in class 2 region in
hyperspace, SVM performs worse than our method.

V. CONCLUSION

The proposed method is shown to be a good alternative
method for rule extraction from SVM and has an advantage
over the decision method of SVM by revealing reasons behind
the decision. And this makes it more attractive to be used in
classification or prediction whenever we want to have insight
into the way classification decision is made. The results of our
experiments have shown that our method can outperform SVM
decisions in some data sets, but most percent errors of the
two methods are not far apart. It can be stated that the results
of the errors from the two methods are comparable. Another
advantage of our method compared to others is the guarantee
that the number of rules in the final set will not exceed the
number of support vectors. One of the suggestions for future

study would be to use clustering algorithm in high noise data
sets. In data sets with high noise, performance of IF-THEN
rules by our algorithm may not perform well in classification.
Also if there are large number of input data, scalability will
suffer. K means clustering may be used in these cases to handle
noisy data and also help scalability. After k means clustering
is run, our algorithm can be implemented to obtain IF-THEN
rules from SVM. Another suggestion for future study would
be a modification of our method to handle data sets with a
categorical data type. Logical AND operator can be used in
the antecedents of IF-THEN statements to handle this kind of
data.
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