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Abstract—A new deployment of the multiple criteria decision 

making (MCDM) techniques: the Simple Additive Weighting 
(SAW), and the Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) for portfolio allocation, is demonstrated in 
this paper. Rather than exclusive reference to mean and variance as in 
the traditional mean-variance method, the criteria used in this 
demonstration are the first four moments of the portfolio distribution. 
Each asset is evaluated based on its marginal impacts to portfolio 
higher moments that are characterized by trapezoidal fuzzy numbers. 
Then centroid-based defuzzification is applied to convert fuzzy 
numbers to the crisp numbers by which SAW and TOPSIS can be 
deployed. Experimental results suggest the similar efficiency of these 
MCDM approaches to selecting dominant assets for an optimal 
portfolio under higher moments. The proposed approaches allow 
investors flexibly adjust their risk preferences regarding higher 
moments via different schemes adapting to various (from 
conservative to risky) kinds of investors. The other significant 
advantage is that, compared to the mean-variance analysis, the 
portfolio weights obtained by SAW and TOPSIS are consistently 
well-diversified. 

 
Keywords—Fuzzy numbers, SAW, TOPSIS, portfolio 

optimization, higher moments, risk management.  

I. INTRODUCTION 
ORTFOLIO selection theory is focused upon analysis of 
the performance of particular assets such that the risk of 

loss in holding or selling can be identified, so enabling an 
investor to implement a preferred strategy (e.g. lower risk, 
high return). Among the methods devised for this kind of 
performance analysis that of Markowitz [1] has been much 
used. Known as the standard mean variance optimization 
(MVO), it utilizes the mean and (co)variance of asset returns. 
Thus an investor/portfolio manager can take care not only of 
the realized returns, but also of the risk represented by the 
standard deviation of portfolio returns. However, given the 
non-Gaussian nature of the distribution of asset returns, 
researchers have questioned the adequacy of the mean-
variance criteria. Thus emerges the impetus for using the same 
data to investigate higher moments.  

Regardless of what criteria are chosen to evaluate the 
asset’s performance, portfolio selection must be solved by 
optimization models. Numerous decision support approaches 
have been proposed to deal with optimization problems in 
multiple criteria circumstances. Typical methods that are 
widely used in multiple criteria decision making (MCDM) 
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situations are Simple Additive Weighting (SAW) and 
Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS). The SAW and TOPSIS methods introduced by 
Hwang & Yoon [2] are probably the best known and very 
widely used methods of classical MCDM. The significant 
advantage in terms of rank reversals of SAW compared to 
other MCDM methods is highlighted in [3]. Chang and Yeh 
[4] in evaluating airline competitiveness using MCDM 
methods also confirmed the superiority of SAW due to its 
simplicity. Recent extensions of SAW have been developed 
under the fuzzy environment as reported in [5,6]. On the other 
hand, TOPSIS seems to be applied more widely in literature. 
Its applications involve a broad range of decision making such 
as planning, resource allocation or alternative selection. For 
example, Bottani and Rizzi [7] presented a framework based 
on TOPSIS and fuzzy set theory to evaluate and select the 
most appropriate third party logistics service provider. Shih et 
al. [8] extended TOPSIS for group decision making which is 
rather simple to use and meaningful for aggregation. A 
TOPSIS approach to solving large-scale multiple objective 
programming problems involving fuzzy parameters was 
deployed in Abo-Sinna and Abou-El-Enien [9]. Jahanshahloo 
et al. [10] suggested an advanced TOPSIS method to deal with 
interval data and then applied it to find the best place for 
creating a factory. Based on direct definitions in consequence 
space, Chen et al. [11] proposed a new approach to setting 
ideal and anti-ideal points that can be integrated into the 
TOPSIS method. The method is also able to handle non-
monotonic as well as monotonic criteria in a unified 
framework. Additionally, fuzzy TOPSIS is utilized in [12] to 
aggregate scores for all potential locations in order to select 
the best place for implementing an urban distribution centre.  

As yet, very few applications of the MCDM methods in the 
portfolio allocation have been available in the literature. The 
major challenge is in evaluating alternatives where expert 
judgments BASED on qualitative criteria might fluctuate. In a 
different approach to portfolio allocation, this paper presents 
an exploitation of quantitative factors, i.e. higher order 
moments, in terms of marginal impacts (contributions) of 
individual assets on the whole portfolio. These marginal 
impacts are modelled by trapezoidal fuzzy numbers and their 
centroids are applied in evaluating individual assets under 
implementation of MCMD methods, i.e. SAW and TOPSIS, 
for optimal portfolios. The following section presents 
motivation and formulas of higher order moment theory in 
portfolio selection. Details of modelling marginal impacts by 
fuzzy numbers and the associated evaluating methods are 
addressed in Section III. Section IV outlines the SAW and 
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TOPSIS methods and their applications for portfolio 
allocation. Illustrative examples are presented in Section V 
with comparisons to the standard MVO, followed by the 
conclusion.  

II.   HIGHER MOMENT PREFERENCES AND MARGINAL IMPACTS 
VIA EXPECTED UTILITY 

To measure the effect of higher moments on the asset 
allocation, it is necessary to consider a standard expected 
utility ܷሺܹሻ of an investor over the terminal wealth ܹ. Let 
ܴ ൌ ሺܴଵ, … , ܴ௡ሻ′  be the vector of rates of return of ݊ risky 
assets, ߤ ൌ ሾܴሿܧ ൌ ሺߤଵ, … ,  ,௡ሻ′  the expected return vectorߤ
ݓ ൌ ሺݓଵ, … ,  ௡ሻ′  the weight vector representing proportionݓ
of wealth allocated to various assets, and thus the terminal 
wealth is given by ܹ ൌ ሺ1 ൅ ݎ௣ሻ where ݎ௣ ൌ  In order to .ܴ′ݓ
approximate the expected utility, the infinite Taylor series of 
the utility function is deployed  

 

ܷሺܹሻ ൌ ∑ ௎ሺೖሻ൫ாሺௐሻ൯
௞!

ሺܹ െ ∞ሺܹሻሻ௞ܧ
௞ୀ଴   (1) 

 
The expected utility is derived by applying the expectation 

operator to the above equation  
 

ሾܷሺܹሻሿܧ ൌ ܧ ൤∑ ௎ሺೖሻ൫ாሺௐሻ൯
௞!

ሺܹ െ ∞ሺܹሻሻ௞ܧ
௞ୀ଴ ൨ ൌ

∑ ௎ሺೖሻ൫ாሺௐሻ൯
௞!

ሾሺܹܧ െ ∞ሺܹሻሻ௞ሿܧ
௞ୀ଴   

(2) 

 
Clearly, the expected utility from an investment in risky 

assets depends on all central moments of the distribution of 
the terminal wealth. The infinite Taylor expansion is a 
solution for the expected utility but, is not possible for 
numerical implementations. A truncation on the first ݇ orders 
of the infinite Taylor series is a reasonable approximation of 
the expected utility. We set out the fourth-order Taylor 
expansion (݇ ൌ 4) that extends the conventional mean-
variance method by including skewness and kurtosis aiming at 
a better approximation of the expected utility.  

 

ሾܷሺܹሻሿܧ ൎ ܷ൫ܧሺܹሻ൯ ൅
1
2!

ܷሺଶሻ൫ܧሺܹሻ൯ߤሺଶሻ

൅
1
3! ܷሺଷሻ൫ܧሺܹሻ൯ߤሺଷሻ

൅
1
4! ܷሺସሻ൫ܧሺܹሻ൯ߤሺସሻ 

(3) 

 
where ߤሺ௡ሻ is the nth-order centered moment ߤሺ௡ሻ ൌ
൫൫ܹܧ െ  ሺܹሻ൯௡൯ܧ

Formulae of portfolio expected return, variance, skewness 
and kurtosis are defined: 

 
௣ߤ ൌ ௣൧ݎൣܧ ൌ  (4) ߤ′ݓ

௣ߪ
ଶ ൌ ௣ݎሺൣܧ െ ௣ሻଶ൧ߤ ൌ ሾሺܹܧ െ  ሺܹሻሻଶሿ (5)ܧ

௣ݏ
ଷ ൌ ௣ݎሺൣܧ െ ௣ሻଷ൧ߤ ൌ ሾሺܹܧ െ  ሺܹሻሻଷሿ (6)ܧ

κ௣
ସ ൌ ௣ݎሺൣܧ െ ௣ሻସ൧ߤ ൌ ሾሺܹܧ െ  ሺܹሻሻସሿ (7)ܧ

 
Then,  
 

ሾܷሺܹሻሿܧ ൎ ܷ൫ܧሺܹሻ൯ ൅
1
2! ܷሺଶሻ൫ܧሺܹሻ൯ߪ௣

ଶ

൅
1
3!

ܷሺଷሻ൫ܧሺܹሻ൯ݏ௣
ଷ

൅
1
4! ܷሺସሻ൫ܧሺܹሻ൯κ௣

ସ  

(8) 

 
The brief co-moment matrix-based presentation of the 

portfolio return, variance, skewness and kurtosis introduced in 
[13,14] are adopted herein.   
Define the ሺ݊, ݊ሻ co-variance matrix as  

 

ଶܯ ൌ ሾሺܴܧ െ ሻሺܴߤ െ ሻ′ሿߤ ൌ ൛ߪ௜௝ൟ (9) 

 
The ሺ݊, ݊ଶሻ co-skewness matrix  
 

ଷܯ ൌ ሾሺܴܧ െ ሻሺܴߤ െ ′ሻߤ ۪ ሺܴ െ ሻ′ሿߤ ൌ ൛ݏ௜௝௞ൟ (10) 

 
The ሺ݊, ݊ଷሻ co-kurtosis matrix  
 

ସܯ ൌ ሾሺܴܧ െ ሻሺܴߤ െ ′ሻߤ ۪ ሺܴ െ ሻ′ ۪ ሺܴߤ െ ሻ′ሿߤ

ൌ ൛κ௜௝௞௟ൟ 

(11) 

 

 
where  ۪  stands for the Kronecker product, ߪ௜௝, ݏ௜௝௞ and ߢ௜௝௞௟ 
are elements of the co-variance, co-skewness and co-kurtosis 
matrices respectively.  
In detail:  

௜௝ߪ ൌ ሺܴ௜ൣܧ െ ௜ሻሺߤ ௝ܴ െ ,݅  ௝ሻ൧  whereߤ ݆ ൌ 1, … , ݊ 
(12) 

 

௜௝௞ݏ ൌ ሺܴ௜ൣܧ െ ௜ሻሺߤ ௝ܴ െ ௝ሻሺܴ௞ߤ െ   ௞ሻ൧ whereߤ

݅, ݆, ݇ ൌ 1, … , ݊ 

(13) 

 

 

κ௜௝௞௟ ൌ ሺܴ௜ൣܧ െ ௜ሻሺߤ ௝ܴ െ ௝ሻሺܴ௞ߤ െ ௞ሻሺܴ௟ߤ െ  ௟ሻ൧ߤ
where  ݅, ݆, ݇, ݈ ൌ 1, … , ݊ 
 

(14) 

Because of the symmetric property, not all of the elements 
of these matrices need to be computed. For instance, in case of 
the ሺ݊, ݊ሻ co-variance matrix, only ݊ሺ݊ ൅ 1ሻ/2 elements have 
to be computed. Similarly the ሺ݊, ݊ଶሻ co-skewness matrix 
requires ݊ሺ݊ ൅ 1ሻሺ݊ ൅ 2ሻ/6 different elements, and the 
ሺ݊, ݊ଷሻ co-kurtosis matrix needs ݊ሺ݊ ൅ 1ሻሺ݊ ൅ 2ሻሺ݊ ൅ 3ሻ/24 
different elements.  
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Given a portfolio weight vector ݓ, the moments of the 
portfolio return: expected return, variance, skewness and 
kurtosis of the portfolio are now respectively computed as 
follows:  

 
௣ߤ ൌ ∑ ௜ߤ௜ݓ

௡
௜ୀଵ ൌ  (15)  ߤ′ݓ

௣ߪ
ଶ ൌ ∑ ∑ ௜௝ߪ௝ݓ௜ݓ

௡
௝ୀଵ

௡
௜ୀଵ ൌ  (16)  ݓଶܯ′ݓ

௣ݏ
ଷ ൌ ∑ ∑ ∑ ௜௝௞ݏ௞ݓ௝ݓ௜ݓ

௡
௞ୀଵ

௡
௝ୀଵ

௡
௜ୀଵ ൌ  ሻ  (17)ݓ ۪ ݓଷሺܯ′ݓ

κ௣
ସ ൌ ∑ ∑ ∑ ∑ ௜௝௞௟ߢ௟ݓ௞ݓ௝ݓ௜ݓ

௡
௟ୀଵ

௡
௞ୀଵ

௡
௝ୀଵ

௡
௜ୀଵ ൌ

  ሻݓ ۪ ݓ ۪ ݓସሺܯ′ݓ
(18) 

 
The partial derivatives with respect to the weight vector ݓ 

are:  
 

௣ߤ߲

ݓ߲
ൌ  ߤ

(19) 

 

௣ߤ߲
ଶ

ݓ߲
ൌ  ݓଶܯ2

(20) 

 

௣ݏ߲
ଷ

ݓ߲
ൌ  ሻݓ ۪ ݓଷሺܯ3

(21) 

 

߲κ௣
ସ

ݓ߲
ൌ  ሻݓ ۪ ݓ ۪ ݓସሺܯ4

(22) 

 

Note that expressions on the right hand side of the above 
partial derivatives are ݊ ൈ 1 vectors where their ݊ elements 
are correspondent to the ݊ asset classes. Conventionally, 
marginal impact of an asset is measured by the partial 
derivative of the portfolio higher moment with respect to the 
asset holding. Accordingly, the marginal contribution of asset 
݅ to the portfolio return, variance, skewness, and kurtosis is the 
݅-th element of these partial derivative vectors, (19)-(22), 
respectively. Marginal contribution expresses how much the 
portfolio higher moments will change with respect to a small 
change of the weight of an asset. The asset with higher 
marginal impact will have more influence to the overall 
portfolio compared to the others.  

With regard to the return criterion, the contribution of a 
given asset ݅ to the whole portfolio return is obviously its 
expected return ߤ௜. However it is not straightforward with the 
portfolio variance, skewness or kurtosis: the marginal 
contribution of a given asset is not decreased (increased) to its 
own variance, kurtosis (skewness) but also takes account of its 
diversification potential in terms of co-variances, co-kurtosis 
(co-skewness) to other assets. This is an explanation against 
the possible argument that the evaluations of assets can be 
solely based on their own higher moments. Take an example 
of the portfolio’s variance:  

 
௣ߪ

ଶ ൌ ݓଶܯ′ݓ ൌ ∑ ∑ ௜௝ߪ௝ݓ௜ݓ
௡
௝ୀଵ

௡
௜ୀଵ ൌ ∑ ௜ݓ

ଶߪ௜
ଶ௡

௜ୀଵ ൅

2 ∑ ∑ ௜௝ߪ௝ݓ௜ݓ
௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ   

(23) 

The latter component of the above two-component 
decomposition relation represents the diversification effect of 
the overall portfolio variance. Manifestly, the portfolio 
variance encompasses not only the variance of individual 
assets but also takes into account the co-variance between 
assets. The partial derivative with respect to weight ݓ௜ of asset 
݅ is:  

 
డఓ೛

మ

డ௪೔
ൌ 2 ∑ ௜௝ߪ௝ݓ

௡
௝ୀଵ   (24) 

 
The above equation shows the variance marginal 

contribution of the asset ݅ to the whole portfolio variance. The 
 ௜௝ factor can be realized from historical or simulation data butߪ
the ݓ௝ factor is still unknown in this stage of the allocation 
process. The same situation exists for skewness and kurtosis 
since their marginal impacts also involve the unknown 
portfolio weight vector (22-21) ݓ. For that reason estimates of 
the marginal impacts are required in evaluating performance 
of different assets.   

Recall the two constraints imposed on the portfolio weights 
∑ ௜ݓ ൌ 1௡

௜ୀଵ  and ݓ௜ ൒ 0,  it is uncomplicated to find the ,݅׊
minimum and maximum portfolio variance, skewness and 
kurtosis using constrained optimization solvers. The functions 
of the portfolio variance, skewness and kurtosis, presented in 
(16)-(18), are derivative continuous multivariate functions 
with the second, third, and fourth orders respectively. The 
number of variables in these functions is in proportion to the 
number of assets in the portfolio. From minimum and 
maximum solutions, the portfolio weight vectors ݓ ൌ
ሺݓଵ, … ,  .௡ሻ′  will be exposed. For each of the criteria, i.eݓ
variance, skewness and kurtosis, two weight vectors related to 
minimum and maximum circumstances will be obtained. 
Whenever a weight vector ݓ is known, marginal contributions 
of assets on the portfolio will be calculated by expressions on 
the right hand side of formulae (19)-(22). As a result, given a 
criterion, we will obtain marginal impacts of any assets in both 
minimum and maximum extremes. The marginal impacts of 
each asset in extreme cases can be obtained but the exact 
contribution of an asset on the portfolio higher moments is 
uncertain before the allocation process is accomplished 
(before choosing ݓ). This problem is addressed using fuzzy 
numbers. The following section presents relevant fuzzy 
concepts and how to model these marginal contributions by 
fuzzy numbers. 

III. FUZZY MODELLING MARGINAL CONTRIBUTIONS 

A. Relevant Fuzzy Set Concepts and Notions  
Standard fuzzy sets along with their basic characteristics 

were first coined by Zadeh [15]. Accordingly, a standard fuzzy 
set ܣ is defined by a membership function ஺݂ሺݔሻ mapping 
from a universal set of concern ܺ to a range from 0 to 1: 

஺݂ሺݔሻ: ܺ ՜ ሾ0, 1ሿ. For each ݔ א ܺ, the value of ஺݂ሺݔሻ 
expresses the degree (or grade) of membership of the element 
  .ܣ of ܺ in standard fuzzy set ݔ
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α-cut is one of the most important concepts of fuzzy sets. 
Given a particular number ߙ א ሾ0, 1ሿ and a fuzzy set ܣ defined 
on ܺ, the α-cut of ܣ, denoted by ܣఈ , is a crisp set 
encompassing elements of ܺ satisfying: ܣఈ ൌ ሼݔ| ஺݂ሺݔሻ ൒   .ሽߙ

Support and core of ܣ are crisp sets respectively defined by 
଴ାܣ  and ܣଵ  is called normal fuzzy set when its core is not ܣ .

empty, otherwise it is called sub-normal.  
A fuzzy interval or fuzzy number is a special fuzzy set 

defined on the set of real numbers, Թ. A fuzzy number ܣ is 
characterized for each ݔ א Թ by the canonical form:  

 

஺݂ሺݔሻ ൌ ൞
஺݂
௅ሺݔሻ,

߱,
஺݂
ோሺݔሻ,

0

ܽ ൑ ݔ ൑ ܾ,
ܾ ൑ ݔ ൑ ܿ,
ܿ ൑ ݔ ൑ ݀,
otherwise

  (25) 

 
where ߱ א ሺ0, 1ሿ is a constant, ܽ, ܾ, ܿ, ݀ א Թ, ܽ ൑ ܾ ൑ ܿ ൑ ݀, 

஺݂
௅: ሾܽ, ܾሿ ՜ ሾ0, ߱ሿ is a increasing real-valued function 

whereas ஺݂
ோ: ሾܿ, ݀ሿ ՜ ሾ0, ߱ሿ is a real-valued decreasing 

function. ܣ is a normal fuzzy number if ߱ ൌ 1, otherwise it is 
a non-normal fuzzy number. The most widely used are normal 
trapezoidal fuzzy numbers denoted by ܣ ൌ ሺܽ, ܾ, ܿ, ݀ሻ whose 
membership functions are piecewise linear  
 

஺݂ሺݔሻ ൌ ൞

ሺݔ െ ܽሻ ሺܾ െ ܽሻ⁄ ,
1,
ሺ݀ െ ሻݔ ሺ݀ െ ܿሻ⁄ ,
0

ܽ ൑ ݔ ൑ ܾ,
ܾ ൑ ݔ ൑ ܿ,
ܿ ൑ ݔ ൑ ݀,
otherwise

 (26) 

B. Modelling Marginal Impacts by Fuzzy Numbers 
As with Scott and Horvath [16], investors’ expected utility 

depends positively on return and skewness and negatively on 
variance and kurtosis. The rational investor accordingly would 
prefer higher portfolio skewness but lower variance and 
kurtosis. We try to allocate the portfolio wealth to satisfy or at 

least nearly satisfy the investor’s preference or utility. The 
portfolio weight vector should bring the investor an acceptable 
result in accordance with his/her expectation: maximum (as 
high as possible) skewness and minimum (as low as possible) 
variance and kurtosis. Hence, it is logical to design fuzzy 
numbers representing variance contributions of assets based 
mainly on their marginal contributions when the portfolio 
variance attains minimum. Similarly, contributions of assets 
with respect to the skewness (kurtosis) criterion will be 
characterized by fuzzy numbers that are designed towards 
skewness (kurtosis) marginal contributions in the maximum 
(minimum) context. In other words, maximum (minimum) is 
the preferred extreme regarding skewness (variance or 
kurtosis). With a preferred extreme (e.g. variance minimum), 
fuzzy numbers are designed that the possibility to achieve (or 
at least nearly achieve) this extreme is higher than the 
possibility to get the other extreme (variance maximum). The 
proportion parameter ߩ א ሾ0, 1ሿ in the following equations 
represents the bias level towards the preferred extremes.  

In the MCDM applications, investors can flexibly 
demonstrate a preference weighting scheme concerning their 
attitude with regard to different criteria by the preference ratio 
series  ݏ ൌ ሺݏ௥ ׷ ௩ݏ ׷ ௦ݏ ׷ ,௥ݏ ௞ሻ whereݏ , ௩ݏ  ௞ are inݏ ௦  andݏ
that order the importance level of return, variance, skewness 
and kurtosis. For example, the scheme (1:1:2:1) indicates that 
the investor will focus more on portfolio skewness rather than 
return, variance and kurtosis. The scheme (3:0:1:3) says the 
investor greatly favours return and kurtosis, slightly favours 
skewness and pays no attention to variance. We explore some 
typical schemes exhibited in Table I. The scheme (2:1:2:1) 
would be appropriate for young investors and contrastingly the 
scheme (1:2:1:2) is for conservative investors. The scheme 
(1:1:0:0) is equivalent to the conventional mean-variance 
approach.  

 
TABLE I 

INVESTOR PREFERENCE WEIGHTING SCHEMES USED FOR EXPERIMENTS 

Weighting schemes 
࢙ ൌ ሺ࢙࢘ ׷ ࢙࢜ ׷ ࢙࢙ ׷  ሻ (2:1:2:1) (1:2:1:2) (4:3:2:1) (1:2:3:4) (1:1:0:0) (0:0:1:1)࢑࢙

Normalized ratios 
࢙ ൌ ሺ࢙࢘, ,࢙࢜ ,࢙࢙  ሻ࢑࢙

(1/3, 1/6,  
1/3, 1/6) 

(1/6, 1/3,  
1/6, 1/3) 

(2/5, 3/10,  
1/5, 1/10) 

(1/10, 1/5,  
3/10, 2/5) 

(1/2, 1/2,  
0, 0) 

(0, 0,  
1/2, 1/2) 

  ,in fuzzy number designs (1, 1/2 ࣋
1, 1/2) 

(1/2, 1,  
1/2, 1) 

(1, 3/4,  
1/2, 1/4) 

(1/4, 1/2,  
3/4, 1) 

(1, 1,  
0, 0) 

(0, 0,  
1, 1) 

 

Based on intended weighting schemes from investors, the 
parameters ߩ in designing trapezoidal fuzzy numbers will be 
specified for each criterion. Let us define ݏ௠௔௫ ൌ max ሺݏ௥ ,
, ௩ݏ , ௦ݏ ௥ݏ௞ሻ. For any scheme ሺݏ ׷ ௩ݏ ׷ ௦ݏ ׷  in cases of ߩ ,௞ሻݏ
variance (denoted by ߩ௩), skewness (ߩ௦) and kurtosis (ߩ௞) are: 
௩ߩ ൌ ௩ݏ ⁄௠௔௫ݏ ௦ߩ , ൌ ௦ݏ ⁄௠௔௫ݏ  and ߩ௞ ൌ ௞ݏ ⁄௠௔௫ݏ . So ߩ௩ ൌ 1 if 
௩ݏ ൌ ௠௔௫ݏ ൌ max ሺݏ௥ , , ௩ݏ , ௦ݏ  ௞ሻ implies most concernݏ
about variance, or ߩ௩ ൌ 0 if ݏ௩ ൌ 0 implies no concern about 
variance, and alike interpretations for ߩ௦ and ߩ௞. When ߩ ൌ 1, 

the trapezoidal fuzzy number is of special triangular shape.  
In Nguyen and Gordon-Brown [17] we used triangular 

fuzzy numbers to model marginal impacts of stocks. In this 
paper, we use the more general fuzzy numbers that have the 
trapezoidal shape. Assume a normal trapezoidal fuzzy number 
,௜ሺܽ௜ܣ ௜ܾ , ܿ௜, ݀௜ሻ is to be constructed to stand for marginal 
contributions of asset ݅ with ݉݅݊_݉ܿ௜ and ݉ܽݔ_݉ܿ௜ are its 
marginal contributions in the minimum and maximum 
circumstances, so the support of ܣ௜ is a set ሼݔ|ݔ א ሺܽ௜, ݀௜ሻሽ 
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and the core of ܣ௜ is a set ሼݔ|ݔ א ሺܾ௜, ܿ௜ሻሽ.  Hence, ܽ௜ ൌ ݉݅݊ ሺ݉݅݊_݉ܿ௜, ௜ሻ  and ݀௜ܿ݉_ݔܽ݉  ൌ

,ሺ݉݅݊_݉ܿ௜ ݔܽ݉   ௜ሻܿ݉_ݔܽ݉ 

 

a) Variance or kurtosis fuzzy numbers – illustrated by Fig.s 1,2 

 ܾ௜ ൌ min ቀ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉݅݊_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ , ݉݅݊_݉ܿ௜ቁ  (27) 

 ܿ௜ ൌ max ቀ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉݅݊_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ , ݉݅݊_݉ܿ௜ቁ  (28) 

i) If ܽ௜ ൌ ݉݅݊ ሺ݉݅݊_݉ܿ௜, ௜ሻܿ݉_ݔܽ݉  ൌ ݉݅݊_݉ܿ௜ and ݀௜ ൌ ,ሺ݉݅݊_݉ܿ௜ ݔܽ݉ ௜ሻܿ݉_ݔܽ݉  ൌ    :௜ thenܿ݉_ݔܽ݉

 ܾ௜ ൌ ݉݅݊_݉ܿ௜ (29a) 

 ܿ௜ ൌ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉݅݊_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ  (29b) 

 
With (29II), we examine two cases:  
 

ߩ  ՜ 0  ՞   ܿ௜ ՜ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

  (29c) 

ߩ  ՜ 1  ՞   ܿ௜ ՜ ݉݅݊_݉ܿ௜ (29d) 

 
This circumstance is illustrated by Fig. 1.  
 

   
Fig. 1 Variance and kurtosis fuzzy numbers when ܽ௜ ൌ ݉݅݊_݉ܿ௜ and ݀௜ ൌ  ௜ܿ݉_ݔܽ݉

 

ii) If ܽ௜ ൌ ݉݅݊ ሺ݉݅݊_݉ܿ௜, ௜ሻܿ݉_ݔܽ݉  ൌ ௜ and ݀௜ܿ݉_ݔܽ݉ ൌ ,ሺ݉݅݊_݉ܿ௜ ݔܽ݉ ௜ሻܿ݉_ݔܽ݉  ൌ ݉݅݊_݉ܿ௜ then (Fig. 2).  

 ܾ௜ ൌ
݉݅݊_݉ܿ௜ ൅ ௜ܿ݉_ݔܽ݉

2
൅ ߩ ൬݉݅݊_݉ܿ௜ െ

݉݅݊_݉ܿ௜ ൅ ௜ܿ݉_ݔܽ݉

2
൰ (30a) 

 ܿ௜ ൌ ݉݅݊_݉ܿ௜ (30b) 

ߩ  ՜ 0  ՞   ܾ௜ ՜ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

  (30c) 

ߩ  ՜ 1  ՞   ܾ௜ ՜ ݉݅݊_݉ܿ௜ (30d) 

 

   
Fig. 2 Variance and kurtosis fuzzy numbers when ܽ௜ ൌ ௜ and ݀௜ܿ݉_ݔܽ݉ ൌ ݉݅݊_݉ܿ௜ 

 

b) Skewness fuzzy numbers – illustrated by Figs. 3,4  

 ܾ௜ ൌ min ቀ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉ܽݔ_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ ,  ௜ቁ  (31)ܿ݉_ݔܽ݉

 ܿ௜ ൌ max ቀ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉ܽݔ_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ ,  ௜ቁ  (32)ܿ݉_ݔܽ݉

ߩ ൌ 1 

௜ܿ݉_ݔܽ݉ ௜ܾ ൌ ܿ௜ ൌ ݉݅݊_݉ܿ௜

ߩ ൌ 3/4

௜ܿ݉_ݔܽ݉ ܿ௜ ൌ ݉݅݊_݉ܿ௜

ܾ௜

ߩ ൌ 0 

ܿ௜ ൌ ݉݅݊_݉ܿ௜ ௜ܾ ݉ܽݔ_݉ܿ௜ 

ߩ ൌ 1 

௜݉݅݊_݉ܿ௜ܿ݉_ݔܽ݉ ൌ ܾ௜ ൌ ܿ௜ 

ߩ ൌ 1/2

ܿ௜

௜݉݅݊_݉ܿ௜ܿ݉_ݔܽ݉ ൌ ௜ܾ

ߩ ൌ 0 

௜ ܿ௜ ݉݅݊_݉ܿ௜ܿ݉_ݔܽ݉ ൌ ௜ܾ 
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i) If ܽ௜ ൌ ݉݅݊ ሺ݉݅݊_݉ܿ௜, ௜ሻܿ݉_ݔܽ݉  ൌ ݉݅݊_݉ܿ௜ and ݀௜ ൌ ,ሺ݉݅݊_݉ܿ௜ ݔܽ݉ ௜ሻܿ݉_ݔܽ݉  ൌ   .௜ then (Fig. 3)ܿ݉_ݔܽ݉

 ௜ܾ ൌ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉ܽݔ_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ  (33a) 

 ܿ௜ ൌ  ௜ (33b)ܿ݉_ݔܽ݉

ߩ  ՜ 0  ՞   ܾ௜ ՜ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

  (33c) 

ߩ  ՜ 1  ՞   ܾ௜ ՜  ௜ (33dܿ݉_ݔܽ݉

   
Fig. 3 Skewness fuzzy numbers when ܽ௜ ൌ ݉݅݊_݉ܿ௜ and ݀௜ ൌ  ௜ܿ݉_ݔܽ݉

 

ii) If ܽ௜ ൌ ݉݅݊ ሺ݉݅݊_݉ܿ௜, ௜ሻܿ݉_ݔܽ݉  ൌ ௜ and ݀௜ܿ݉_ݔܽ݉ ൌ ,ሺ݉݅݊_݉ܿ௜ ݔܽ݉ ௜ሻܿ݉_ݔܽ݉  ൌ ݉݅݊_݉ܿ௜ then (Fig. 4).  

 ܾ௜ ൌ  ௜ (34a)ܿ݉_ݔܽ݉

 ܿ௜ ൌ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

൅ ߩ ቀ݉ܽݔ_݉ܿ௜ െ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

ቁ   (34b) 

ߩ  ՜ 0  ՞   ܿ௜ ՜ ௠௜௡_௠௖೔ା௠௔௫_௠௖೔
ଶ

  (34c) 

ߩ  ՜ 1  ՞   ܿ௜ ՜  ௜   (34d)ܿ݉_ݔܽ݉

   
Fig. 4 Skewness fuzzy numbers when ܽ௜ ൌ ௜ܿ݉_ݔܽ݉  and ݀௜ ൌ ݉݅݊_݉ܿ௜ 

 

The shapes of fuzzy numbers in case (i) and case (ii) look 
similar, but the position of ܾ௜, ܿ௜ and the differences at the pole 
values of these fuzzy numbers are worth noting.  

Given that marginal contributions of assets on the portfolio 
have been modelled by fuzzy numbers, during deployment of 
MCDM methods these numbers need to be evaluated or 
compared with others. The next subsection is devoted to a 
presentation of methods for evaluating fuzzy numbers and the 
method selected in this research.    

C. Evaluating Fuzzy Numbers 
In order to compare a fuzzy number with others, we suggest 

using its representative crisp number obtained via the 
centroid-based defuzzification method. Denote 
݃஺

௅ሺݕሻ: ሾ0, ߱ሿ ՜ ሾܽ, ܾሿ and ݃஺
ோሺݕሻ: ሾ0, ߱ሿ ՜ ሾܽ, ݀ሿ are the 

inverse functions of ஺݂
௅ሺݔሻ and ஺݂

ோሺݔሻ, respectively. In the 
case of normal trapezoidal fuzzy number the functions ݃஺

௅ሺݕሻ 
and ݃஺

ோሺݕሻ can be analytically expressed as ݃஺
௅ሺݕሻ ൌ ܽ ൅

ሺܾ െ ܽሻݕ and ݃஺
ோሺݕሻ ൌ ݀ ൅ ሺ݀ െ ܿሻݕ where 0 ൑ ݕ ൑ 1. The 

Wang et al. [18] centroid formulae based on the general 
canonical form of a normal trapezoidal fuzzy number ܣ are as 
follows:  

ሻܣҧ଴ሺݔ ൌ ׬ ௫௙ಲሺ௫ሻௗ௫శಮ
షಮ
׬ ௙ಲሺ௫ሻௗ௫శಮ

షಮ
ൌ ׬ ௫௙ಲ

ಽሺ௫ሻௗ௫್
ೌ ା׬ ௫ௗ௫೎

್ ା׬ ௫௙ಲ
ೃሺ௫ሻௗ௫೏

೎

׬ ௙ಲ
ಽሺ௫ሻௗ௫್

ೌ ା׬ ௗ௫೎
್ ା׬ ௙ಲ

ೃሺ௫ሻௗ௫೏
೎

,  (35) 

ሻܣത଴ሺݕ ൌ ׬ ௬ሺ௚ಲ
ೃሺ௬ሻି௚ಲ

ಽ ሺ௬ሻሻௗ௬భ
బ

׬ ሺ௚ಲ
ೃሺ௬ሻି௚ಲ

ಽ ሺ௬ሻሻௗ௬భ
బ

,  (36) 

where the numerator ׬ ሺ݃஺ݕ
ோሺݕሻ െ ݃஺

௅ሺݕሻሻ݀ݕଵ
଴  represents the 

weighted average of the area, while the denominator 
׬ ሺ݃஺

ோሺݕሻ െ ݃஺
௅ሺݕሻሻ݀ݕଵ

଴  is the area of the trapezoid.  
For normal trapezoidal fuzzy numbers ܣ ൌ ሾܽ, ܾ, ܿ, ݀ሿ, 
formulae of Wang et al. lead to:  
 
ሻܣҧ଴ሺݔ ൌ ଵ

ଷ
ቂܽ ൅ ܾ ൅ ܿ ൅ ݀ െ ௗ௖ି௔௕

ሺௗା௖ሻିሺ௔ା௕ሻ
ቃ  (37) 

ሻܣത଴ሺݕ ൌ ଵ
ଷ

ቂ1 ൅ ௖ି௕
ሺௗା௖ሻିሺ௔ା௕ሻ

ቃ  (38) 

 
Centroids on the horizontal axis are used as a basis to 

evaluate assets. If horizontal coordinates ݔҧ଴ of all assets in the 
portfolio are completely equal then the vertical centroid 
coordinates ݕത଴ will be applied, though this situation seldom 
occurs in practice where the numbers of assets is large enough. 

ߩ ൌ 1 

݉݅݊_݉ܿ௜݉ܽݔ_݉ܿ௜ ൌ ௜ܾ ൌ ܿ௜ 

ߩ ൌ 3/4

ܿ௜

݉݅݊_݉ܿ௜݉ܽݔ_݉ܿ௜ ൌ ௜ܾ

ߩ ൌ 0 

݉݅݊_݉ܿ௜ ܿ௜ ݉ܽݔ_݉ܿ௜ ൌ ௜ܾ 

ߩ ൌ 1 

௜ܾ ൌ ܿ௜ ൌ ௜݉݅݊_݉ܿ௜ܿ݉_ݔܽ݉

ߩ ൌ 1/2

ܿ௜ ൌ ௜௜ܾ݉݅݊_݉ܿ௜ܿ݉_ݔܽ݉

ߩ ൌ 0 

ܿ௜ ൌ  ௜ ௜ܾ ݉݅݊_݉ܿ௜ܿ݉_ݔܽ݉
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This also means that the representative location on the 
horizontal axis is more important than the average height in 
comparing fuzzy numbers [19]. The following applies this 
fuzzy number evaluating paradigm in MCDM applications for 
portfolio selection. 

IV. MCDM APPROACHES TO PORTFOLIO SELECTION 
In applications of the MCDM methods to portfolio 

allocation with higher moments, we build the decision matrix 
by assigning its elements with x-centroids of fuzzy numbers 
representing marginal impacts of assets with respect to each 
criterion. The decision matrix, ܦ ൌ ௜௝൧ݔൣ

௡ൈ௠
, of ݊ ൈ ݉ 

dimension is defined as  
 

ܦ ൌ
ଵܣ
ଶܣ
ڭ

௡ܣ

ଶܥ  ଵܥ … ௠ܥ

൦

ଵଵݔ ଵଶݔ … ଵ௠ݔ
ଶଵݔ ଶଶݔ … ଶ௠ݔ

ڭ     ڭ ڭ    ڭ   
௡ଵݔ ௡ଶݔ … ௡௠ݔ

൪ (39) 

 
where ܣଵ, ܣଶ, …, ܣ௡ are possible assets among which 
investors have to allocate their initial wealth, ܥଵ, ܥଶ, …, ܥ௠ 
are criteria with which asset performance is measured, ݔ௜௝ is 
the centroid of a trapezoidal fuzzy number representing 
marginal impact of asset ܣ௜ with respect to criterion ܥ௝. In the 
application herein, ݉ ൌ 4 with ܥଵ, ܥଶ, ܥଷ, ܥସ are respectively 
return, variance, skewness and kurtosis criteria. Note that with 
the return criterion, the marginal impact of an asset is its crisp 
expected return so that we assign asset expected return into the 
return column correspondingly.  

A. SAW Method 
SAW requires a comparable scale for all elements in the 

decision matrix. Let ݉݅ ௝݊ and ݉ܽݔ௝ be the minimum and 
maximum values in the ݆th column. The comparable scale is 
obtained using the following formulas to result in the 
normalized matrix ܴ ൌ ௜௝൧ݎൣ

௡ൈ௠
.  

For benefit criteria (the larger the rating, the greater the 
preference), ݎ௜௝ is  

 
௜௝ݎ ൌ

௫೔ೕି௠௜௡ೕ

௠௔௫ೕି௠௜௡ೕ
  (40a) 

 
For cost criteria (the smaller the rating, the greater the 

preference):  
 

௜௝ݎ ൌ
௠௔௫ೕି௫೔ೕ

௠௔௫ೕି௠௜௡ೕ
  (40b) 

 
The weight of each criterion is extracted from the 

normalization of the investor’s preference vector ݏ ൌ
ሺݏ௥, ,௩ݏ ,௦ݏ ௞ሻݏ ൌ ሺݏଵ, ,ଶݏ ,ଷݏ ସሻݏ ൌ ൛ݏ௝ൟ (see Table I). The 
performance score ݌௜ of the ݅th asset will be calculated  
௜݌ ൌ ∑ ௜௝ݎ ௝ݏ

௠
௝ୀଵ   (41) 

Normalize the vector ݌ ൌ ሺ݌ଵ, ,ଶ݌ … ,  ௡ሻ consisting of݌
preference scores of all assets to obtain the final portfolio 
weight: ݓ ൌ ܿҧ ൌ ሺ݌ଵ, ,ଶ݌ … ,   .௡ሻ݌

B. TOPSIS Method 
The portfolio allocation problem is solved under the 

TOPSIS procedure via the following steps. 
Step 1: Construct the normalized decision matrix denoted 

by ܴ ൌ ௜௝൧ݎൣ
௡ൈ௠

 based on elements of the decision matrix ܦ 
(39). This process allows comparison across the attributes by 
transforming the various attribute dimensions into 
nondimensional attributes.    

 
௜௝ݎ ൌ

௫೔ೕ

ට∑ ௫೔ೕ
మ೙

೔సభ

  (42) 

 
This method works well if the data is positive or zero. If 

data in a column contains negative numbers, there are still 
negative numbers in the column after normalizing. A solution 
to deal with this is to shift data by adding all numbers in that 
column with the absolute of the most negative number 
(minimum value of the column) such that the most negative 
one will become zero and all other numbers become positive. 
Then we can apply the above method for normalization.  

Step 2: Construct the weighted normalized fuzzy decision 
matrix ܸ ൌ ௜௝൧ݒൣ

௡ൈ௠
. The weight of each criterion is also 

extracted from the normalization of the investor’s preference 
as in the SAW method. The element ݒ௜௝ can be defined  
௜௝ݒ ൌ .௜௝ݎ ௝ݏ , ݆ ൌ 1,2, … , ݉ (43) 

Step 3: Identify the Positive Ideal Solution (PIS), (ܣା) and 
Negative Ideal Solution (NIS), (ିܣ).   
ାܣ ൌ

൛൫max௜ ௜௝ݒ ห݆ א ,൯ܤ ൫min௜ ௜௝ݒ ห݆ א ൯ห݅ܥ ൌ 1,2, … , ݊ൟ ൌ

ሼݒଵ
ା, ଶݒ

ା, … , ௠ݒ
ାሽ  

(44a) 

ିܣ ൌ

൛൫min௜ ௜௝ݒ ห݆ א ,൯ܤ ൫max௜ ௜௝ݒ ห݆ א ൯ห݅ܥ ൌ 1,2, … , ݊ൟ ൌ

ሼݒଵ
ି, ଶݒ

ି, … , ௠ݒ
ିሽ  

(44b) 

where ܤ and ܥ are the set of benefit criteria and cost criteria 
respectively. Clearly, ܤ includes ݆ ൌ 1,3 that respectively are 
return and skewness. In contrast, ܥ includes ݆ ൌ 2,4 
corresponding to variance and kurtosis criteria.  

Step 4: Calculate the separation measure of each asset from 
ideal solutions ܣା and ିܣ by the ݉-dimensional Euclidean 
distance.  

݀௜
ା ൌ ට∑ ൫ݒ௜௝ െ ௝ݒ

ା൯ଶ௠
௝ୀଵ , ݅ ൌ 1,2, … , ݊  (45a) 

݀௜
ି ൌ ට∑ ൫ݒ௜௝ െ ௝ݒ

ି൯ଶ௠
௝ୀଵ , ݅ ൌ 1,2, … , ݊  (45c) 

Step 5: Calculate the relative closeness of each asset to the 
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ideal solutions. The crisp closeness coefficient ܿ௜ of the asset 
  ା is defined asܣ ௜ with respect toܣ

 

ܿ௜ ൌ ௗ೔
ష

ௗ೔
శାௗ೔

ష  , ݅ ൌ 1,2, … , ݊  
(46) 

 

It is obvious that ܿ௜ ൌ 1 if ܣ௜ ൌ ା and  ܿ௜ܣ ൌ 0 if ܣ௜ ൌ  .ିܣ
In other words, an asset ܣ௜ is closer to the PIS (ܣା) and farther 
from NIS (ିܣ) as ܿ௜ approaches 1. Based on the closeness 
coefficients, we can determine the ranking orders of all assets 
and evaluate quantitatively what the proportion of an asset is, 
relative to other assets.   

Step 6: Normalize the vector ܿ ൌ ሺܿଵ, ܿଶ, … , ܿ௡ሻ consisting 
of closeness coefficients of all assets to obtain the portfolio 

weight: ݓ ൌ ܿҧ ൌ ሺܿଵ, ܿଶ, … , ܿ௡ሻ. 

V.  ILLUSTRATIVE EXAMPLES 
We use historical return data introduced by Markowitz [20] 

for experiments to assess performance of proposed 
approaches. This data set consists of nine stocks and has been 
widely used for portfolio optimization experiments. The data 
span the period from 1937 to 1954 with 18 yearly observations 
for each stock. Table II represents moments of individual 
stocks where the return row is the arithmetic average rate of 
return whereas variance, skewness and kurtosis are 
respectively calculated using (12)-(14) with ݅ ൌ ݆ ൌ ݇ ൌ ݈ ൌ
1, … ,9.  

 
TABLE II 

HISTORICAL MOMENTS OF INDIVIDUAL STOCKS 

Moments ࡿ૚ ࡿ૛ ࡿ૜ ࡿ૝ ࡿ૞ ࡿ૟ ࡿૠ ࡿૡ ૢࡿ 

Return 0.0659 0.0616 0.1461 0.1734 0.1981 0.0551 0.1276 0.1903 0.1156 

Variance 0.0534 0.0147 0.0855 0.0955 0.1279 0.0413 0.0288 0.1467 0.0793 

Skewness 0.0051 -0.0005 0.0278 -0.0066 -0.0031 0.0003 -0.0035 0.0413 -0.0030 

Kurtosis 0.0066 0.0006 0.0291 0.0249 0.0370 0.0028 0.0030 0.0603 0.0154 

 

Prior to implementing the MCDM methods, co-variance 
matrix, co-skewness matrix and co-kurtosis matrix are 
constructed using (9), (10) and (11) respectively. Maximum 
and minimum extremes of portfolio higher moments are 
achieved using a constrained optimization solver with 
objective functions (16-18) and two constraints ∑ ௜ݓ ൌ 1௡

௜ୀଵ  
and ݓ௜ ൒ 0, ݅׊ ൌ 1, … ,9. Marginal impacts of assets on 
portfolio moments at the extremes are then calculated using 
(19)-(22). 

Under each determined scheme, the parameter ߩ for each 

scheme will be indicated (see Table I) and then fuzzy numbers 
representing marginal impacts are designed for each stock 
with respect to each criterion. Tables III, IV, and V 
respectively represent fuzzy numbers of marginal impacts 
regarding variance, skewness and kurtosis criteria.  

With scheme (2:1:2:1), we have ߩ௩ ൌ ௦ߩ ,1/2 ൌ 1 and 
௞ߩ ൌ 1/2 so that for the variance and kurtosis fuzzy numbers: 
ܽ ൌ ܾ, and for skewness: ܾ ൌ ܿ ൌ ݀ (trapezoidal fuzzy 
numbers are reduced to triangular fuzzy numbers).  

 
TABLE III 

VARIANCE MARGINAL IMPACT FUZZY NUMBERS - SCHEME 2:1:2:1, ߩ௩ ൌ 1/2 

 ૢࡿ ૡࡿ ૠࡿ ૟ࡿ ૞ࡿ ૝ࡿ ૜ࡿ ૛ࡿ ૚ࡿ ࡭

a 0.0450 0.0279 0.0380 0.0516 0.0248 0.0288 0.0319 0.0518 0.0410 

b 0.0450 0.0279 0.0380 0.0516 0.0248 0.0288 0.0319 0.0518 0.0410 

c 0.0537 0.0336 0.0628 0.0837 0.0694 0.0364 0.0385 0.1122 0.0572 

d 0.0800 0.0507 0.1373 0.1800 0.2031 0.0592 0.0583 0.2935 0.1057 

 
TABLE IV 

SKEWNESS MARGINAL IMPACT FUZZY NUMBERS - SCHEME 2:1:2:1, ߩ௦ ൌ 1 

 ૢࡿ ૡࡿ ૠࡿ ૟ࡿ ૞ࡿ ૝ࡿ ૜ࡿ ૛ࡿ ૚ࡿ ࡭

a -0.0176 -0.0022 -0.0258 -0.0287 -0.0401 -0.0055 -0.0063 -0.0112 -0.0401 

b 0.0154 -0.0014 -0.0035 -0.0039 -0.0047 0.0128 -0.0036 -0.0071 0.0052 

c 0.0154 -0.0014 -0.0035 -0.0039 -0.0047 0.0128 -0.0036 -0.0071 0.0052 

d 0.0154 -0.0014 -0.0035 -0.0039 -0.0047 0.0128 -0.0036 -0.0071 0.0052 
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TABLE V 
KURTOSIS MARGINAL IMPACT FUZZY NUMBERS - SCHEME 2:1:2:1, ߩ௞ ൌ 1/2 

 ૢࡿ ૡࡿ ૠࡿ ૟ࡿ ૞ࡿ ૝ࡿ ૜ࡿ ૛ࡿ ૚ࡿ ࡭

a 0.0036 0.0022 0.0028 0.0037 0.0022 0.0022 0.0025 0.0043 0.0045 

b 0.0036 0.0022 0.0028 0.0037 0.0022 0.0022 0.0025 0.0043 0.0045 

c 0.0072 0.0076 0.0125 0.0327 0.0449 0.0090 0.0134 0.0636 0.0152 

d 0.0182 0.0236 0.0415 0.1198 0.1728 0.0295 0.0463 0.2414 0.0473 

 

For different schemes, parameters of fuzzy numbers in 
Tables III-V are adjusted so that their centroids are different. 
The decision matrix ܦ is constructed following the format of 
formula (39) for the scheme (2:1:2:1) as presented in the 
following table (Table VI).  
  

TABLE VI 
THE DECISION MATRIX - SCHEME 2:1:2:1 

  ૚࡯ ࡰ
Return 

  ૛࡯
Variance 

  ૜࡯
Skewness 

  ૝࡯
Kurtosis 

 ૚ 0.0659 0.0572 0.0044 0.0087ࡿ

 ૛ 0.0616 0.0359 -0.0017 0.0097ࡿ

 ૜ 0.1461 0.0728 -0.0109 0.0163ࡿ

 ૝ 0.1734 0.0965 -0.0122 0.0443ࡿ

 ૞ 0.1981 0.0872 -0.0165 0.0619ࡿ

 ૟ 0.0551 0.0395 0.0067 0.0118ࡿ

 ૠ 0.1276 0.0411 -0.0045 0.0178ࡿ

 ૡ 0.1903 0.1364 -0.0085 0.0873ࡿ

 0.0195 0.0099- 0.0636 0.1156 ૢࡿ

A. SAW Portfolios 
The normalized matrix ܴ in SAW application is obtained 

using (40a) and (40b) and presented in Table VII.   

Performance scores of assets for the scheme (2:1:2:1) is 
calculated using (41) where preference vector ݏ is normalized 
ݏ ൌ ሺݏ௥, ,௩ݏ ,௦ݏ ௞ሻݏ ൌ ሺ2, 1, 2, 1ሻ ൌ ሺ1/3, 1/6, 1/3, 1/6ሻ (see 
Table I). In Table VIII, ݌ is the performance scores of assets 
and ݓ ൌ ܿҧ is the final portfolio weights. 

 
TABLE VII 

SAW NORMALIZED DECISION MATRIX - SCHEME 2:1:2:1 

  ૚࡯ ࡾ
Return 

  ૛࡯
Variance 

  ૜࡯
Skewness 

  ૝࡯
Kurtosis 

 ૚ 0.0758 0.7877 0.9010 1ࡿ

 ૛ 0.0451 1 0.6396 0.9868ࡿ

 ૜ 0.6360 0.6332 0.2399 0.9026ࡿ

 ૝ 0.8275 0.3966 0.1851 0.5469ࡿ

 ૞ 1 0.4893 0 0.3228ࡿ

 ૟ 0 0.9645 1 0.9609ࡿ

 ૠ 0.5070 0.9481 0.5176 0.8840ࡿ

 ૡ 0.9456 0 0.3469 0ࡿ

 0.8627 0.2854 0.7242 0.4231 ૢࡿ

 

 

 
TABLE VIII 

SAW PREFERENCE SCORES AND PORTFOLIO WEIGHTS - SCHEME 2:1:2:1 

૝ࡿ ૜ࡿ ૛ࡿ ૚ࡿ 2:1:2:1 ૞ࡿ ૟ࡿ ૠࡿ ૢࡿ ૡࡿ

 0.5006 0.4308 0.6469 0.6542 0.4687 0.4948 0.5479 0.5594 0.6235 ݌

ݓ ൌ ܿҧ 0.1266 0.1135 0.1112 0.1004 0.0951 0.1328 0.1313 0.0874 0.1016 

 
TABLE IX 

SAW PORTFOLIO WEIGHTS FOR OTHER INVESTIGATED SCHEMES 

Schemes ࡿ૚ ࡿ૛ ࡿ૜ ࡿ૝ ࡿ૞ ࡿ૟ ࡿૠ ࡿૡ ૢࡿ 

1:2:1:2 0.1355 0.1399 0.1183 0.0866 0.0790 0.1451 0.1407 0.0392 0.1156 

4:3:2:1 0.1078 0.1086 0.1157 0.1074 0.1151 0.1161 0.1353 0.0895 0.1045 

1:2:3:4 0.1528 0.1452 0.1143 0.0800 0.0600 0.1607 0.1375 0.0366 0.1129 

1:1:0:0 0.0825 0.1005 0.1220 0.1173 0.1440 0.0928 0.1398 0.0910 0.1101 

0:0:1:1 0.1796 0.1537 0.1080 0.0692 0.0306 0.1853 0.1325 0.0328 0.1084 
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The whole calculation procedure will be re-performed from 
the step of fuzzy number design for other schemes and results 
are assembled in Table IX.  

B. TOPSIS Portfolios 
Same as the SAW method, the decision matrix ܦ in 

TOPSIS application will be different for different schemes. 
For the first investigated scheme (2:1:2:1), the matrix ܦ will 
be the same as in Table VI. The normalized decision matrix ܴ 
(Table X) for scheme (2:1:2:1) is constructed using (42).  
 

TABLE X 
TOPSIS NORMALIZED DECISION MATRIX - SCHEME 2:1:2:1 

  ૚࡯ ࡾ
Return 

  ૛࡯
Variance 

  ૜࡯
Skewness 

  ૝࡯
Kurtosis 

 ૚ 0.1610 0.2494 0.5401 0.0717ࡿ

 ૛ 0.1503 0.1564 0.3834 0.0802ࡿ

 ૜ 0.3566 0.3170 0.1438 0.1348ࡿ

 ૝ 0.4235 0.4206 0.1110 0.3656ࡿ

 ૞ 0.4838 0.3800 0.0000 0.5109ࡿ

 ૟ 0.1346 0.1720 0.5995 0.0970ࡿ

 ૠ 0.3116 0.1792 0.3103 0.1469ࡿ

 ૡ 0.4648 0.5942 0.2080 0.7202ࡿ

 0.1608 0.1711 0.2772 0.2823 ૢࡿ

 

The weighted normalized matrix ܸ is constructed using 
(43). For scheme (2:1:2:1) the matrix ܸ is shown in Table XI.  
 

 

TABLE XI 
TOPSIS WEIGHTED NORMALIZED MATRIX - SCHEME 2:1:2:1 

  ૚࡯ ࢂ
Return 

  ૛࡯
Variance 

  ૜࡯
Skewness 

  ૝࡯
Kurtosis 

 ૚ 0.0537 0.0416 0.1800 0.0119ࡿ

 ૛ 0.0501 0.0261 0.1278 0.0134ࡿ

 ૜ 0.1189 0.0528 0.0479 0.0225ࡿ

 ૝ 0.1412 0.0701 0.0370 0.0609ࡿ

 ૞ 0.1613 0.0633 0.0000 0.0851ࡿ

 ૟ 0.0449 0.0287 0.1998 0.0162ࡿ

 ૠ 0.1039 0.0299 0.1034 0.0245ࡿ

 ૡ 0.1549 0.0990 0.0693 0.1200ࡿ

 0.0268 0.0570 0.0462 0.0941 ૢࡿ

 

The PIS and NIS, ܣା  and ିܣ , are identified using (44I) and 
(44II) and represented in Table XII. 

 
TABLE XII 

PIS AND NIS POINTS - SCHEME 2:1:2:1 

  ଵܥ 2:1:2:1
Return 

  ଶܥ
Variance 

  ଷܥ
Skewness 

  ସܥ
Kurtosis 

ାܣ  0.1613 0.0261 0.1998 0.0119 

ିܣ  0.0449 0.0990 0.0000 0.1200 

 

The separation measures to ideal points, ܣା  and ିܣ , and 
closeness coefficients ܿ௜ are calculated using (45I), (45II), (46) 
respectively and tabulated in Table XIII. The final portfolio 
weights ݓ for the scheme (2:1:2:1) is shown in the last row by 
normalizing vector ܿ.  

 
TABLE XIII 

SEPARATION MEASURES, CLOSENESS COEFFICIENT AND PORTFOLIO WEIGHT – SCHEME 2:1:2:1 

 ૢࡿ ૡࡿ ૠࡿ ૟ࡿ ૞ࡿ ૝ࡿ ૜ࡿ ૛ࡿ ૚ࡿ 2:1:2:1

݀௜
ା 0.1105 0.1324 0.1603 0.1768 0.2161 0.1165 0.1129 0.1846 0.1598 

݀௜
ି 0.2179 0.1818 0.1394 0.1224 0.1266 0.2360 0.1676 0.1301 0.1310 

ܿ௜ 0.6636 0.5786 0.4651 0.4090 0.3696 0.6695 0.5974 0.4134 0.4505 

ݓ ൌ ܿҧ 0.1437 0.1253 0.1008 0.0886 0.0800 0.1450 0.1294 0.0895 0.0976 

 
TABLE XIV 

TOPSIS PORTFOLIO WEIGHTS FOR OTHER INVESTIGATED SCHEMES 

Schemes ࡿ૚ ࡿ૛ ࡿ૜ ࡿ૝ ࡿ૞ ࡿ૟ ࡿૠ ࡿૡ ૢࡿ 

1:2:1:2 0.1417 0.1415 0.1225 0.0841 0.0666 0.1446 0.1412 0.0349 0.1229 

4:3:2:1 0.1131 0.1117 0.1128 0.1042 0.1073 0.1172 0.1342 0.0945 0.1050 

1:2:3:4 0.1604 0.1459 0.1148 0.0798 0.0514 0.1631 0.1342 0.0352 0.1152 

1:1:0:0 0.0966 0.1086 0.1219 0.1065 0.1256 0.1046 0.1384 0.0832 0.1144 

0:0:1:1 0.1751 0.1453 0.1062 0.0739 0.0413 0.1822 0.1285 0.0404 0.1071 
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For the other schemes, the TOPSIS calculation steps are re-
performed and portfolio weights are reported in Table XIV. 

C. Comparisons between SAW and TOPSIS Portfolios 
Throughout the investigated schemes, SAW and TOPSIS 

select similar stocks for optimal portfolios. For instance, in 
scheme (2:1:2:1), stocks ଵܵ, ܵ଺, and ܵ଻ are dominant whereas 
stocks ܵହ, and ଼ܵ are inferior in both methods (Tables VIII, 
XIII). Or else in schemes (1:2:3:4) and (0:0:1:1), both methods 
select ଵܵ, ܵଶ, ܵ଺ and ܵ଻ while stocks ܵସ, ܵହ, and ଼ܵ are 
unfavourable. Most stocks are not very sensitive to the scheme 
changing but there are three highly changeable stocks ଵܵ, ܵହ, 
and ܵ଺ occurring in both SAW and TOPSIS. The most 
difference in the portfolio weights of the investigated schemes 
happens between the schemes (1:1:0:0) and (0:0:1:1). This is 
understandable since the scheme (1:1:0:0) only considers 
return and variance whereas in contrast the scheme (0:0:1:1) 
only takes skewness and kurtosis into account. It is evident 
that the investor’s preference scheme affects the strategy by 
which her or his portfolio will be allocated. The scheme 

(1:1:0:0) is considered equivalent to the conventional mean-
variance approach since it does not account for higher 
moments, i.e. skewness, kurtosis. The difference in portfolio 
weights of this scheme with those of other schemes, especially 
the scheme (0:0:1:1), reinforces the importance of portfolio 
higher moments in portfolio selection since ignoring them 
may lead to significantly different risky investment strategies.  

Both methods result in stock weights varying similarly up 
and down with change of schemes. This is recognized more 
obviously with the changeable stocks between schemes 
(1:1:0:0) and (0:0:1:1). For example, stock ଵܵ increases from 
8% in scheme (1:1:0:0) to 18% in scheme (0:0:1:1) in the 
SAW method and similarly in the TOPSIS method, ଵܵ weight 
increases from 10% (1:1:0:0) to 18% (0:0:1:1). Else, the stock 
ܵହ weight decreases from scheme (1:1:0:0) to scheme 
(0:0:1:1) in both methods: from 14% down to 3% in SAW and 
from 13% to 4% in TOPSIS. Or stock ܵ଺ proportion increases 
9% to 19% in SAW and 10% to 18% in TOPSIS. 

 

 
TABLE XV 

SAW AND TOPSIS PORTFOLIO HIGHER MOMENTS OF DIFFERENT SCHEMES 

Schemes 
Return Variance Skewness Kurtosis 

SAW TOPSIS SAW TOPSIS SAW TOPSIS SAW TOPSIS 

2:1:2:1 0.1203 0.1160 0.0373 0.0359 -0.0027 -0.0024 0.0029 0.0027 

1:2:1:2 0.1123 0.1106 0.0327 0.0323 -0.0022 -0.0021 0.0025 0.0024 

4:3:2:1 0.1249 0.1239 0.0388 0.0386 -0.0029 -0.0029 0.0032 0.0032 

1:2:3:4 0.1079 0.1065 0.0317 0.0316 -0.0019 -0.0018 0.0023 0.0023 

1:1:0:0 0.1313 0.1267 0.0412 0.0391 -0.0033 -0.0031 0.0038 0.0034 

0:0:1:1 0.1010 0.1035 0.0305 0.0314 -0.0014 -0.0016 0.0021 0.0022 

 

Table XV reports the higher moments of SAW and TOPSIS 
portfolios. Clearly from both methods, when investors favour 
a particular criterion more, the values of that criterion become 
more optimal in its direction. For instance, the scheme 
(0:0:1:1) most concerns skewness and kurtosis, and the 
portfolio derived from this scheme has the highest skewness at 
-0.0014 in SAW (or -0.0016 in TOPSIS) and lowest kurtosis 
at 0.0021 in both SAW and TOPSIS compared to other 
schemes. In contrast, the scheme (1:1:0:0) implies no concern 
about skewness and kurtosis and as a result the corresponding 
portfolio has the lowest skewness: -0.0033 in SAW and -
0.0033 in TOPSIS and highest kurtosis: 0.0038 in SAW and 
0.0034 in TOPSIS. Since scheme (4:3:2:1) concerns more 
about return than scheme (1:2:3:4) then the return of SAW 
portfolio derived from scheme (4:3:2:1) at 0.1249 is higher 
than that of scheme (1:2:3:4) at 0.1079. The same situation 
happens in TOPSIS portfolios: returns decrease from scheme 
(4:3:2:1) to scheme (1:2:3:4) with respective values: 0.1239 
and 0.1065. Likewise, portfolio kurtosis of scheme (1:2:3:4) is 
lower than that of scheme (4:3:2:1): 0.0023 and 0.0032 
respectively in both SAW and TOPSIS because investors pay 
more attention to kurtosis in scheme (1:2:3:4) than in scheme 
(4:3:2:1). Generally, the changes of portfolio higher moments 

by scheme changing demonstrate the comparable performance 
of SAW and TOPSIS concerning the ability to handle 
investor’s higher moment risk preferences. 
 

 
(a) 

0.0950

0.1050

0.1150

0.1250

0.1350

(2:1:2:1) (1:2:1:2) (4:3:2:1) (1:2:3:4) (1:1:0:0) (0:0:1:1)

SAW Return
TOPSIS Return



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1683

 

 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 SAW and TOPSIS portfolio return (a), variance (b), skewness 
(c) and kurtosis (d) 

 

Fig. 5 graphically depicts comparable performance between 
SAW and TOPSIS. Within each graph, values of portfolio 
higher moments by scheme changing in SAW and TOPSIS 
change (up and down) very closely. Variations of return, 
variance and kurtosis are analogous and contrasting with the 
changes of skewness. There are, as always, trade-offs within 
optimal criteria between two methods. Returns of SAW 
portfolios are higher (better) than that of TOPSIS portfolios in 
most schemes except scheme (0:0:1:1). However, SAW 
portfolio variance and kurtosis are higher (worse) than 
TOPSIS portfolio variance and kurtosis. Correspondingly 
SAW portfolio skewness values are worse (lower) than that of 
TOPSIS except in scheme (0:0:1:1).  

D. MVO Portfolios  
To obtain the MVO efficient portfolios, we solve the 

following quadratic optimization problems:  
min௪ ௣ߪ

ଶ,  subject to  

௣ߪ
ଶ ൌ ∑ ∑ ௜௝ߪ௝ݓ௜ݓ

௡
௝ୀଵ

௡
௜ୀଵ ௣ߤ  , ൌ ∑ ௜ߤ௜ݓ

௡
௜ୀଵ ൌ   ,כߤ

∑ ௜ݓ
௡
௜ୀଵ ൌ 1 and ݓ௜ ൒ 0, ݅׊ ൌ 1, … , ݊ 

(47) 

where כߤ is the expected portfolio return. An alternative 
formulation, maximize return for fixed variances, could result 
in the same interpretation. Table XVI details some typical 
efficient portfolio weights corresponding to the increasing 
return and variance of the portfolio. 

The similarity between MVO and MCDM approaches, i.e., 
SAW and TOPSIS, concerning dominance of some stocks in 
optimal portfolios is recognized. For instance, stocks ܵଷ and 
ܵ଻ are superior in MVO and similarly in these two MCDM 
methods. Likewise, stock ଼ܵ is the most inferior in both MVO 
and MCDM approaches. This implies the analogous efficiency 
of the MCDM applications and MVO in selecting dominant 
assets in a large set for portfolio optimization.  

 
TABLE XVI 

SOME EFFICIENT MVO PORTFOLIO WEIGHTS 
Return Variance ࡿ૚ ࡿ૛ ࡿ૜ ࡿ૝ ࡿ૞ ࡿ૟ ࡿૠ ࡿૡ ૢࡿ 

0.1000 0.0171 0 0.5488 0 0 0.1225 0 0.3287 0 0 

0.1242 0.0224 0 0.2254 0.0630 0 0.1456 0 0.5660 0 0 

0.1483 0.0315 0 0 0.0914 0 0.2698 0 0.6388 0 0 

0.1900 0.0925 0 0 0.0010 0 0.6061 0 0.0798 0.3132 0 

0.1981 0.1279 0 0 0 0 1 0 0 0 0 

 

Stock ܵହ is highly selected in MVO but modestly chosen in 
SAW and TOPSIS. However, with the MVO equivalent 
scheme (1:1:0:0) in both SAW and TOPSIS, stock ܵହ is the 
most selected with around 13-14% compared to its weights in 
other schemes (Tables IX, XIV). Stock ଵܵ and ܵ଺ are 
absolutely rejected in MVO but selected in SAW and TOPSIS. 
Proportions of these two stocks in the MVO equivalent 
scheme (1:1:0:0) are the least with around 8-10% compared to 

their weights in other schemes. This result emphasises the 
analogy of MVO and MCDM methods regarding the capacity 
of selecting and rejecting assets.  

Except for the aforementioned similarity, the difference 
between MCDM methods and MVO and also the advantage of 
MCDM methods is the availability of the well diversified 
characteristic in its optimal portfolio weights. The 
diversification effect is inherent in applications of MCDM 
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methods although they are deployed in various preference 
schemes. Conversely, the MVO optimal portfolios are poorly 
diversified since they are systematically concentrated on a few 
assets in contradiction with the ideal of diversification. 
Practitioners are aware that it is unwise to discard a large 
number of assets because covariance and average return are 
unstable over time, especially in a dynamic economic 
environment. This poorly diversified feature of MVO is 
demonstrated in this experiment: MVO selects only three to 
four out of nine experimental stocks (see Table XVI). MCDM 
portfolio selection results in the advantage of a well-
diversified selection. 

VI. CONCLUSION 
Applying fuzzy numbers to represent marginal impacts is an 

appealing idea since it is impossible to indicate which stocks 
are more important than the others under the higher moment 
context at the time of conducting the portfolio allocation. 
Investor’s preference regarding portfolio higher moment risks 
has been handled well by trapezoidal fuzzy number modelling 
of marginal impacts. Fuzzy numbers in particular or fuzzy 
logic in general provide an extremely helpful means to 
represent uncertainty and human knowledge. Besides, centroid 
based defuzzification method applied for fuzzy factors 
(variance, skewness and kurtosis) facilitates the integration 
between crisp factor (return) and fuzzy factors into MCDM 
calculation frameworks where none of the factors (originally 
in different scales) may distort the others.  

SAW and TOPSIS result in similar performance regarding 
portfolio higher moment optimization. They are also 
analogous to MVO in terms of ability to select superior stocks 
over various risk preference schemes. On the other hand, both 
SAW and TOPSIS have the advantage of well-diversified 
feature in portfolio weights compared to MVO.  

Along with higher moments, other quantitative risk 
measures, e.g. liquidity risk, value at risk, expected shortfall, 
etc. are also acknowledged as important in risky investment 
management. Further interesting research would extend to 
incorporate these kinds of risks pertaining to investigation of 
other MCDM methods such as ELECTRE, VIKOR or AHP. 
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