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Fuzzy Multi-Component DEA with Shared and
Undesirable Fuzzy Resources
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Abstract—Multi-component data envelopment analysis (MC-
DEA) is a popular technique for measuring aggregate performance of
the decision making units (DMUs) along with their components.
However, the conventional MC-DEA is limited to crisp input and
output data which may not always be available in exact form. In real
life problems, data may be imprecise or fuzzy. Therefore, in this
paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which
shared and undesirable fuzzy resources are incorporated, (ii) the
proposed FMC-DEA maodel is transformed into a pair of crisp models
using o — cut approach, (iii) fuzzy aggregate performance of a DMU
and fuzzy efficiencies of components are defined to be fuzzy
numbers, and (iv) a numerical example is illustrated to validate the
proposed approach.

Keywords—Multi-component DEA, fuzzy multi-component
DEA, fuzzy resources.

I. INTRODUCTION

HE data envelopment analysis (DEA) is a non-parametric

technique for evaluating the relative efficiencies of
decision making units (DMUs) with multiple inputs and
outputs [1]. It has been applied to wide range of organizations
such as banks, hospitals, schools, etc. However, in many real
life instances, DMUs can be separated into different
components, also known as decision making sub-units
(DMSUs). A DMU with such structure is known as multi-
component DMU. The study of the aggregate performance of
multi-component DMUs along with their components is
known as multi-component DEA (MC-DEA) [2]-[4]. The
standard DEA and MC-DEA models are typically based on the
assumption that inputs have to be minimized and outputs have
to be maximized. However, undesirable and shared resources
can also be present in the production process which needs to
be included while measuring aggregate and component-wise
performances. Thus, in this study, both shared and undesirable
resources are incorporated into the production process of MC-
DEA.

The conventional MC-DEA is limited to crisp input and
output data which may not always be available in exact form.
In real life applications, data might be available in fuzzy or
imprecise form. Therefore, in such situations, fuzzy MC-DEA
(FMC-DEA) approach is more preferable as compared to
traditional MC-DEA. In this paper, we extend traditional MC-
DEA to FMC-DEA and propose FMC-DEA model. In order to
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evaluate fuzzy performance of DMUs along with their
DMSUs in fuzzy environment, we use « — cut approach to
solve FMC-DEA model. Further, proposed methodology is
illustrated with a numerical example.

The paper is organized as follows: Section Il presents an
overview of DEA and MC-DEA with shared and undesirable
resources. Section |11 presents the proposed FMC-DEA model
with shared and undesirable fuzzy resources followed by the
methodology to solve it. A numerical illustration is presented
in Section V. Section V concludes the findings of our study.

I11.DEA AND MULTI-COMPONENT DEA

A. DEA (Data Envelopment Analysis)

To describe DEA efficiency evaluation, assume that the
performance of a set of » homogeneous DMUs be measured.
The performance of DMU, is characterized by a production
process of m inputs x; ; i = 1, ..., m to yield s, desirable
outputs  y%;r=12,...,s;and s, undesirable outputs
yj’,k; p=12,...,s,. Assume that input-output data are positive.

In DEA, the efficiency E; of DMU; in the presence of
undesirable outputs is defined as

51 59 m
— g ,8 _ b b
E = Zurkyrk Z UiV pi Z VikXik+
i-1

r=1 p=1

Then, the relative efficiency of DMU, is evaluated from the
following mathematical model presented by Puri and Yadav

[5l:

Model -1 Max E,
subject to 0<E <1 Vj=1..,n,

g b .
ujpze Vryu,2e Vpv,2e Vi

where v, ,u¥ and uzk are the weights corresponding to the

input, " desirable output and p” undesirable output of DMU,
respectively.

B. Multi-Component DEA with Shared and Undesirable
Resources

Nomenclature: Let n: Number of DMUs, d: Number of
DMSUs. For DMU, and i =1,2,...,d, let

e 7/°: Number of shared inputs consumed by DMSU,.
e 7, : Number of external inputs consumed by DMSU,.

e K#: Number of desirable outputs produced by DMSU..
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e K} :Number of undesirable outputs produced by DMSU,.
o X/ =(x,x,...,x3 )" : Vector of shared inputs.

5k
O = Y

consumed by DMSU..
o YO =y, pE)T s Vector  of  desirable

Vector of external inputs

outputs produced by DMSU..
o RO = (O 0 i) Veotor of undesirable

outputs produced by DMSU..
Let o, =(ak,a’....,al )" be vector for DMSU; such that
each a, corresponds to /” shared input for ¢ =12,...,7°. Let

a xS be the portion of #* shared input consumed by DMSU;

d . .
such that Z~-1aftk =1,Vt. The production process of a multi-

component DMU,, with shared and undesirable resources is
depicted in Fig. 1.

DMUy
(X(l) Ykg (IN

Yg(l)
X k DMSU, "
. k

Yg(d)
X —»[pmsu k
=y

Fig. 1 Multi-component DMU in DEA

The aggregate performance E of DMU; along with the
component-wise efficiencies £ 's are given by

4 UE®) y=o _Z" Ut yho
Ek(ﬂ) _ i=1 i=1

d ] :
@ x @ S(i) s
E l.lekl K +§ i::le Y (ay Xy)

and

)y £ _ b0 ybG)
o _ Ui -UTY
k

=—"— : i=12,....d.
Vk(l)lel) + VkS(,)(ailef)

where U U0 y® and  p5@D are the vectors and

S _ (1.8 2.8 5 8 \T
oy Xy = (0 Xy, QX v Oty x15k)

Theorem 1. E is a convex combination of E"s.

d . . d N
g(i) yeli) b(i) yb(i)
2 LU - U,
PP ] :
@) y (@) S(i) N
E [:1Vk X +§ HVk (o, X;)

d - R d .
Let H=>"" VX +>"" 10 (e, X7). Then

Proof £/ =

U,f(l) Y;Cg(l) —U,f(l) ka(l) . UEQ) Y;{g(z) —U,Z:(Z) Y;{b(z) .

E =
H H
N UED yeld) b ph@
H
Oy 750 s
Uy g e VO XP 1 (o X7
T 0y L pSs@ s
Vol X740, (0‘1ka) H

) @ y@ 5@ s
U@y _gr@ pre 7O xO 1y (o, x7)

- X
VX 7 X7 Z

@) y(d) | 175(d) s
U,f(d) Ykg(d) —U,f’(d) ka(d) Vo X+, (adek )

ot X
(d) y(d) S(d) N
Vil X+ v, (adek ) H

D) y@ S(1) N (d) y(d) S(d) N
Vi X+, (alka ) @ Vil X+ (auka)
+.o.+EY % .

=E®x
H H

XD+ (X))

Let 4, =
H

,i=123,...,d.

Then £ = 4 xE® + L, x B +...+ 2, x EL.

Hence, £ = zl_i_l/liE,f") and Zfd_lﬂ, =1 ()

completes the proof.
To derive £ EQ,E®,...,EL, we solve the following
mathematical model:

Model - 2 Max E
subject to 0<E@ <1, Vj=12,...,n,
0<EP <1 Vi=12...,d;Vj=12...n,

'y =1vi=12...1°,
(Us9, Up)eq, 1 €Q,, 1V €y, Vi=12,....d;
a, €Q,,Vi=12,...,d.

The sets Q,, Q,,Q, and Q, are assurance regions
defined by any restrictions imposed on multipliers [6]. In
Model-2, the constraints Ej.(") >0(j=12,...,n) are
redundant and this can be shown by using (1) and the
constraints £’ >0 (Vi=12,...,d;Vj=12,...,n). From (1),

d . .
we have E( = Z~-1}"'Ek(l) >0 as £ >0 and 4 >0, Vi

Therefore, Model-2 reduces to following model after
removing the redundant constraints £ >0 V; :
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Model - Max E
subject to EW <1 Vj=12,..n,
0<E<1,Vi=12...,d;Vj=12...n,
=L vi=12..1I"
d,

(U, Uf)eq, 1 eQ,, 1PV ey, Vi=12,...
a, €Q,,Vi=12,...,d.

Model-3 is a fractional model and can be reduced to the
linear form using Charnes-Cooper transformation [1] and the

variable substitution: e, v =v:9 | vt =1,2,...,1°;Vi:

b(i) 1 b(i)

Model -4 Max E(”)—ZZug” ZZ Ui Vi
i=1 r=1 i=1l p=1
d
subject to ZZV,‘;) x) Z _,f Txp =1,
i=1 =1 =1 t=1
(i) b(i) |,b(i)
S50 -S S -3 S -
i=l r=1 Ilp—l i=1 [=1
d
33w <0 w1z
i=l =1
K K} I 5
() ) b(i) - b(i) OO 30 S
Ui Yy _Z”pk Yo" T LIV Zv”‘ % <0,
) Pl =1 =1
=12,....,d;,Vj=12,...,n,
KE k!
r=1 p=l

a s
D=1 V=121

i=1
((uﬁ()luzgk(l)v :”ig,)():(”f/c():uzls)l ,MZ?;))G(_ZMV[':LZY...
(vf;),vgl;?, 7"}2)6627("1/(()"21{()1 VSS(k’))eg_)_a,Vi:l,Z,,.

2 I

(ailk,a,k,...,aik )654, vi=12,...,d.

The form of Q,, Q, and Q, will depend upon the structure
of Q,Q, and Q, respectively. The form of €, depends
upon how Q, and Q, are structured. The optimal objective
- 4 will give E“ for DMU, and the
— 4 are used

function value of Model
optimal solution (weights) obtained from Model
to evaluate EX,E®,...,E.

Theorem 2. A DMU, is said to be overall efficient if and
only if each DMSU of DMU; is efficient. Equivalently

E“ =1 ifandonly ifeach E{’ =1Vi=12,...,d

.d,

I1l. Fuzzy MuLTI-COMPONENT DEA

A. Fuzzy MC-DEA with Shared and Undesirable Fuzzy
Resources

The production process of a fuzzy multi-component DMU;,
is depicted in Fig. 2.

DMUy

X9 —p[pmsu, ;,:(
k

Fig. 2 Multi-component DMU in fuzzy DEA

Nomenclature: For DMU,, let n: Number of DMUs, d:

Number of DMSUs. For i =1,2,...,d, let

e 75 : Number of shared fuzzy inputs used by DMSU..

e [,: Number of external fuzzy inputs used by DMSU..

e Kf: Number of desirable fuzzy outputs produced by
DMSU,.

e K} :Number of undesirable fuzzy outputs produced by
DMSU..

o X7 =(& %y, %5,)" 1 Vector of shared fuzzy inputs.

o X0 = Vector of external fuzzy

inputs consumed by DMSU,.

(i) =) () T .
(%1 X570 I,Ik) .

o TEFO =G, 550, 340) ¢ Vector of desirable fuzzy
outputs produced by DMSU..
o YO = (phO ph0Y 70))" . Vector of undesirable

fuzzy outputs produced by DMSU..
Let &, =(at,a?,....a’ )" be vector for DMSU,. Let

al X} be the portion of ¢ shared fuzzy input consumed by
DMSU; such that Zizla;k =1,Vt. Then, the fuzzy aggregate
performance E“k(“) and component-wise fuzzy efficiencies

E s are given by

Z" Uz gEo _zd Uto g
i=1

E“ = and
S VOROLN VIO (a, X)
Ug( )Yg Ub( )Yb(
ED = =1,2,....d.

k

VaOxO1ySO(a, X5 )
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where UfD U0 y® and  1® are the vectors and

a, X5 = (-5, 255 ,....ak £5,) . To derive E ES,

ik

E®,...,E", we solve the following mathematical model:

4 Kf d_ K
Model -5 Max E/{(a):zz i(l)yi(t) ZZ Z/(\t)yi/((x)

i=l r=1 i=l p=1

subject to Zd:zv&') 7 +Zd:z SOFS 1,

i=l [=1 i=l t=1

i 4K i

d kf d I
(i) ~b(i)
Zzur’f y,, ZZ Upk yp/ szﬂf x,/
i=l r=1 i=l p=1 =1 I=1
s

d 1
DD VR <0, Vj=12,...,n

i=1 =1
KE K

i II
O 520) 0 500 0 0 5() 55
2 7O - D0 3 S <o

r=1 p=1 (=1

Vi=12,...,d;Vj=12,...,n,
0 > 0,vi=1,
p=
> e =1 vi=12,.,1°

((uu(l),uzéz)’“” K(;I){) (u&(,) Wb ul) ))te,VI—12 d,

(vl(;) Vi vf‘i)eQ (vli’),vzsk(i),...,

2,0d:Vj=12,....m,

vi0) ey, Vi=12,....d,
(allk,a,i,,...,ai'k )664, Vi=12,...,d.
Model -5 is known as FMC-DEA model.

B. Methodology to Solve FMC-DEA Model

Model-5 is a fuzzy linear programming problem (FLPP)
which can be solved using a — cut approach given in [5], [7]-
[9]. In this approach, a FLPP model is transformed to a pair of
crisp LPP models by applying « —cuts and extension
principle. The procedure to convert Model-5 into crisp models
is discussed below.

Let  SGEQ)VI=12,...,1;S(x}) Vi=12,..
JKfand S(700) Vp=12,...

1% SE0)
Vr=12,.. ,K? Dbe the supports
of I, external fuzzy inputs, / 5 shared fuzzy inputs, K§
desirable fuzzy outputs and K,-b undesirable fuzzy outputs of
DMSU; of DMU, respectively, given by

S =Gl Ly (<)) > O} VI =125 S(E3) =i | o () > O}
=12, 1% SGE) =0 g 057) > O vr =1.2..

and
ST =0 Ly 0)) > O ¥p =1.2,..., K7

The a—cuts of %), %, 350 and F0 are

respectively defined as

(@) =i €SE 10 () 2 =[5z ()]
Vi=12,...,1.,Vi=12,....,d, Vk=12,....n

IR E)

@

—[mm{x,k eSED g () = a}, max{xfp eSGED () = 3]

viik

(&) =0 €SGED a1 () > b= [, ()Y

I5,%k=12,....n

®
vi=12,...,

=[min{; eS| as () = o maxf €S(E)] s () = 3]
z i Xtk k

Xk

Ytk

G50 =05 eSEEN 0 0RO 203 =105 000 4

Vr=12,.. K8 Vi=12,..,d, Vk=12,..n

=Imin{i? eSGED w0 GRT)2a maxdyi® eSEED) w0 (77) 2]
o Yr

Yrik

e =03 €SGO a0 G2 = 1050)2. 0401

d,Yk=12,...,n

®)

Vp:l,Z,...,K, Vi=12,...,

=Imin {9 eS| 0 G2k maxdyi eSO o (40)2a}]
Yok » Yok P

Y p,ik

where « <(0,1]. Further, FMC-DEA model can easily be

transformed into a pair of crisp models by using « - cuts
given in (2), (3), (4) and (5). Since the input-output data are in
terms of fuzzy numbers, £ should also be a fuzzy number.

Let £ be a fuzzy number with membership function s .
¢ k

Let S(EM) be the support of E given by
SEL) ={EL |1z (ELY) > 0F. The a—cut of ES) s
k

denoted by (£(")),, Ve € (0,1] and is defined as

(EL)y ={EL eS(ES)| iy 0 (B2 ay=[(EL )z (ESL 1k

=ImindE( €S g (B)2 @} mad B € SES) g o (E)2 a1V k
By “k

where (E{)E and (E()Y are given by the Models-6a and
6b respectively.

Further, for finding ‘minimum aggregate efficiency’ of a
targeted DMU, we use (i) lower bound desirable outputs for
each DMSU; of the targeted DMU and upper bound desirable

outputs for each DMSU; of the other DMUs, (ii) upper bound
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undesirable outputs for each DMSU; of the targeted DMU and
lower bound undesirable outputs for each DMSU; of the other
DMUs, (iii) upper bound inputs (external and shared) for each
DMSU; of the targeted DMU and lower bound inputs (external
and shared) for each DMSU; of the other DMUs. For finding
‘maximum aggregate efficiency’ of a targeted DMU, we use
(i) upper bound desirable outputs for each DMSU; of the

Model -

i=1 r=1

i=1 /=1 i=1 t=1
d_Kf 78
b b S N
33w pEo) - Z Z b)) _ z Z v xf) z SO <0,v;
i=1 r=1 tlpl i=1 I=1 i=1 t=1
L Kf I, ) I8 .
(EO) = min a0 450 z L0 300 () § 80,8 <o v,

x,(') )a S,\’,(/') S(xé') )w r=1
I U
%), <xy S(,\',‘j )a KE

(

( 2(i) ,,2(i)
(y’g_z/(l)) }g(r) (yx(t)) Zu y,/

(

i

Vit d s
B Dok =L V=117,
(15,22, (022 € ¥ (0 e 0§ € B v
(ﬂi(i),.. v]sy('))e(%( S Qh . al )6Q4,Vt
and
Model - 6b
d Kf d K!
Max £ —zzug(’)yi(’) 3 ub 0
i=1 r=1 i=1 p=1
R
subject to ) Z v x4 z z V08 —
-1 =1 -1 =1
d Kf d K! d I d IS
b(i) b s
Zzug(:) PEO DTS00 DTS00 L3S 580,48 <0,
i=1 r=1 i=1 p=1 =1 =1 i=1 =1
U KE K I,
(a) _ g() g(i) _ b(i) (i) _ —S(i) P
(Ek )0! B () I:r}ax() U Z Vi Upk Vpj Z Z x" <0,vi, S
(x,/‘ )an' S(x' ) r=1 p=1 =1
() =xs<(x3), KE K}
R T A B MEARCRED WAUPAEL AN
(o omps(oy” | 77 =
V/,l,r,ap i,j “ d t _ N
Dok =L V=117,
((ufk(‘) uii'}i) (ufk('),..., b(’) )) e Ql,‘v’z (vl(k),... (0 )e QZ,VI
—S(i s 2
(vlk(’),... I('))EQ3,( ak ok, ak )6(24,V1

Thus, Models-6a and 6b reduce to the following models:

d K¢ d

Max () =3 D ufvi0 -3
I

subject to Zd: Zv,(,i) x,(,f) +Z Z v @ xp =1,

Kl
b(i) ,b(i P
Zu;k' ypj(-’) >0,Vi, j,

wes(ae), |2

targeted DMU and lower bound desirable outputs for each
DMSU; of the other DMUs, (ii) lower bound undesirable
outputs for each DMSU; of the targeted DMU and upper
bound undesirable outputs for each DMSU, of the other
DMUs, (iii) lower bound inputs (external and shared) for each
DMSU; of the targeted DMU and upper bound inputs (external
and shared) for each DMSU; of the other DMUs.

K b

b b
pl(cl) y pgcl)

i=1 p=1

=1 t=1
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Model - 7a o K} a1
p 2( U
(EA(”) )L = Max Zdliug“)(yﬁ“)) Zi b(z)(y Ez)) i-1 ; i (y ) Z:' ,Zi " (yp/ o - ; ; VIk (
), 1 »

=1 =1 i1 pol
,. —ZZ O(x$)V <0, V), j#k,
subject to Zd:i ;)(x,'))U+Zd:z Vo0 (x5)Y =1, , P

K$ K? I
o o D e e\ N b6 OYE N ) () E
a Kf d Z ug? (e )a _z wy (Vi a _z vie (x5 ) —
0 (180) b0 (000 D (L ()\U o ) =
SSuvem- S Swwr 2

i=1 r=1 i=1 p=1 i=1 I=1

=S(0) (S \L .
d_ S § Vi (x3)a <0, Vi,
=S() (S \U =
- 2 2 Vi (X4 ) <0, )
=1 -1 LS K/ d

; PIEICTLIPE WU CAD A ST

Kb d
3 NERCLTES 3 WELELTS LY i 5 B
i=1 r=1 i=1 p=1 i=1 =1 ! s() S U o
4 15 ‘ z I/.O(SO, Yi,j, J#*k,
_Zzii(t)(xi)i <0, Vj, j# k, ’ 1=1
i=1 =1 KE k!
; 3T a0 (a0 =3 WO () 2 0, v,
D uEO(vE0); —Z ) (00 = v ()Y - ) b =
r=1 p=1 1=1 K ) ) K;
s 3T U0 (pE0)E =3 w0 (O) 2 0, i, j,j =
> O <0, v =
_ d
g b - Z ; 1a"t" =1 vy,
K K/ I i=
() (e b (,b() 0 (DL . . . ,
DA g = D (s = D v ) - (w5 8 ), (2022 | € B
r=1 p=1 =1 i K}
I i i O (750 750 750 0 j
Z,S(A)(x <0, Vi, j, j#k, (vl(,(),vgk),...,vﬁf,){)e Qz:("u»( WVap aeeen Vs, )e Q,,Vi,
» - o (a,.l,c,afk,. al )e Q,, Vi,
D us Y = D w20, i, _
r=l p=1 Theorem 3. If (E®)Y and (£/”)V"are the optimum
& 0/ eI\ K B0) b0 objective function values of Model-7a and Model-7b
3t () =3 WO () 20, Vi, j,j % k, el 011 then (E@\F* < (E@0"
o =i respectively at any o € (0,1], then (E;”). <(E;”). .

C 21 i Definition 1. TFN [8] A=(a,a,a5) is defined by

= membership function x given by
i i (i) b(i) . b(i) b(l) ~ .
((ufk():“ﬂ)"”’uiﬂ) (ulk Uy el )jte,Vz,
i i i =~ —S@) =S —S(i ~ . X—a
(vl(k),vék),...,v}l,){)eQz,(vli(),vzsk(),...,v;;(k))EQ3,V1, w—a' 4 <X<dy,
1 2 s
(aik,aik,..., ay, )694, Vi, | X—as <
(x) = a, <x<ag,
iz (x) 4y —a 2 3
and
Model - 7b 0, otherwise.
d Kb
(a) _ (t) 2(i) b(z) b(r) ~ ~
(Ek ) Max Z‘Z, us (i), —212 o (Vo Theorem 4. (E[), < (E),, foranya,a, €(0,1] and
i1 r il p
i (a)\U* (a)\U* (a) \L* (a)\L*
4 I a<a,, e, (E"), <(E; )0(1 and (E;”), <(E:”),,
STURTIND 3 NTUTOTED 35 IS BRI i
iy T o where (E and (E are the optimum objective
¢ i=l = k o k a
4, Kf , K function values of Model-7b at «, and «, respectively, and
zz 20 (5,80 _ ZZ B (1,b() )L ZZ"I/)(XIJE))L 1 2 y
¥ D [J a * * . . . .
pu = pa (E{). and (E”). are the optimum objective function
d IS .
_zz 5()(x[k) <0, values of Model-7a at «; and «, respectively.

i=1 =1
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The sets of intervals {[(£))},(E{")}]|« < (0,1} reveal the
shape of 4, although the exact form of membership
k

function is not known explicitly [8]. If fuzzy inputs and
outputs are taken as TFNs, Mo can be approximated by the

triangular membership functlon. Thus, the fuzzy efficiency
E) can be defined as:

Definition 2. The fuzzy aggregate efficiency £/ of DMU;,
(E{™) g =UE) 2 (EEDT,
a (0,1, where (E()E and (E/”)Y are obtained from the

a

is defined by its a-—cut

optimal values of Model-7a and 7b respectively.
Definition 3. The fuzzy efficiency £ of DMSU; for

=[(EME(ED,

are obtained from the

DMU; is defined by its a—cut(E("),
a (0,2, where(EM):and (E)Y

optimal solutions of Model-7a and 7b respectively and are
given by

KE ol K by b
IR O P A (A D

1

0 (0 ,S()* u
ZHVH; x0). +Z o v (s

KE ' i KE by g G
2 0, Z L 030

(EO), = Vi

()' (1) *S()'
z Vi () +Z o Vi ()

where (ue®* ug®” .t b0" 10 0 0 0

(EME = and

Wk %k %2k v P pk l/ ' 2k 1ttt
V/(Al)* :i(l)*’fi(l)* . ;S(i)*) and (ug(t)’ uzéx)" u,i(t) ulhk(w" lzn(x)" .
wb ) VY L@y are the  optimal

solutlons of Model-7a and 7b respectively.
Definition 4. A DMU;, is said to be overall efficient in
FMC-DEA if each DMSU; of DMU is efficient. Equivalently,

(ESNE = (B[ =1Va e(0]] if each
(ENE =(EMY =1vi=12,....d, Va € (0,1].

IV. NUMERICAL ILLUSTRATION

To ensure the validity of the proposed methodology, we
provide a numerical illustration. Consider a multi-component
assessment problem of four DMUs in fuzzy environment.
Each DMU consists of two DMSUs. The DMSU, consumes
two external and one shared fuzzy inputs to produce one
desirable and one undesirable fuzzy outputs. The DMSU,
consumes one external and one shared fuzzy inputs to produce
two desirable and one undesirable fuzzy outputs. The data of
DMSUs for external input, desirable and undesirable outputs
are shown in Table I. The data for shared input is shown in

Table Il. The a-cuts (£/”), and (E),, ae(0.1],

=1,2 of aggregate fuzzy performance and component’s
fuzzy efficiencies of the four DMUs are evaluated by
executing MATLAB programs of Models-7a and 7b at
different values of «. The results are shown in Table I11.

TABLE|
EXTERNAL INPUT AND OUTPUT DATA FOR DMSU; AND DMSU,
DMSU;,
DMU W o e s
1 (240,252.5,255)  (19,21,23) (1247,1252,1255) (206,210,213)
2 (145,149.77,152) (10,13,16) (1045, 1049,1052) (135,139,142)
3 (87,90.19,92) (12,14,16) (900, 902,904) (145,148,150)
4 (63,67.18,69.5)  (13,17,19) (669, 672,676) (175,176,178)
DMSU,
DMU P 75 75 e
1 (247,250,253)  (20,23,26)  (2545,2550,2556)  (233,235,237)
2 (140,144,146)  (19,21,24)  (1433,1440,1444)  (482,485,488)
3 (59,62,65) (50,53,55)  (620,625,629) (588,590,593)
4 (397,400,406)  (9,12,15)  (404,410,417) (246,250,252)
TABLEII
SHARED INPUT DATA FOR EACH DMU
DMU x5

T (2240, 2250, 2256)
2 (2134, 2143, 2149)
3 (1376, 1382, 1390)
4 (2387, 2398, 2406)

The graphical representations of fuzzy aggregate

efficiencies Ekf“) are shown in Fig. 3 along with the fuzzy
efficiencies £ of each DMSU. It indicates that £, and
E,fi) are fuzzy numbers. Also shape of the membership

functions of Ek(“) and Ek(’) can be approximated as triangular

membership functions. Carefully observing Fig. 3, we can see
that only DMUj; is overall efficient using Definition 4. The
DMUs 1% 2" and 4" are said to be FMC-DEA inefficient
DMUs. The DMU, is efficient in case of DMSU,; but
inefficient in DMSU,. Thus, it is inefficient in terms of
aggregate performance. Similar is the case with DMU..

V.CONCLUSION

In this paper, we have extended MC-DEA with shared and
undesirable resources to fuzzy environments as the precise
input and output data are not always available in real life
applications. We have proposed the FMC-DEA model and
methodology to transform it into the crisp models by using
a —cut approach. The proposed methodology can easily be
implemented to real life problems. The obtained fuzzy
aggregate efficiencies and the fuzzy efficiencies of each
component provide additional information to the planners and
policy makers which help them to deal with uncertainties in
real life problems.
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TABLE 11l

THE o — CuTs OF E,E® aAND E® AT DIFFERENT VALUES OF « € (0,1]

DMU a=0 a=0.1 a=0.2 a=0.3 a=04 a=05 a=0.6 a=0.7 0=0.8 a=09 a=1
1 0.9740 0.9745 0.9750 0.9754 0.9759 0.9764 0.9769 0.9774 0.9779 0.9784 0.9789
(E): 2 0.9458 0.9468 0.9479 0.9490 0.9501 0.9512 0.9523 0.9534 0.9545 0.9556 0.9568
ke 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.6636 0.6690 0.6745 0.6801 0.6857 0.6913 0.6970 0.7027 0.7085 0.7143 0.7202
DMU a=0 a=0.1 a=0.2 a=03 a=04 a=05 a=0.6 a=0.7 0=0.8 a=09 a=1
1 1.0000 1.0000 1.0000 0.9946 0.9876 0.9852 0.9829 0.9808 0.9799 0.9794 0.9789
(B! 2 0.9926 0.9875 0.9825 0.9775 0.9727 0.9678 0.9631 0.9611 0.9597 0.9582 0.9568
ko Ja 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.7594 0.7589 0.7585 0.7580 0.7575 0.7557 0.7484 0.7412 0.7341 0.7271 0.7202
DMU a=0 a=0.1 a=0.2 a=03 a=04 a=05 a=0.6 a=0.7 0=0.8 a=09 a=1
1 0.6428 0.6494 0.6560 0.6625 0.6690 0.6756 0.6821 0.6885 0.6950 0.7015 0.7079
(EDY: 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
K Ja 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.8826 0.8894 0.8963 0.9032 0.9102 0.9173 0.9243 0.9315 0.9387 0.9459 0.9535
DMU a=0 a=0.1 a=0.2 a=03 a=04 a=05 a=0.6 a=0.7 0=0.8 a=09 a=1
1 1.0000 1.0000 1.0000 0.9929 0.9186 0.9019 0.8858 0.8445 0.7215 0.7147 0.7079
(EOY 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
k Ja 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 0.9890 0.9799 0.9710 0.9622 0.9535
DMU a=0 0=0.1 a=0.2 a=0.3 a=04 a=05 a=0.6 a=0.7 0=0.8 a=0.9 a=1
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(EP): 2 0.6906 0.6958 0.7011 0.7065 0.7119 0.7173 0.7229 0.7285 0.7341 0.7398 07456
ke Ja 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.0404 0.0409 0.0414 0.0419 0.0425 0.0430 0.0435 0.0450 0.0465 0.0490 0.0521
DMU a=0 0=0.1 a=0.2 a=0.3 a=04 a=05 a=0.6 a=0.7 0=0.8 a=0.9 a=1
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(E@Y 2 0.9909 0.9847 0.9785 0.9724 0.9664 0.9604 0.9546 0.7687 0.7609 0.7532 0.7456
ke 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.0602 0.0594 0.0585 0.0577 0.0569 0.0561 0.0553 0.0545 0.0537 0.0529 0.0521
< 14‘*DMU1 ! ! —S—DMU2 ! k| ——DMU 3 ! +DMU4‘
< [+ *
Sos S 05 £ 05 £os
< < k <
0 9 0 : ¢
0.9 0.95 1 94 096 098 1 %.5 0.6 0.7 0.8
‘ Efficiency Efficiency !Efficiency Efficiency
—+—DMSU 1 —S—DMSU 1 ! —+—DMSU 1 ! ——DMSU 1
2 « © ] ©
Zo0s 505 o5 ] 505
< < 1 <
95 1 5 0 0 706 o8 1
Efficiency Efficiency Efficiency 1 Efficiency
! 3 DMSU 2 ! —S—DMSU 2 ! —+—DMSU 2 <— DMSU 2
£ ] E £ : g
<05 =05 =05 . 205
< k
0 0 07 08 09 1 0 1 8.04 0.06 0.08
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Fig. 3 Shape of membership functions of £ and £"s.
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