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I. INTRODUCTION

HE systems of the form ®, where (®;o0,\), considered

by B. M. Schein [7], is a set of functions closed under the
composition “o” of functions (and hence (®; o) is a function
semigroup) and the set theoretic subtraction “\” (and hence
(®;\) is a subtraction algebra in the sense of [1]). He proved
that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B.Zelinka [9] discussed a
problem proposed by B. M. Schein concerning the structure
of multiplication in a subtraction semigroup. He solved the
problem for subtraction algebras of a special type, called the
atomic subtraction algebras. Y. B. Jun et al. [3] introduced
the notion of ideals in subtraction algebras and discussed
characterization of ideals. In [4], Y. B. Jun and H. S. Kim
established the ideal generated by a set, and discussed related
results.Near-ring theory has been developed by Pilz[6].Based
on near-ring theory, Dheena at el. [2],introduced the near-
subtraction semigroups and strongly regular near-subtraction
semigroups.

The concept of fuzzy subset was introduced by L.A.Zadeh
[8]. Fuzzy set theory is a useful tool to describe situations
in which the data are imprecise or vague. Fuzzy sets handle
such situation by attributing a degree to which a certain object
belongs to a set.K.J. Lee and C.H. Park[5] introduced the
notion of a fuzzy ideal in subtraction algebras, and give some
conditions for a fuzzy set to be a fuzzy ideal in subtraction
algebras.In this paper,we introduce the notion of fuzzy ideal
in near-subtraction semigroup and have studied their related
properties.

Il. PRELIMINARIES

Definition 2.1: A non-empty set X together with a binary
operation “~"is said to be a subtraction algebra if it satisfies
the following:

Dz —(y—2z)==x.
2z—(z-—y)=y—(y—2)
B)z—y)—z=(x—2z) —yforal z,y,z € X.

Example 2.2: Let X = {0,a,b,1} in which “~” is defined
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Then (X, —) is a subtraction algebra.
In a subtraction algebra the following holds:

o

(Pl)Yz—0=zand 0 —z =0.

(P2)(xz—y)—x=0.

(P3)(z—y)—y=z—y.

(P4)(z —y) — (y—2) = x —ywhere 0 = =z — z is an

element that does not depend on the choice of © € X.

Following [9],we have the following definition of subtrac-
tion semigroup.

Definition 2.3: A non-empty set X together with the
binary operations “~” and “.” is said to be a subtraction
semigroup if it satisfies the following:

(SS1) (X;—) is a subtraction algebra.

(552) (X;.) is a semigroup.

(8S3)x(y — 2) = zy — zz and (x — y)z = xz — yz,for all
z,y,z € X.

Example 2.4: [2] Let X = {0, a,b,1} in which “=” and “”
are defined by

-0 a b 1 .0 a b 1
0|0 0O 0 O 0|0 0 O O
ala 0 a O al0 a 0 a
bib b 0 0 b|0O 0 b b
111 b a 0 110 a b 1

Then (X, —,.) is a subtraction semigroup.
Now we have the following definition of near-subtraction
semigroup.

Definition 2.5: A non-empty set X together with the
binary operations “~” and “.” is said to be a near-subtraction
semigroup if it satisfies the following:

(NS1) (X;—) is a subtraction algebra.
(NS2) (X;.) is a semigroup.
(NS3) (x —y)z =zz—vyzforall z,y,z € X.

It is clear that 0 = 0,for all z € X .Similarly we can define a
near-subtraction semigroup (left).Hereafter a near-subtraction
semigroup means it is a near-subtraction semigroup(right)
only.

Example 2.6: [2] Let X = {0,a,b,1} in which “~” and “.”
are defined by

-0 a b 1 |0 a b 1
0/0 0 0 O 0/0 0 0 O
ajla 0 1 b ajla a a a
b|b 0 0 b bja 0 1 b
111 0 1 0 110 a b 1
Then (X, —,.) is a near-subtraction semigroup.
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Definition 2.7: A near-subtraction semigroup X is said to
be zero-symmetric if 0 = 0 for every z € X.

Definition 2.8: A near-subtraction semigroup X is said
have an identity if there exists an element 1 € X such that
l.x = 2.1 = x,for every x € X.

Definition 2.9: A non-empty subset S of a subtraction al-
gebra X is said to be a subalgebra of X ,if x—y € S,whenever
x,y €5.

Definition 2.10: Let (X,—,.) be a near-subtraction
semigroup . A non-empty subset I of X is called
(I1) a left ideal if I is a subalgebra of (X,—) and
xi—a(y—i)elforall z,ye X andi el
(I2) aright ideal if I is a subalgebra of (X, —) and IX C I.
(I3) anideal if I is both a left and right ideal. /X C I.

Remark 2.11: (i) Suppose if X is a subtraction semigroup
and I is a left ideal of X ,then for i € X and z,y € X, we
have zi — 2(y — i) = @i — (xy — zi) = xi € I by Property 1
of subtraction algebra.Thus we have XTI C I.

(#2) If X is a zero symmetric near-subtraction semigroup,then
fori e I'and x € X,we have zi—xz(0—i) = 2i—0 = ai € X.

For the sake of completeness, now we study some concepts
of fuzzy theory.

A mapping 4 : X — [0,1] is called fuzzy set of X and the
complement of a fuzzy set u, denoted by p' is the fuzzy set
in X given by /() =1 — p(x) for all z € X.The level set
of a fuzzy set u of X is defined as U(u;t) = {z € X|u(z) >
thforall0 <t <1.

I1l. Fuzzy IDEALS

In what follows, let X denote a near-subtraction semi-
groups,unless otherwise specified.

Definition 3.1: A fuzzy set  in X is called a fuzzy ideal
of X if it satisfies the following conditions:

(F11) p(z —y) > min{u(z),u(y)} for all z,y € X,
(F12) p(az —a(b—x)) > p(x) for all a,b,z € X and
(F13) p(zy) > p(z)forall z,y € X.

Note that p is a fuzzy left ideal of X if it satis-
fies(FI1)and(F12), and u is a fuzzy right ideal of X if it
satisfies (FI1) and (FI3).

Example 3.2: Let X = {0, a,b,1} in which “~” and “.” are
defined by ‘ ‘
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Then (X, —,.) is a near-subtraction semigroup.Let u be a
fuzzy set on X defined by n(0) = 0.8,u(a) = 0.5 and
w(b) = 0.3.Then by routine calculation,it is easy to prove
that p is a fuzzy ideal of X.

Theorem 3.3: Let i be a fuzzy left (resp. right) of X.Then
the set

«Q

Xy =A{x € X|p(z) = p(0)}

is a left(resp.right) ideal of X.
Proof: Suppose p is a fuzzy left ideal of X and let z,y €
X,.Then

wx —y) = min{u(z), u(y)} = (0).

Thus z —y € X,.
For every a,b € X and x € X,,we have

plaz = a(b —z)) > p(z) = p(0).

Thus az — a(b — z) € X,.Hence X, is a left ideal of
X.Similarly,we have the desired result for the right case. =

Theorem 3.4: Let A be a non-empty subset of X and pa
be a fuzzy set in X defined by

/LA(I’):{ s,ifxeA,

t , otherwise.
for all z € X and s,¢ € [0,1] with s > ¢.Then py is a
fuzzy ideal of X if and only if A is an ideal of X.Moreover
X, =A
Proof: Suppose 4 is a fuzzy ideal of X.Let x,y € A.Then
w(x —y) = min{p(x), p(y)} = s.

Thus,z —y € A.
For every a,b € X and x € A,we have

wlax —a(b—x)) > p(z) = s.
Thus az — a(b — z) € A.
For all z,y € A.Then
w(xy) = p(x) = s.

Thus, xy € A.Hence , u4 is an ideal of X.
Conversely, assume that A is an ideal of X.Let x,y € X.If at
least one of X and y does not belong to A,then

pa(x —y) 2t =min{pa(z), pay)}-
If z,y € Athen z —y € A ,we have
pa(@ —y) = s =min{pa(z), pa(y)}.

Let a,b,z € X and if x € A such that ax — a(b—z) € A,we
have

palar —a(b—x)) > s = pa(z).
If 2 ¢ A such that ax — a(b — x) ¢ A,we have
palar —a(b—x)) >t = pa(z).
For all z,y € A then xy € A,we have
palzy) = s = p().
Suppose = ¢ A we have
palzy) >t = p(z).
Hence 14 is a fuzzy ideal of X.Moreover

Xua = {z € Xlpalz) =pa0)}
= {zeX|pa(z) = s}
= {zeX|ze A}
A.

| |
Corollary 3.5: Let x4 be the characteristic function of a
subset A C X.Then x4 is afuzzy left(resp. right) ideal if and
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only if A is a left(resp. right) ideal.

Theorem 3.6: Let x be a fuzzy subset of X.Then p is a
fuzzy ideal of X if and only if each non-empty level subset
U(p;t) of wis an ideal of X.

Proof: Assume that p is a fuzzy ideal of X and U(u;t)
is a non-empty level subset of X.
(i) Since U (u;t) is a non-empty level subset of y, there exists
z,y € U(st), p(z—y) > min{u(x), p(y)} = t.Thusz—y €
U (s t).
(i) Let a,b,x € U(u;t),we have p(az—a(b—z)) > p(x) > t.
Thus az — a(b —x) € U(u;t).
(iii) Let z,y € U(w;t), such that u(xy) > p(x) > t.Thus
xy € U(p;t).Hence,L(y;t) is an ideal of R.
Conversely,suppose that U (u;t) is an ideal of X.
(i)Let if possible, p(zo — yo) < min{pu(xo), p(yo)},for some
xo,Yo € U(u;t),then by taking

to = 5o — yo) + min{u(zo), (o)}

we have M(xo — y()) > to,for /L(l’o) > to,u(yo) > t().ThUS
xo —yo ¢ U(u;t)for some zo,y0 € U(u;t).This is a
contradiction,and so u(x —y) > min{u(z), p(y),for allz,y €
U(p;0).

(if)Let if possible, for some z¢ € U(p;t) p(az—(a(b—2x)) <
wu(xg), for all a,b € X and ,then by taking

to = %{M(axo — a(b — «EO)) + N(ZL’O)}a

we have p(azg — a(b — x0)) > to,for u(zo) > to, plyo) >
to.Thus axg — a(b—xo) ¢ U(p;t),for some zy € U(p;t) and
for all a,b € X.This is a contradiction,and so p(az — a(b —
x)) > p(x)forall x € U(ust) and a,b € X.

(ii)Let if possible, p(zoyo) < w(xo),for some zg,yo €
U(p; t),then by taking

to = 5 {u(zoyo) + (o)),

we have /L(l‘oyo) > to,for /L(.Z‘o) > t(),,u,(yo) > t().ThUS
xoyo & U(u;t),for some zo,yo € U(p;t).This is a contradic-
tion,and so p(zy) > p(z),for allz,y € U(p;t).Hence U(u;t)
is a fuzzy ideal of X. |

Definition 3.7: Let X be a near-subtraction semigroup and

a family of fuzzy sets {y;]i € I} in X.Then the intersection
(/\Iui> of {u;|i € I} is defined by
i€
(Am) @ =int G e 1
Theorem 3.8: If {y;|i € I} is a family of fuzzy ideal of
X then (/\ /h) (z) is a fuzzy ideal of X.
Proof: Let {yu;|i € I} be a family of fuzzy ideal of X.

(i)For all z,y € X,we have

(/\ m) (e~ y)

inf {min (p;(x),

= inf {pi(z —y)li € I}

Y

wi(y))li € I}

= min {inf (p;(z)|i € I) ,inf (u;(y)|i € I)}

wf () (4]

(iyFor all a,b, x € X,we have

</\ ui) (ax —a(b—2)) = inf {u;(ax —a(b—2))|i € I}

iel

(\Y

inf {p;(z)|i € I}

= {inf (pi(x)|i € 1)}

()

(iii) For all z,y € X ,we have

(A m) (o) =it Gteli € 1

icl

v

inf {min (u;(x))|i € I}

(4) e

Hence </\ Hi) is a fuzzy ideal of X.
el

[ |

Definition 3.9: Let f : X — X’ be a mapping ,where X
and X’ are non-empty sets and p is a fuzzy subset of X.The
preimage of p under f written pf,is a fuzzy subset of X
defined by p/ = p(f(x)),forall z € X.

Theorem 3.10; Let f: X — X’ be a homomorphism of
near-subtraction semigroups. If 4 is a fuzzy ideal of X’ then
u! is a fuzzy ideal of X.

Proof: Suppose  is a fuzzy ideal of X’ then
(i) For all z,y € X,we have

p(x—y) = p(f(@—y)=plf) - f)
> min{p(f ( ) u(f(y)}
min {4 (z), 1! (3)}

\%

(ii) For all a,b,z € X ,we have

pl(ax —alb—2)) = p(f(az—a(b—2)))

= p(f(az) — f(a(b—2)))

= p(fla)f(z) — fa)(f(b) — f(x)))
> p(f(@))

= ().
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(iii)For all =,y € X,we have

pl(zy) =

Y,

[ |
Hence pf is a fuzzy ideal of X.

Theorem 3.11: Let f : X — X’ be a homomorphism of
near-subtraction semigroup . If i/ is a fuzzy ideal of X ,then
u is fuzzy ideal of X',

Proof: Suppose  is a fuzzy ideal of X’ then
(i)Let 2/, y" € X' there exists z,y € X such that f(z) = 2’
and f(y) =y’ ,we have

pE —y) = wu(f(x)-f(y)
= pu(f(z—y)
= ' (z—y)
> min {u (x), 1 (v)}
= min{u(f(@), 1 (f()}
= min{p@),p@)}.

(ihLet a',b', 2" € X'there exists a,b,x € X such that
fla)=d, f(b) =0 and f(z) = z',we have

pla's" —bla —2')) = p(f(a)f(z) = f(b)(f(a) - f(2)))
= p(flax) = f(0)f(a - x))
= p(flaz) = f(b(a - x)))
= p(f(ax —bla - x)))
p! (ax —b(a — z))
> ()
p(f(x))
p(a).

(iii)Let =’,y" € X' there exists x,y € X such that f(z) =
z" and f(y) = y',we have

p('y') = w(f()f) =mnplf(zy)
= ! (xy)

! (x)

= p(f(x))

p(z)

Y

Hence p is a fuzzy ideal of X', u

Definition 3.12: Let f be a mapping defined on X.If v is
a fuzzy subset in f(X),then the fuzzy subset x = v o f in
X(i.e., the fuzzy subset defined by u(z) = v(f(z)) for all
z € X) is called the preimage of v under f.

Proposition 3.13: An onto homomorphic preimage of a
fuzzy ideal of X is a fuzzy ideal.
Proof: Straight forward. u

Let © be a fuzzy subset in X and f be a mapping
defined on X.Then the fuzzy subset p/ in f(X) defined by
p(y) = sup p(x) forall y € f(X) is called the image

z€f~1(y)

of u under f.A fuzzy subset 4 in X is said to have an sup
property if for every subset N C X there exists ny € N such

that p(ng) = sup p(n).
neN

Proposition 3.14: An onto homomorphic image of a fuzzy
ideal with sup property is fuzzy ideal.
Proof: Let f: X — X' be an onto homomorphism of near-
subtraction semigroup and let 4 be a fuzzy ideal of X with
the sup property.

()Given 2/, y' € X' \we letzg € f~
be such that

') and yo € f7H(Y)

sup  p(n)
nef-1(y")

sup  p(n), p(yo) =

nef-1(z’)

p (o) =

respectively. Then , we have

sup ()
sef (@ —y)

min{u(zo), 1 (yo)}

= ming sup pu(n), sup pu(n)
nef~i() nef~1 )

= min{p’ ()0 ()}

w (@ =)

v

(i) Given o/,b', 2" € R, we let ag € f~1(a'),
bo € f~1(V) , zo € £~ (') be such that

ph (@ —d(V —2') = sup 1 (2)
ze€f~1(a'z'—a’ (b —x'))
1 (o)

= sup pu(n)
nef-1(x’)

= u (@),

(iii)Given ',y € X'we let zp € f~1
f~1(y") be such that

\Y

(') and yo €

p(xo) = sup p(n), u(y)= sup pu(n)
nef-1(z’) nef~1(y’)
respectively. Then , we have
pl(@'y) = sup pu(z)
z€f = (a'y")
> (o)
= sup pu(n)
nef=1(z)
= ul (@)

Hence,uf is a fuzzy ideal of X',

IV. CHAIN CONDITIONS

Proposition 4.1: Let i and v be a fuzzy subset of X .If they
are fuzzy ideal of X then so pNv,where pNwv is defined by
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(unv)(z) = min{u(x),v(z)} forall z, € X.
Proof: (i) For all z,y € X ,we have

(nOv)(z —y) min{p(z —y),v(z —y)}
min{min{p(x), 1(y)},
min{v(z),v(y)}}

min{(p N v) (@), (pNv)(y)}-

Y

(ii) For all z,y € X,we have

(nNv)(ax —a(b—x))
= min{u(az —a(b — z),v(az —a(b—z)}
min{p(x), v(z)}

(nOw)(z).

AV

(iii) For all z,y € X,we have

(unv)(zy) = min{u(zy),v(zy)}
min{u(y), v(y)}
= (LNv)(y).

Hence,u N v is a fuzzy ideal of X.

Y

Theorem 4.2: Let 1 be a fuzzy subset in X and
Im(p) = {0, a1, ..., ax },where a; < a; whenever i > j.

Let {A,|n =0,1,....k} be a family of ideals of X such that
A CAC..CA=X

(ii) u(A*) = a,where AX = A, \ A,_1,A_1 = ¢ for all
n=20,1,...k.

Then p is a fuzzy ideal of X.
Proof: Suppose {A,|n =0,1,...,
X.
(i) For all z,y € X,Then we discuss the following cases:|f
x € A, and y € A, such that x —y € A, since A, is an
ideal of X.thus

wx —y) = an = min{pu(z), u(y)}.
If 2 ¢ A and y ¢ A’ then the following four cases arise:

k} be a family of ideals of

1) ze X\A,andye X\ A,
2) xe A, 1andy € A,

I zeX\A,andy € A,
4 ze€A,1andye R\ A,

But,in either cases,we know that
p(@ —y) = min{p(x), p(y)}.
If 2 € X\ A and y ¢ A’ then either y € A,_; or
y € X\ A,. It follows that either z € A,, or z € X'\ A,,.Thus
pu(x —y) = min{p(z), p(y)}.
If z ¢ X\ A} and y € A} then by similar process we have
(e —y) = min{p(z), p(y)}-
@i)lf a,b € X and = € A,, then az — a(b — z) € A,,.Then
wlax — a(b — x)) = min{u(a), u(b)}.
If a,b e X and = ¢ A, then,we have

plax —a(b—z)) = an = p().
(iii) Similarly, for xz,y € X ,we have
w(zy) = p(y).
Hence p is a fuzzy ideal of X. u
Theorem 4.3: Let {A,|n € N} be a family of ideals of X
which is nested,that is,X = A; D As D ....Let u be a fuzzy
subset in X defined by

T if © € Ap\Any1,n=1,2,3...,
nE) =94 4 ifre () An.
n=1
for allx € X.Then p is a fuzzy ideal of X.

Proof: Let z,y € X.
(i)Suppose that © € Ay \ Ag+q and y € A\ Arqq
for k = 1,2,..;r = 1,2,... .Without loss of generality,we
may assume that & < r.Then x —y € A, and so

plr—y) > =min{p(z),p(y)}

ko
T k+1
If z,y € ﬂA thenz —y € ﬂA and thus

n=1

plz—y)=1=min{u(z),pn(y)}

o0 o0

Ifz € (| A, and y ¢ [ Ay.then there exists ¢ € N such
n=1 n=1

that y € A; \ A;41.1t follows that = — y € A; so that

w(x—y) > = min {x(z), p(y)}

i+1
Similarly,we can prove that

p(x —y) > min (u(z), p(y))

for all z ¢ ﬂA then y € ﬂA

n=1 n=1

(i)Now,let a,b € X.If ;o € A, \ A4, for some k£ =
1,2,...,then az — a(b — x) € A.Thus
k
p(az —a(b—z)) = ) = p(z)

Ifze () A, thenax —a(b—z) € () A, forall a,b €

XThus " e
plar—alb—x)) =1=p(x).
Assume that @ € A, \ A4, for some r =1,2,3,...,and
b e ﬁ An(or, ac ﬁ A, and b € A, \ A, for some
= :7[1,:2173...).Then T enji and so
g = )
(iii) Now,if z,y € Ag \ Ak for some r = 1,2, 3..., then
y € A, as A, is a ideal of X.Thus

plax —a(b—x)) >

w(zy) > = pu(y)-

r+1
o0 o0

Ifz,y e () A, theny e () 4, and so
n=1 n=1

p(zy) =1=p(y).
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Hence, p is a fuzzy ideal of X.
[ |

Let 4 : X — [0, 1] be a fuzzy subset of X.The smallest
fuzzy ideal containing p is called the fuzzy ideal generated
by w, and p is said to be n-valued if p(X) is a finite set
of n elements.When no specific n is intended, we call p a
finite-valued fuzzy subset.

Theorem 4.4: A fuzzy ideal v of X is finite valued if and
only if a finite-valued fuzzy subset 1 of X is generated by v.
Proof: If v : X — [0,1] is a finite-valued fuzzy ideal of
X,then one may choose i = v.Consequently, assume that p :
X — [0,1] is a n-valued fuzzy subset with n distinct values
ti,ta, ..., to,where t; > to > ... > t,.Let G? be the inverse

image of ¢; under p, that is,G* = p~1(¢;).Obviously, U G' C

=1

U G¥ when j < ».We denote by A7 the ideal of X generated

i=1

i
by the set |J G*.Then we have the following chain of ideals:

i=1
AlCcA?C..CcA"=X
Define a fuzzy v: X — [0,1] by

pwy={ tn if € A",
V=Vt if e ANALj=1,2..,n—1.

We claim that v is a fuzzy ideal of X and p is generated by
v.Let x,y € X and let i and j be the smallest integer such
that x € A® and y € A7.we may assume that i > j without
loss of generality.Then z — 3 € A? and 2y € A’ and so

v(z—y)>t; =min{t;,t;} = min{v (z),v (y)}

and
v(zy) =t =v(y).

Now,let a,b € X .If 2 € AJ for some i < jthen z € A? as
A’ is a ideal of X.Thus

v(ar —a(b—x)) >t; =v(z).

Hence, p is a fuzzy ideal of X.
If x € X and pu(z) = tthen z € G7 and so » € A7.But
we get v(z) > t; = p(z).Consequently, p C yLet ~ be

any fuzzy ideal of X which is a subset of p.Then, U Gt =

U(u;t;) € U(ysty), and thus A7 C U(y;t )Hencey Cpu
and p is generated by v.Note that | Imy |= n =| Imv |.This
completes the proof. u
A near-subtraction semigroup X is a said to be Noetherian
(see [9]) if it satisfies the ascending chain condition on ideals
of X.

Theorem 4.5: If X is a Noetherian near-subtraction semi-
group , then every fuzzy ideal of X is finite valued.
Proof: Let 1 : X — [0, 1] be a fuzzy ideal of X which is not
finite valued.Then,there exists sequence of distinct numbers
w(0) =t1 > tg > ... > t,,where t; = u(z;) for some z; € R.
This sequence induces an infinite sequence of distinct ideals
of X:

U(p;ty) CU (usta) C ... CU (usty) C

This is a contradiction.

[ |
Combining Theorem 4.4 and Theorem 4.5,we have the
following corollary.

Corollary 4.6: If X is a Noetherian near-subtraction semi-
group, then every fuzzy ideal of X is generated by a finite
fuzzy subset in X.

V. NORMAL FUZZY IDEALS

Definition 5.1: A fuzzy ideal p of X is said to be normal
if there exists a € X such that u(a) = 1.

We note that if x is a normal fuzzy ideal p of X is normal if
and only if (1) = 1.Let F(X) denote the set of all normal
fuzzy ideal of X.

Theorem 5.2: Let p be a fuzzy ideal of X and let u* be
a fuzzy set in X given by u*(z) = p(z) + 1 — p(1),for all
x € X.Then p* € Fy(X) and p C p.

Proof: For any x,y,2 € X we have p*(1) = u(1) +
1—p(l)=1>p*(z) and
(i)For all z,y € X ,we have

ptx—y) = px—y)+1—p)

min{p(x), p(y)} +1 — p(1)

= min{p(r) + 1 —p(1), p(y) +1—p(1)}
= min{u*(z), 1" (y)}.

(iFor all z,a,b € X,we have

Y

pt(axr —alb-2)) = plaz—bla—a))+1-p(1)
> p(x)+1—p(l)
= pt(x).

(ii)For all z,y € X,we have

ptlzy) = pley) +1—p(1)
> p(y) +1—p(1)
= pt(y).

Hence p € F(X).Obviously, u C pt.
|

Corollary 5.3: If p be a fuzzy ideal of X satisfying
ut(a) =0 for some a € X, then u(a) = 0.

It is clear that fuzzy ideal p of X is normal if and only if
p = p,and for any fuzzy ideal p of X we have (u*)* =
pT.Hence if p is a normal fuzzy ideal of X then(u™)* = pu

Theorem 5.4: Let u be a fuzzy ideal of X and let ¢ :
[0, £(0)] — [0, 1] be an increasing function.Let 14 be a fuzzy
set in X defined by py(z) = ¢(u(z)) for all z € X.Then
we is a fuzzy ideal of X.Moreover,if ¢(u(0)) = 1 then
we € Fn(X),and if ¢(t) > ¢ for all ¢t € [0,1] then p C py.
Proof: (i)Let z,y € X.Then

po(z—y) = o(u(z—y))

p(min{p(z), u(y)})

min{@(u(x)), ¢(u(y))}
(v)}

min{pig (), 1o (y)}-

Y
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(i)Let a, b,z € X.Then

pelar —a(b—z)) = ¢(ulaxr —a(b—1x)))
> ¢(u(x))
= pg(z)
(iii)Let =,y € X.Then
te(zy) = ¢(u(zry))
> d(u(y))
= ()

Hence p is a fuzzy ideal of X_.If ¢(1(0)) = 1 then obviously

e is normal , and so ps € Fy(X). Assume that ¢(t) > ¢
for all ¢t € [O,M(O)].Then to(z) = ¢(p(x)) > p(x) for all
x € X,which proves that u C pg.

[ |

Theorem 5.5: Let 1 € Fx(X) be a non-constant maximal
element of the poset (F (X), C).Then p takes only the values
0and 1.

Proof: Since 4 is normal,we have ;(0) = 1.Let p(z) # 1 for
some x € X.We claim that p(z) = 0.If not,then there exists
xo € X such that 0 < p(xo) < 1.Define on X a fuzzy set
v putting v(z) = M for all x € X.Then,clearly v is
well-defined.

(i) For all z,y € X ,we have

p(r —y) + p(xo)

2
min{p(z), w(y)} + p(wo)
2
) + (o), u(y) + (o) }
2
p(x) + p(xo) ply) + pu(wo) )
2 ’ 2

= min{v(z),v(y)}.

(ii) For all a,b,z € X ,we have

va—y) =

Vv

man{p(z

= min{

plaz — a(b — z)) + p(zo)

v(ax — a(b— x))

(iii) For all =,y € X,we have
v(zy) = p(zy) + p(xo)

> B/ PV
- 2
= v(y).
Thus v is a fuzzy ideal of X.By Theorem 5.2, v is a maximal
fuzzy ideal of X.Note that

vi(zg) = wv(xg)+1-v(0)
o) ) | p0) ¢ )
2 2
_ plmo) +1
5 .

and v(zg) < 1 = % = v*(0).Hence vt is non-
constant, and p is not a maximal element of F (X).This is a
contradiction. |

Definition 5.6: A fuzzy ideal ;. of X is said to be maximal

if it satisfies:
(M1) p is non-constant, and
(M2) p* is a maximal element of (Fy(X), Q).

Theorem 5.7: If a fuzzy ideal of X is maximal,then
(¢) p is normal,
(i1) p takes only the values 0and 1,
(141) Xu” = p,where p° = {z € X|u(0) = 1},
(iv) p® is a maximal ideal of X.
Proof: Let u be a maximal fuzzy ideal of X.Then p* is
a non-constant maximal element of the poset (Fy(X), C).It
follows from the Theorem 5.5 that T takes only two values
0 and 1.Note that u*(z) = 1 if and only if u(z) = ©(0),and
pT(0) =0 if and only if u(x) = u(0) —1.By corollary 5.3,we
have p(x) = 0 and so x(0) = 1.Hence y is normal and pt =
w.This proves (i) and (it).
(#i7) Obvious.
(iv) It is clear that p° is a proper ideal of X .Obviously p° #
X because o takes two values.Let A be an ideal containing
p0.Then g0 C pa,and consequence,n = uf C pa.Since
w is normal,u 4 also is normal and takes only two values 0
and 1.But,by the assumption, . is maximal,so p = 4 OF u =
o,where ¢(z) = 1 forall z € X.In the last case u° = X ,which
is impossible.So,u = pra.i.e.uq = xa.Hence u = A

]

Definition 5.8: A fuzzy ideal p of X is said to be complete
if it is normal and there exists z € X such that p(z) = 0.

Theorem 5.9: Let p be a fuzzy ideal of X and let w be a
fixed element of X such that N( ) = u(w).Define a fuzzy set
p*in X by p* () = L= for all o € X.Then y* is a
complete fuzzy |deal o# )2
Proof: (i)For any z,y € X ,we have

pr—y) —p(w)
p(1) = p(w)
min{u(z), w(y)} — p(w)

pre—y) =

>

= min

= min{u

p (e —alb—x)) =

(
(@) — p(w)
SO ETC)
= p(z).
(iif)For any x,y € X ,we have
0y = P (zy) — p(w)
p(1) = p(w)
m(y) — p(w)
p(1) = p(w)
= 1Y)
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Hence p* € Fy(S5).Since p*(w) = 0,thus p* is a complete
fuzzy ideal of X. u
Theorem 5.10: Every maximal fuzzy ideal of X is com-
pletely normal.
Proof: Let p be a maximal fuzzy ideal of X.Then by Theorem
5.7 4 is a normal and p = pu* takes only two values 0
and 1.Since y is non-constant,it follows that x(0) = 1 and
w(zx) =0 for some = € X.Hence y is completely normal. m
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