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Optimization
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Abstract—In this paper, an improved ant colony optimization 
(ACO) algorithm is proposed to enhance the performance of global 
optimum search. The strategy of the proposed algorithm has the 
capability of fuzzy pheromone updating, adaptive parameter tuning, 
and mechanism resetting. The proposed method is utilized to tune the 
parameters of the fuzzy controller for a real beam and ball system. 
Simulation and experimental results indicate that better performance 
can be achieved compared to the conventional ACO algorithms in the 
aspect of convergence speed and accuracy. 

Keywords—Ant colony algorithm, Fuzzy control, ball and beam 
system. 

I. INTRODUCTION

NT colony optimization (ACO) algorithm is a 
population-based evolutionary computation method, 

inspired to mathematically simulate the social behaviors of ants 
forage. Similar to genetic algorithms (GAs), ACO is also 
initiated with a population of candidates that are randomly 
moved in a multidimensional search space [1]-[3]. However, 
GA saves only the better generations, thus it may lead to local 
optima rather than the global optimum. The ACO is a 
multi-agent approach for solving difficult combinatorial 
optimization problems, such as the traveling salesman problem 
(TSP) [4][5]. ACO algorithms have been successfully applied 
to versatile combinational optimization problems, namely 
vehicle routing [6], quadratic assignment problem (QAP) [8]
[9], and job-shop scheduling [7].

Fuzzy rule-based systems (FRBSs) have been extensively 
applied in many areas of interest, including the controller 
design, cluster analysis, and image processing. However, the 
derivation of fuzzy rules is often difficult and requires expert 
knowledge. Many researchers have proposed optimization 
methods for fuzzy systems using meta-heuristic algorithms 
such as tabu search, genetic algorithms, simulated annealing 
(SA), and evolutionary algorithms (EAs) to overcome this 

problem [10].
 In the literatures, some ACO-based fuzzy control strategies 
have been proposed [11][12], however, only the conventional 
ACO is utilized. In this paper we first propose an improved 
ACO algorithm with fuzzy pheromone updating. Then the 
proposed improved optimization algorithm is applied to a real 
ball and beam system for the position balance control.  
Compared with other ACO related methods, the superiority of 
the proposed work can be evaluated from the simulation and 
experimental results.    

This paper is organized as follows. Section II the common 
concepts of ACO algorithm are presented. The proposed 
improved ACO algorithm is described in Section III. As for the 
ball and beam system, the simulation results, based on the 
proposed algorithm, are addressed in Section IV. Experimental 
set-up and measurement results are provided in Section V. The 
concluding remarks are given in Section VI.  

II. ANT COLONY OPTIMIZATION

The ant colony optimization was developed in early 1990s 
by Dorigo et al. [1]. The ACO technique is one of the meta- 
heuristic optimization methods and is inspired by the capability 
of real ants to establish the shortest path from a food source to 
their nest. Ants lay the chemical substance or the trails of 
pheromone, on the ground when they move along paths. Each 
individual ant makes a decision of the moving direction based 
on the strength of the pheromone trails. The better path is that 
has higher amount of the pheromone trails on the ground. 
While more and more ants track on the food source, the shorter 
path accumulates the more pheromone trails. Thus, most of the 
ants are attracted to the shorter path, and this behavior of the 
path selection encourages the positive feedback effect. It is 
noted that the ants finally will find the shortest path. The ACO 
algorithm is inspired by the aforementioned observation and 
can be named artificial ant. Although the ACO imitates the 
behavior of real ant, the property of artificial ants is distinct 
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An environment is the discrete time; they lay the 
pheromone trail on the sample time. 

The ant system (AS) was the first algorithm within the ACO 
algorithms framework [2]. The AS algorithm was successfully 
applied to the traveling salesman problem, and it had 
satisfactory results compared with traditional methods such as 
GA, EA, and SA. The TSP is typically a combinational 
optimization problem, which can be modeled as ),( EVG ,
where  is a set of nodes and 

 is a set of arcs. The object of the TSP 
is to find the minimum length Hamiltonian circle on G . The 
cost function is defined as the distance of edge . The 
distance between each pair of nodes  and  is 

represented by  that is the Euclidean distance between 
node  and , where . Let 
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pheromone trails. In AS, the probability that an ant k ,
currently located at the city i, chooses the city j as the next city 
is given by 
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where ijij d/1  is the heuristic value of moving from city i

to city ,  is the set of cities remaining to be visited by the 
ants,

j k
iN

 and  are the relative weights of pheromone and 
visibility, respectively. The pheromone level of the selected 
element is updated by 

ijijij  (2) 

where  is a parameter such that 1  represents the 
evaporation coefficient, 110 , and ij  is related to the 
performance of each ant. 

III. THE PROPOSED APPROACH

For the complicated combinational problems, the 
requirement of long convergence time and trapped in the local 
optima are the typical drawbacks with conventional ACOs. In 
this paper, an improved ACO algorithm, including the adaptive 

 parameter, the fuzzy pheromone and the clear mechanism, is 
proposed to improve the convergence performance. In the rest 
of this paper, the proposed optimization algorithm is named as 
FACO.

A. The adaptive   parameter 
The parameters  and  are the weighing values of the 

pheromone trails ij , and the visibility ij , respectively. In the 
early iterations, the pheromone trails on the path are not 
significant, thus the path choice probability can be simply 
influenced by the visibility. In the later iterations, the trails of 

pheromone are significantly accumulated for the best path, and 
the choosing probability is influenced by the pheromone trails. 
In order to increase the range of solution space and decrease the 
number of iteration, the  can be undated by 

 (3) 

where  is a heuristic value. 

B. The Fuzzy Pheromone 
The pheromone level is updated by (2) and gbij L/1 ,

 is the length of the optimal global tour from the beginning 
of the trail. In this paper, a modified pheromone updating is 
given as follows 

gbL

)( gbijij Lf  (4) 

where )(f  is a fuzzy function. The proposed fuzzy inference 
system is represented as 

iii BTHENAXIFR Y1:  (5) 

where is the  fuzzy relation, iR thi X ,  is the input variable, Y
is the output variable,  is the fuzzy set in antecedent part, 
and  is the fuzzy set in the consequent part. To calculate the 
output Y , the centroid method is used for defuzzification. With 
the fuzzy pheromone mechanism, the input and output 
membership functions are shown in Fig. 1, and the fuzzy 
inference rules are developed in Table 1 with the fuzzy sets VS 
(vary small), S (small), M (medium), L (large), and VL (very 
large).

1iA

iB

Y
1y2y3y4y5yX

123 xxx4x5x

 (a) (b) 
Fig.1. Membership functions of the fuzzy pheromone  
(a) Input and (b) output membership functions.

Table 1. Rule table of the fuzzy pheromone 
X VS S M L VL
Y VL L M S VS

C. The clear mechanism 
Commonly, most of the optimization methods intend to find 

the global optimal solution sooner. The behaviors to find the 
optimal solution include exploration and exploitation. The task 
of exploration is to search unknown regions of objective space 
and the purpose of exploitation is to find best solution in 
attractive areas of objective space. In practice, the exploration 
process can increase the probability to obtain the global 
optimum and the convergent speed can be improved through 
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the exploitation iterations. However, it is not easy to 
simultaneously perform the exploration and exploitation 
procedures. In conventional ACO methods, the pheromone 
trails arise quickly on the best path that can lead to most ants 
toward this path. The pheromone of the best path is much larger 
than other paths and the selection probability of the other paths 
could be much smaller. Therefore, the phenomenon of 
stagnation will be occurred. In this paper, a clear mechanism is 
proposed as follows 

otherwise
PPif

ij

clearrandom
ij ,

,0
max

max  (6)

where  is the pheromone of the best path,  is 
randomly number, , and  is parameter of 
the clear mechanism. When the clear mechanism is performed, 
the pheromone trails of the best path will be reset to zero. 
Consequently, the ants can select other paths and deviate from 
the local optimal solution. 

max
ij randomP

10 randomP clearP

IV. SIMULATION RESULTS

In this section, the proposed FACO is utilized for a ball and 
beam control system. The configuration of the end-point driven 
ball and beam system is shown in Fig. 2, where  is the small 
gear that is mounted on a DC motor which provides the 
necessary torque of interest,  represents the big gear that can 
control the angle of the beam, , and  denote the link and 
beam, respectively, and  is the ball which rolls on the beam. 
This system is an underactuated model, and the control 
objective is to move the ball to the desired position on the beam. 
The state vector of the ball and beam system is 

, where  is the ball position,  is the 
velocity of the ball,  is the beam angle, and  represents 
the angular velocity of the beam. According to the 
Euler-Lagrange method, the mathematical model of a ball and 
beam system can be represented as follows (Detailed 
derivations are discussed in the Appendix): 
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, , and u  is the input voltage of the DC 

motor. The parameters of the system are given in Table 2.  
gB BmG 2mF

The schematic diagram of the ball and beam control system 
with FACO is shown in Fig. 3, where  is the command of 

 and  is the error of state variable, 

*
kx

kx kkk xxe * 4,...,1k .
From the state equations in (1), it is indicated that there are two 
dynamic objects, i.e. beam and ball. Therefore, the control of 
the ball and beam system is decoupled into two subsystems, the 
position control of ball and the balance control of beam. Two 
unique fuzzy control strategies are utilized to balance the beam 
and to keep the ball in the designated position. The proposed 
FACO optimized control scheme contains a fuzzy 
beam-balance controller, a fuzzy ball-position controller, and 
the FACO tuning mechanism. 
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Fig. 2. Scheme diagram of ball and beam system. 
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Fig. 3. The control scheme of the ball and beam system with FACO 

Table 2. Parameters of ball and beam system. 
Symbol Definition Value

Bm mass of the ball 0.029 kg 

bm mass of the beam 0.334 kg 
l beam length 0.4 m 
d 0.04 m 

Br radius of the ball 0.0095 m 

BJ pendulum length 0.11 m 

bJ payload length 0.02 m 

bK gear stand length 0.1491 V/(rad/sec)

tK gravity acceleration 0.1491 Nm/A 

aR radius of planet gear 18.91

1r radius of sun gear 0.013 m 

In this paper, to reduce the design complexity, a single-input 
FLC (SFLC) is adopted. With this control scheme, 

 and  are designed as the 
inputs of the fuzzy beam-balance controller and the fuzzy 
ball-position controller, respectively, where  are the 
error constant. The input and output membership functions of 
FBBC and FBPC are indicated in the Fig. 4, where  and 
represent the input vectors of FBPC and FBBC, respectively. 

2211 ececEP 4433 ececEB

41 ~ cc

PE BE
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The  and  are denoted as output vectors of FBPC 
and FBBC, respectively. For the output fuzzy sets, the 
membership functions are defined to be fuzzy singleton 
functions. The input variables (  and ) and output 
variables (  and ) be fuzzily partitioned into nine 
fuzzy sets, negative very big  (NV), negative big (NB), negative 
medium (NM), negative small (NS), zero (ZO), positive small 
(PS), positive medium (PM), positive big (PB), positive very 
big (PV). The fuzzy IF-THEN rules are expressed as 

FBPCF

F

Bi EIFR :

Pi EIFR :

FBBCF

F

BiMFis ,

PiMFis ,

PE
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is

BiO

BE

Pi
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where the fuzzy sets , , , ,PiMF O 9,...,2,1i

6

 are 
defined in Table 3. 
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Fig. 4. Membership functions for the FBPC and the FBBC. 

Table 3. Fuzzy rule base 
i 1 2 3 4 5 6 7 8 9

)( PiP MFE
input

)( BiB MFE
NV NB NM NS ZO PS PM PB PV

)( PiFBPC OF PV PB PM PS ZO NS NM NB NV
output

)( BiFBBC OF NV NB NM NS ZO PS PM PB PV

To show the effectiveness of the proposed method, the 
FACO is proposed to adjust the parameters of the mentioned 
fuzzy controllers. The parameters of controllers contain the 
error constant, , the parameters of the input membership 
functions, , , and the parameters of the output 
membership functions, , . In this case, the 
aim of optimization is that minimizes the cost function. The 
cost function is the root mean square error (RMSE), and it is 
defined as follows 
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where  is the number of samples. The optimized parameters 
are represented in Table 4. For evaluating the proposed method 
and other algorithms, some criteria are selected as 

N

Integral of Square Error (ISE) 
N

t
txtxISE

1

2
1

*
1 ))()(((  (11) 

Integral of the Absolute value of the Error (IAE) 
N

t
txtxIAE

1
1

*
1 )()(  (12)

Integral of the time multiplied by the Absolute value of the 
Error (ITAE) 

N

t
txtxtITAE

1
1

*
1 )()(  (13) 

The initial states of the ball and beam system are set to be 
000x  and the disturbance is added at 10 sec. Fig. 5 

indicates the responses of the ball and beam system with 
conventional ACO and FACO fuzzy controllers. It can be seen 
that, from Fig. 5(a) and Fig. 5(b), before 10 sec, the ball is 
stopped as desired and the beam is also at the required angle, 
respectively. In Fig. 5(a), the response of the proposed method 
has no overshoot and quickly converges to he desired position. 
In particular, with the disturbance added at 10 sec, the proposed 
method still has the best performance among other 
conventional ACOs. The Table 5 presents the criteria with all 
methods. It can be shown that the proposed algorithm is better 
than other conventional ACO optimization methods. 

Table 4. Parameter table 
Membership Function 
Value, , ,  iP iB , iPk

ibk Error Constant, jC
Method MF

6i 1j 2j 3j 41i 2i 3i 4i 5i j

PE -0.75 -0.57 -0.04 0.04 0.57 0.75 
in

BE -0.76 -0.70 -0.25 0.25 0.70 0.76 
FBPCF -0.75 -0.54 -0.25 0.25 0.54 0.75 

AS
[2]

out
FBBCF -0.75 -0.50 -0.21 0.21 0.50 0.75 

13 8 12 0.85

PE -0.55 -0.54 -0.05 0.05 0.54 0.55 
in

BE -0.70 -0.54 -0.23 0.23 0.54 0.70 
FBPCF -0.75 -0.54 -0.25 0.25 0.54 0.75 

ACS
[1]

out
FBBCF -0.76 -0.50 -0.22 0.22 0.50 0.76 

7 4 13 0.7

PE -0.92 -0.80 -0.10 0.10 0.80 0.92 
in

BE -0.85 -0.50 -0.15 0.15 0.50 0.85 
FBPCF -0.75 -0.50 -0.15 0.15 0.50 0.75 

MMAS
[13]

out
FBBCF -0.75 -0.5 -0.25 0.25 0.5 0.75 

14 7 11 0.6

PE -0.76 -0.60 -0.05 0.05 0.60 0.76 
in

BE -0.97 -0.60 -0.25 0.25 0.60 0.97 
FBPCF -0.95 -0.50 -0.20 0.20 0.50 0.95 

FACO
out

FBBCF -0.75 -0.55 -0.25 0.25 0.55 0.75 

10 7 8 1

Table 5. Simulation performance criterion with disturbance 
IAE ISE ITSE

AS 41005.4 51053.4 81099.7
ACS 41066.3 51097.3 81000.7

MMAS 41096.2 51039.3 81067.3
FACO 41079.2 51014.3 81067.2
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Fig. 5. Simulation response: (a) ball position, (b) ball velocity, (c) 
beam angle, (d) beam angle velocity, (e) controller output. 

V. EXPERIMENT SETUP AND RESULTS

The experimental setup of a beam and ball control system is 
shown in Fig. 6 and Fig. 7, where the control kernel is 
embedded in a digital control platform that combines a DSP 
(TMS320C6713) and FPGA (Flex EPF10k70) development 
boards. The sampling time of the experiment is selected to be 
1ms. Without loss of generality, two initial conditions are 
considered,  and . Fig. 8 shows the 
experiment responses of the beam and ball system with the 
initial ball position, , and the initial beam angle, 

. The beam and ball system successfully balances 

the beam to  and positions the ball to desired position, 
. The results of experiment performance criterion 

are showed in Table 6 and Table 7. It can be shown that the 
proposed method has better performance than other methods. 

0)0(3x

x (1

0

1)0(3x

cm38)0

1)0(3x

cmx d 201

VI. CONCLUSION

This paper presents an ACO-optimized fuzzy controller for a 
beam and ball system. The proposed fuzzy-based ACO 
algorithm has the enhanced capability of pheromone updating. 
For the fuzzy controller design of a beam and ball system, the 

proposed improved ACO algorithm is applied to optimize the 
parameter settings of the input and output membership 
functions. Simulation and experimental results illustrate that 
the improved ACO algorithm can provide better control 
performance subject to disturbance.  

Fig. 6. Control scheme of the beam and ball control system. 

Fig. 7. Experiment setup of the ball and beam system  

Table 6. Performance criterion ( )0)0(,38)0( 31 xcmx
IAE ISE ITSE

AS 41053.1 51006.3 71049.5
ACS 41025.1 51052.2 71028.3

MMAS 41018.1 51091.1 71007.3
FACO 41012.1 51042.1 71030.2

Table 7. Performance criterion ( )1)0(,38)0( 31 xcmx
IAE ISE ITSE

AS 41048.1 51004.3 71026.5
ACS 41026.1 51030.2 71030.3

MMAS 41017.1 51085.1 71097.2
FACO 41008.1 51036.1 71019.2
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Fig. 8. Experiment response ( ):1)0(,38)0( 31 xcmx
(a) ball position, (b) ball velocity, (c) beam angle, (d) beam angle 

velocity, (e) controller output. 

APPENDIX

The ball and beam system is a classic underactuated 
nonlinear system. The system parameters for the ball and beam 
system model are listed in Table 2. To obtain the possible 
mathematical model of a ball and beam system, the associated 
Euler-Lagrange dynamic equation is first addressed in (A.1). 

Q
q
L

q
L

dt
d  (A.1) 

where , L=(the kinetic energy, K)-(the 
potential energy, P), 

Trq T
bBQ

r  is the position of the ball,  is the 
beam angle, b  is a torque provided by a DC motor to the beam 
via gear and linker, and B  is an exogenous torque to the Ball. 
It is noted that B  is physically considered as the disturbance to 
the ball. As show in Fig. 1, to derive the dynamic equation of 
the ball and beam system, the kinetic energy K and P  can be 
represented as follows: 

2222
2

2

2
1)(

2
1)(

2
1

2
1

bBBBB JrmJ
R
rJrmK  (A.2) 

sinsin
2

grmgmlP Bb  (A.3) 

Substituting (A.2) and (A.3) into Lagrange dynamic 

equation (A.1) yields 

sin)( 2
2 gmrm

R
Jmr

r
L

r
L

dt
d

BB
B

BB  (A.4) 

cos)
2

(2)( 2 gmlgrmrrmrmJJ

LL
dt
d

bBBBBb

b

 (A.5) 
Due to b  is not directly provided by DC motor, the 

relationship between b  and the DC motor can be derived as 
follows:

coscos)(
d
l

R
KKV

R
Kn m

a

tb
a

a

b
b  (A.6) 

In (A.4), there is no external force, i.e. 0B . From 
(A.4)-(A.6), the state equation of the ball and beam system can 
be represented as (7) 
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