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Abstract—The purpose of the present paper is to study the concept
of fuzzy bi-ideals in ternary semirings. We give some characteriza-
tions of fuzzy bi-ideals. Characterizations of regular ternary semirings
are provided.
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I. INTRODUCTION

TERNARY semirings are one of the generalized structures

of semirings. The notion of ternary algebraic system

was introduced by Lehmer [8]. He investigated certain ternary

algebraic systems called triplexes which turn out to be commu-

tative ternary groups. Dutta and Kar [1] introduced the notion

of ternary semiring which is a generalization of the ternary

ring introduced by Lister [9]. Good and Hughes [3] introduced

the notion of bi-ideal and Steinfeld [11], [12] introduced the

notion of quasi-ideal. In 2005, Kar [5] studied quasi-ideals and

bi-ideals of ternary semirings.

Ternary semiring arises naturally, for instance, the ring of

integers Z is a ternary semiring. The subset Z+ of all positive

integers of Z forms an additive semigroup and which is closed

under the ring product. Now, if we consider the subset Z− of

all negative integers of Z, then we see that Z− is closed under

the binary ring product; however, Z− is not closed under the

binary ring product, i.e., Z− forms a ternary semiring. Thus,

we see that in the ring of integers Z, Z+ forms a semiring

whereas Z− forms a ternary semiring. More generally; in

an ordered ring, we can see that its positive cone forms a

semiring whereas its negative cone forms a ternary semiring.

Thus a ternary semiring may be considered as a counterpart

of semiring in an ordered ring.

The theory of fuzzy sets was first inspired by Zadeh [14].

Fuzzy set theory has been developed in many directions by

many scholars and has evoked great interest among mathemati-

cians working in different fields of mathematics. Rosenfeld

[13] introduced fuzzy sets in the realm of group theory. Fuzzy

ideals in rings were introduced by Liu [10] and it has been

studied by several authors. Jun [4] and Kim and Park [7] have

also studied fuzzy ideals in semirings. In 2007, [6] we have

introduced the notions of fuzzy ideals and fuzzy quasi-ideals

in ternary semirings.

Our main purpose in this paper is to introduce the notions

of fuzzy bi-ideal in ternary semirings and study regular ternary

semiring in terms of these two subsystems of fuzzy subsemir-

ings. We give some characteriztions of fuzzy bi-ideals.
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II. PRELIMINARIES

In this section, we review some definitions and some results

which will be used in later sections.

Definition 2.1. A set R together with associative binary

operations called addition and multiplication (denoted by +

and . respectively) will be called a semiring provided:

(i) Addition is a commutative operation.

(ii) there exists 0∈R such that a+ 0=a and a0=0a=0

for each a∈R,

(iii) multiplication distributes over addition both

from the left and the right. i.e., a(b + c) = ab + ac

and (a + b)c = ac + bc

Definition 2.2. A nonempty set S together with a binary

operation, called addition and a ternary multiplication, denoted

by juxtaposition, is said to be a ternary semiring if (S, +) is

an additive commutative semigroup satisfying the following

conditions:

(i) (abc)de = a(bcd)e = ab(cde)
(ii) (a + b)cd = acd + bcd

(iii) a(b + c)d = abd + acd

(iv) ab(c + d) = abc + abd, for all a, b, c, d, e ∈ S.

Definition 2.3. (i) Let S be a ternary semiring. An additive

subsemigroup T of S is called a ternary subsemiring of S if

t1t2t3 ∈ T , for all t1, t2, t3 ∈ T .

(ii) Let S be a ternary semiring.If there exists an element

0∈ S such that 0+a = a and 0ab = a0b=ab0=0 for all

a, b ∈ S, then ”0” is called the zero element or simply the

zero of the ternary semiring S. In this case we say that S is

a ternary semiring with zero.

(iii) Let A, B, C be three subsets of ternary semiring S. Then

by ABC , we mean the set of all finite sums of the form∑
aibjck with ai ∈ A, bj ∈ B, ck ∈ C.

(iv) An additive subsemigroup I of S is called a left (resp.,

right, and lateral) ideal of S if s1s2i (resp.is1s2, s1is2)∈ I,

for all s1, s2 ∈ S and i ∈ I. If I is both left and right

ideal of S, then I is called a two-sided ideal of S. If I

is a left, a right and a lateral ideal of S, then I is called

an ideal of S. An ideal I of S is called a proper ideal if I �= S.

Definition 2.4. (i) An additive subsemigroup (Q, +)
of a ternary semiring S is called a quasi-ideal of S if

QSS ∩ (SQS + SSQSS) ∩ SSQ ⊆ Q.

(ii) An additive subsemigroup (Q, +) of a ternary semiring S

is called a bi-ideal of S if QSQSQ ⊆ Q.

Now, we review the concept of fuzzy sets [10], [13], [14]).

Let X be a non-empty set. A map μ : X → [0, 1] is called a

fuzzy set in X, and the complement of a fuzzy set μ in X,
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denoted by μ, is the fuzzy set in X given by μ(x) = 1−μ(x)
for all x ∈ X.

Let X and Y be two non-empty sets and f : X → Y a

function, and let μ and ν be any fuzzy sets in X and Y

respectively. The image of μ underf , denoted by f(μ), is a

fuzzy set in Y defined by

f(μ)(y) =

{
supx∈f−1(y)μ(x) f−1(y) �= ∅,

0 otherwise,

for each y ∈ Y . The preimage of ν underf , denoted by

f−1(ν), is a fuzzy set in X defined by (f−1(ν))(x) = ν(f(x))
for each x ∈ X.

Definition 2.5. A fuzzy ideal of a semiring R is a function

A : R −→ [0, 1] satisfying the following conditions:

(i) A is a fuzzy subsemigroup of (R,+); i.e., A(x −
y) ≥ min{A(x), A(y)},

(ii) A(xy) ≥ max{A(x), A(y)}, for all x, y ∈ R

Definition 2.6. Let A and B be any two subsets of S. Then

A∩B, A∪B, A+B and A◦B are fuzzy subsets of S defined

by

(A ∩ B) = min{A(x), B(x)}

(A ∪ B) = max{A(x), B(x)}

(A + B)(x) =

{
sup{min{A(y), A(z)}, if x = y + z,

0 otherwise

(A ◦ B)(x) =

{
sup{min{A(y), A(z)}, if x = yz,

0 otherwise

For any x ∈ S and t ∈ (0, 1], define a fuzzy point xt as

xt(y) =

{
t, if y = x

0 if y �= x

If xt is a fuzzy point and A is any fuzzy subset of S and

xt ≤ A, then we write xt ∈ A. Note that xt ∈ A if and only

if x ∈ At where At is a level subset of A. If xr and ys are

fuzzy points, than xrys = (xy)min{r,s}.

Definition 2.7. [6]. A fuzzy subset A of a fuzzy subsemigroup

of S is called a fuzzy ternary subsemiring of S if:

(i) A(x − y) ≥ min{A(x), A(y)}, for all x, y ∈ S

(ii) A(−x) = A(x)
(iii) A(xyz) ≥ min{A(x), A(y), A(z)}, for all

x, y, z ∈ S.

Definition 2.8 [6]. A fuzzy subsemigroup A of a ternary

semiring S called a fuzzy ideal of S if A : S −→ [0, 1]
satisfying the following conditions:

(i) A(x − y) ≥ min{A(x), A(y)}, for all x, y ∈ S

(ii) A(xyz) ≥ A(z)
(iii) A(xyz) ≥ A(x) and

(iv) A(xyz) ≥ A(y), for all x, y, z ∈ S

A fuzzy subset A with conditions (i) and (ii) is called a fuzzy

left ideal of S. If A satisfies (i) and (iii), then it is called a

fuzzy right ideal of S. Also if A satisfies (i) and (iv), then it

is called a fuzzy lateral ideal of S. A fuzzy ideal is a ternary

semiring of S, if A is a fuzzy left, a fuzzy right and a fuzzy

lateral ideal of S. It is clear that A is a fuzzy ideal of a ternary

semiring S if and only if A(xyz) ≥ max{A(x), A(y), A(z)}
for all x, y, z ∈ S, and that every fuzzy left (right, lateral)

ideal of S is a fuzzy ternary subsemiring of S.

Example 2.9 [6]. Let Z be a ring of integers and S = Z−
0 ⊂

Z be the set of all negative integers with zero. Then with the

binary addition and ternary multiplication, (Z−
0, +, .) forms a

ternary semiring S with zero. Define a fuzzy subset A : Z −→
[0, 1], we have

A(x) =

{
1, if x ∈ Z−

0

0, otherwise

Then A is a fuzzy ternary subsemiring of S.

Example 2.10 [6]. Consider the set integer module 5, non-

positive integer Z−
5 = {0,−1,−2,−3,−4} with the usual

addition and ternary multiplication, we have

+ 0 -1 -2 -3 -4

0 0 -1 -2 -3 -4

-1 -1 -2 -3 -4 0

-2 -2 -3 -4 0 -1

-3 -3 -4 0 -1 -2

-4 -4 0 -1 -2 -3

· 0 -1 -2 -3 -4

0 0 0 0 0 0

-1 0 1 2 3 4

-2 0 2 4 1 3

-3 0 3 1 4 2

-4 0 4 3 2 1

· 0 1 2 3 4

0 0 0 0 0 0

-1 0 -1 -2 -3 -4

-2 0 -2 -4 -1 -3

-3 0 -3 -1 -4 -2

-4 0 -4 -3 -2 -1

Clearly (Z−
5 , +, .) is a ternary semiring. Let a fuzzy

subset A : Z−
5 −→ [0, 1] be defined by A(0) = t0 and

A(−1) = A(−2) = A(−3) = A(−4) = t1, where t0 ≥ t1
and t0, t1 ∈ [0, 1]. Routine calculations show that A is a

fuzzy ideal of Z−
5.

Definition 2.11 [6] Let A be a fuzzy subset of ternary semiring

S. We define

SAS + SSASS(z)

=

{
sup{min{A(a), A(b)}, if z = x(a + xby)y,

0, otherwise

for all x, y, a, b ∈ S

III. FUZZY BI-IDEAL OF TERNARY SEMIRING

Definition 3.1. A fuzzy subsemigroup μ of a ternary semiring

S is called a fuzzy quasi-ideal of S [6] if

(FQI1)μSS ∩ SμS ∩ SSμ ≤ μ

(FQI2)μSS ∩ SSμSS ∩ SSμ ≤ μ

i.e., μ(x) ≥ min{(μSS)(x), (SμS + SSμSS)(x), (SSμ)(x)}
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To strengthen the above definition, we present the following

example.

Example 3.2. Consider the ternary semiring (Z−
5 ,+, .) as

defined in Example 2.10 in this paper. Let A = {0,−2,−3}.

Then SSA = {−2,−3,−4}, (SAS + SSASS) =
{0,−1,−2,−3} and ASS = {−1,−2,−3}. Therefore

ASS ∩ (SAS +SSASS)∩SSA = {−2,−3} ⊆ A. Hence A

is a quasi-ideal of Z−
5 . Define a fuzzy subset A : Z−

5 −→ [0, 1]
by A(0) = A(−2) = A(−3) = 1 and A(−1) = A(−4) = 0.

Clearly A is a fuzzy quasi-ideal of Z−
5 .

Definition 3.3. A fuzzy ternary subsemiring μ of S is called

a fuzzy bi-ideal of S if

μSμSμ ≤ μ

i.e., μ(xs1ys2z) ≥ min{μ(x), μ(y), μ(z)} ∀
x, y, z, w, v ∈ S

Example 3.4 Let Z−=S be the set of all negative integers.

Then Z− is a ternary semiring under usual addition and ternary

multiplication. Let B =2S Thus BSBSB = 2SS2SS2S =
6(SSS)SS = 6(SSS) = 6S ⊆ 2S = B. Hence B is a bi-ideal

of Z−.

Define μ : S → [0, 1] by

μ(x) =

{
t, if x ∈ 2S

0, otherwise

For any t ∈ [0, 1], μt = {2S}, since {2S} is a bi-ideal in Z−,

μt is the bi-ideal in Z− for all t. Hence μ is a fuzzy bi-ideal

of Z−.

Lemma 3.5. Let μ be a fuzzy subset of S. If μ is a fuzzy left

ideal, fuzzy right ideal and lateral ideal of ternary semiring of

S, then μ is a fuzzy quasi-ideal of S.

Proof: Let μ be a fuzzy left ideal, fuzzy right ideal and

fuzzy lateral ideal of S.Let x = as1s2 = s1(b1 + s1cs2)s2 =
s1s2d where a, b, c, d, s1, s2 ∈ S.

Consider (μSS ∩ (SμS + SSμSS) ∩ SSμ)(x)

= min
{

(μSS)(x), (SμS + SSμSS)(x), (SSμ)(x)
}

= min
{

sup
x=as1s2

{μ(a)}, sup
x=s1(b+s1cs2)s2

{μ(b), μ(c)},

sup
x=s1s2d

{μ(d)}
}

≤ min
{

1, sup
x=s1(b+s1cs2)s2

{μ(s1(b + s1cs2)s2)}, 1
}

(as μ is a fuzzy left, fuzzy right and fuzzy lateral ideal,

μ
{

s1(b + s1cs2)s2

}
≥ min{μ(b), μ(c)}

= μ(b) if μ(b) < μ(c), (= μ(c) if μ(b) > μ(c))) we get,

(μSS ∩ (SμS + SSμSS) ∩ SSμ)(x) ≤ μ(x)

We remark that if x is not expressed as x = as1s2 = s1(b1 +
s1cs2)s2 = s1s2d, then

(μSS ∩ (SμS + SSμSS) ∩ SSμ)(x) = 0 ≤ μ(x).

Thus,

(μSS ∩ (SμS + SSμSS) ∩ SSμ)(x) ≤ μ(x).

Hence μ is a fuzzy quasi-ideal of S.

Lemma 3.6. For any non-empty subsets A, B and C of S,

(1) fAfBfC = fABC

(2) fA ∩ fB ∩ fC = fA∩B∩C

(3) fA + fB = fA+B

Proof: Proof is straight forward.

Lemma 3.7. Let Q be an additive subsemigroup of S.

(1) Q is a quasi-ideal of S if and only if fQ is a

fuzzy quasi-ideal of S.

(2) Q is a bi-ideal of S if and only if fQ is a fuzzy

bi-ideal of S.

Proof: Proof of (1) can seen in [8].

Proof of (2) Assume that Q is a bi-ideal of S. Then fQ is a

fuzzy ternary subsemiring of S.

fQfSfQfSfQ ≤ fQSQSQ ≤ fQ

This means that fQ is a fuzzy bi-ideal of S.

Conversely, let us assume that fQ is a fuzzy bi-ideal of S. Let

x be any element of QSQSQ. Then, we have

fQ(x) ≥ (fQfSfQfSfQ)(x) = fQSQSQ(x) = 1

Thus x ∈ Q and QSQSQ ⊆ Q. Hence Q is a bi-ideal of S.

Lemma 3.8. Any fuzzy quasi-ideal of S is a fuzzy bi-ideal of

S.

Proof: Let μ be any fuzzy quasi-ideal of S. Then, we

have

μSμSμ ⊆ μ(SSS)S ⊆ μSS,

μSμSμ ⊆ S(SSS)μ ⊆ SSμ,

μSμSμ ⊆ SSμSS and taking {0} ⊆ SμS

so, μSμSμ ⊆ SμS + SSμSS

we have, μSμSμ ⊆ μSS ∩ (SμS + SSμSS) ∩ SSμ ⊆ μ

Hence, μ is a fuzzy bi-ideal of S.

Remark 3.9. The converse of Lemma 3.8 does not hold, in

general, that is, a fuzzy bi-ideal of a ternary semiring S may

not be a fuzzy quasi-ideal of S.

Theorem 3.10. Let μ be a fuzzy subset of S. If μ is a fuzzy

left, fuzzy right and lateral ideal of ternary semiring of S, then

μ is a fuzzy bi-ideal of S.

Proof: As μ is fuzzy left, right, lateral ideal of S and

Lemma 3.5, μ is a fuzzy quasi-ideal of S. Hence by Lemma

3.8, μ is a fuzzy bi-ideal of S.

Theorem 3.11.[6] Let μ be a fuzzy subset of S. Then μ is

a fuzzy quasi-ideal of S, if and only if μt is a quasi-ideal of

S, for all t ∈ Im(μ).

Theorem 3.12. Let μ be a fuzzy subset of S. Then μ is a

fuzzy bi-ideal of S, if and only if μt is a bi-ideal of S, for all

t ∈ Im(μ).
Proof: Let μ be a fuzzy bi-ideal of S. Let t ∈ Im(μ).

Suppose x, y, z ∈ S such that x, y, z ∈ μt.Then

μ(x) ≥ t, μ(y) ≥ t, μ(z) ≥ t
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, and

min{μ(x), μ(y), μ(z)} ≥ t.

As μ is a fuzzy bi-ideal, μ(x−y) ≥ t and thus x−y ∈ μt. Let

u ∈ S. Suppose u ∈ μtSμtSμt. Then there exist x, y, z ∈ μt

and s1 , s2,∈ S such that u = xs1ys2z. Then,

(μSμSμ)(u) = μ(xs1ys2z)

≥ min{μ(x), μ(y), μ(z)} ≥ min{t, t, t} = t.

Therefore, (μSμSμ)(u) ≥ t. As μ is a bi-ideal of S, μ(u) ≥ t

implies u ∈ μt. Hence μt is a bi-ideal of S.

Conversely, let us assume that μA is a bi-ideal of S, t ∈
Im(μ).Let p ∈ S. Consider

(μSμSμ)(p) = sup
p=xs1ys2z

{
min{μ(x), μ(y), μ(z)}

}
Let μ(x) = t1 < μ(y) = t2 < μ(z) = t3. Then, μt1 ⊇ μt2 ⊇
μt3 . Thus x, y, z ∈ μt1 and p = xs1ys2z ∈ μt1Sμt1Sμt1 ⊆
μt1 . This implies μ(p) ≥ t1 and hence μSμSμ ≤ μ. Therefore,

μ is a fuzzy bi-ideal of S.

Definition 3.13 Let S and T be two ternary semirings. Let f

be a mapping which maps from S into T . Then f is called a

homomorphism of S into T if

(i) f(a + b) = f(a) + f(b) and

(ii) f(abc) = f(a)f(b)f(c) for all a, b, c ∈ S

Theorem 3.14. If λ is a fuzzy bi-ideal of a ternary semiring

S and μ is a fuzzy ternary subsemiring of S, then (λ ∩ μ) is

a fuzzy bi-ideal of S.

Proof: Let λ be a fuzzy bi-ideal and μ be a fuzzy

ternary subsemiring of S. Clearly (λ ∩ μ) is a fuzzy ternary

subsemiring of S. Next we prove that (λ ∩ μ) is a fuzzy bi-

ideal of ternary semiring S. Let t ∈ S and s1, s2, x, y, z ∈ S

such that t = xs1ys2z.

Consider

((λ ∩ μ)S(λ ∩ μ)S(λ ∩ μ))(t)

= sup
t=xs1ys2z

{
min{(λ ∩ μ)(x), S(s1), (λ ∩ μ)(y), S(s2),

(λ ∩ μ)(z)}
}

= sup
t=xs1ys2z

{
min{(λ ∩ μ)(x), (λ ∩ μ)(y), (λ ∩ μ)(z)}

}
Let min{(λ∩μ)(x), (λ∩μ)(y), (λ∩μ)(z)} = t. This implies

that (λ ∩ μ)(x) ≥ t, (λ ∩ μ)(y) ≥ t and (λ ∩ μ)(z) ≥ t.

Then x, y, z ∈ (λt ∩ μt). As λ is the fuzzy bi-ideal and μ is

the fuzzy ternary subsemiring, (λt ∩ μt) is a bi-ideal of S.

Hence, xs1ys2z ∈ (λt ∩ μt). This implies

(λ ∩ μ)(xs1ys2z) ≥ t

= min{(λ ∩ μ)(x), (λ ∩ μ)(y), (λ ∩ μ)(z)}.

Thus,

min{(λ ∩ μ)(x), (λ ∩ μ)(y), (λ ∩ μ)(z)}

≤ (λ ∩ μ)(xs1ys2z)

This shows that

sup
t=xs1ys2z

min{(λ ∩ μ)(x), (λ ∩ μ)(y), (λ ∩ μ)(z)}

≤ (λ ∩ μ)(xs1ys2z)

Thus, we have

((λ ∩ μ)S(λ ∩ μ)S(λ ∩ μ))(t) ≤ (λ ∩ μ)(t)

Hence,

((λ ∩ μ)S(λ ∩ μ)S(λ ∩ μ)) ≤ (λ ∩ μ)

and (λ ∩ μ) is a fuzzy ideal of S.

IV. REGULAR TERNARY SEMIRING

A ternary semiring S is called regular if for every a ∈ S,

there exists an x in S such that axa = a. Lemma 4.1. A

ternary semiring S is regular if and only if

μ ∗ γ ∗ λ = μ ∩ γ ∩ λ

for every fuzzy right ideal μ, fuzzy left ideal λ and fuzzy

lateral ideal γ of S.

Proof: Straight forward from Theorem 5.1 in [5]

Theorem 4.2. For a ternary semiring S, the following condi-

tions are equivalent:

(1) S is regular

(2) μ = μ ∗ S ∗ μ ∗ S ∗μ, for every fuzzy bi-ideal μ

of S.

(3) μ = μ∗S ∗μ∗S ∗μ, for every fuzzy quasi-ideal

μ of S

Proof: (1)⇒(2) First assume that (1) holds. Let μ be

any fuzzy bi-ideal of S, and a any element of S. Then

since S is regular, there exists an element x in S such that

a = axa(= axaxa). Then we have

(μ ∗ S ∗ μ ∗ S ∗ μ)(a)

= sup min
a=

P
finite xiyizi

{μ(xi), (S ∗ μ ∗ S)(yi), (μ)(zi)}

≥ min{μ(a), (S ∗ μ ∗ S)(xax), (μ)(a)}

= min
{

μ(a), sup
xax=

P
finite piqiri

[min{S(pi), μ(qi),

S(ri)}], μ(a)
}

≥ min
{

μ(a), min{S(x), μ(a), S(x)}, μ(a)
}

= min
{

μ(a), min{1, μ(a), 1}, μ(a)
}
= μ(a),

and so μ ∗S ∗μ ∗S ∗μ ⊆ μ. Since μ is a fuzzy bi-ideal of S,

the converse inclusion holds. Thus we have μ∗S∗μ∗S∗μ = μ

(2)⇒(3) Since any fuzzy quasi-ideal of S is a fuzzy bi-ideal

of S by Lemma 3.8.

(3)⇒(1) Assume (3) holds. Let Q be any quasi-ideal of S,

and a any element of Q. Then it follows from Lemma 3.7 (1)
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that the characteristic function fQ is a quasi-ideal of S.Then

we have

fQSQSQ(a) = (fQ ∗ fS ∗ fQ ∗ fS ∗ fQ)(a) = fQ(a) = 1

and so, a ∈ QSQSQ. Thus Q ⊆ QSQSQ. On the other hand,

Q is a quasi-ideal of S

QSQSQ ⊆ (QSS ∩ SQS ∩ SSQ)

QSQSQ ⊆ (QSS ∩ SSQSS ∩ SSQ)

then,

QSQSQ ⊆ (QSS ∩ (SQS + SSQSS) ∩ SSQ) ⊆ Q

and so we have QSQSQ = Q and hence, by [5, Theorem

3.4], S is a regular ternary semiring.
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