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Abstract—Chemical and physical functionalization of multi-
walled carbon nanotubes (MWCNT) has been commonly practiced to 
achieve better dispersion of carbon nanotubes (CNTs) in polymer 
matrix. This work describes various functionalization methods (acid-
treatment, non-ionic surfactant treatment with TritonX-100), 
fabrication of MWCNT/PP nanocomposites via melt blending and 
characterization of mechanical properties. Microscopy analysis 
(FESEM, TEM, XPS) showed effective purification of MWCNTs 
under acid treatment, and better dispersion under both chemical and 
physical functionalization techniques combined, in their respective 
order. Tensile tests showed increase in tensile strength for the 
nanocomposites that contain MWCNTs up to 2 wt%. A decrease in 
tensile strength was seen in samples that contain 4 wt% of MWCNTs 
for both raw and Triton X-100 functionalized, signifying MWCNT 
degradation/rebundling at composition with higher content of 
MWCNTs.  For the acid-treated MWCNTs, however, the tensile 
results showed slight improvement even at 4wt%, indicating effective 
dispersion of MWCNTs. 
 

Keywords—Multi walled carbon nanotube (MWCNT), 
functionalization, dispersion, nanocomposite 

I. INTRODUCTION 
N 1991, the discovery of CNTs by Iijima [1] has created a 
revolution in the world of nanomaterials engineering.  Due 
to its wide range of potential uses, research after research 

has been done to create various polymer carbon 
nanocomposites.  Shaffer and Windle [4] conducted the first 
study of using nanotubes as reinforcement of solution-based 
composites in 1999. Very little reinforcement was observed, 
as the storage modulus increased from approximately 6 GPa 
for the polymer to 12 GPa for the 60 wt% composite film.  
They managed to derive that it is easier to reinforce softer 
matrices, as better results were obtained above the polymer 
glass transition temperature.  Using short fiber theory, the 
nanotube modulus and effective length obtained were 150 
MPa and 35 nm, respectively.  The low modulus value may be 
due to the difficulty in fitting a highly non-linear function such 
as Krenchel’s rule of mixtures to a limited data set.  As the 
first attempt, it was proven that the reinforcement was 
possible, albeit leaving much room for improvement and 
further research. 

A. Melt Processing and Characterization of Mechanical 
Properties 

Melt processing is a common alternative for preparing 
polymer nanotube composites, and is particularly effective for 
thermoplastic materials such as polypropylene.  
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This technique takes advantage of the fact that 
thermoplastic polymers soften when heated.  Amorphous 
polymers can be processed above their glass transition 
temperature while semi-crystalline polymers need to be heated 
above their melt temperature to induce sufficient softening [5, 
6].  The advantages of this technique are its speed and 
simplicity, and its compatibility with standard industrial 
techniques.  Bulk samples can then be fabricated by 
techniques such as compression molding, injection molding or 
extrusion.  However it is important that processing conditions 
are optimized not just for different nanotube types, but for the 
whole range of polymer-nanotube combinations.  This is 
because nanotubes can affect melt properties such as viscosity, 
resulting in unexpected polymer degradation under conditions 
of high shear rates [7]. 

Bikiaris et al. [8] studied the effects of acid treatment 
MWCNT on the mechanical stability of isotactic 
polypropylene. The MWCNT nanocomposites were prepared 
by melt-mixing, and four different nanotubes were used: 
untreated MWCNTs and acid treated (nitric acid and sulfuric 
acid) and refluxed for different times.  As a result, the length 
of the MWCNTs progressively decreased as the treatment 
time was increased. 

Bao and Tjong [9] prepared PP nanocomposites reinforced 
with 0.1, 0.3, 0.5 and 1.0 wt% MWCNTs using melt-
compounding in a twin-screw extruder followed by injection 
molding.  They altered the loading rate and temperature 
parameters of the twin-screw extruder to investigate their 
impacts on the mechanical properties.  The mechanical 
properties of PP and PP/MWCNT nanocomposites obtained at 
a moderate cross-head speed of 10 mm min-1 under 18oC. 
The stiffness of PP increased dramatically by ~31% by adding 
0.3 to 0.5 wt% MWCNTs.  The storage modulus also detected 
an increase from 1.88 to 2.5 GPa, about 33% improvement 
over pure PP.  In compliance with the loading rate and 
temperature parameters altered, they concluded that 
PP/MWCNTs nanocomposites tend to increase with 
increasing test temperatures, indicating that the reinforcing 
effect of MWCNTs in PP matrix is more pronounced at higher 
temperatures. 

In 2009, Thiebaud [10] investigated the mechanical 
properties of PP/MWCNT composites in four different grades: 
1 wt%, 2 wt%, 4 wt% and 8 wt%.  The composites were 
fabricated using the melt-mixing method.  It is observed that 
there was an increase of the Young’s modulus and the stress at 
fracture with the MWCNT level while the strain to failure 
decreases significantly. 

B. Current Advancement in Dispersion of CNTs 
As CNTs are being used vastly as matrix reinforcement, 

more and more studies are being done to uncover more 
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effective methods of dispersing CNTs to maximize its great 
potential.  A burst of progress in the research of dispersing 
CNTs took place most aggressively in year 2010. Rausch et al. 
[11] investigated the dispersibility of unfunctionalized and 
three differently functionalized MWCNT in the presence of 
anionic, cationic and non-ionic surfactants. 

 

 
Fig. 1 Schematic representation of how surfactants may adsorb onto 

the nanotube surface. Reprinted from [12]. 
 

The mixtures were sonicated and cooled in water bath in 
different time intervals and recorded with UV-vis-
spectrometer.  It was found that at short sonication times the 
absorbance increases rapidly before leveling off at 
intermediate at higher sonication times. It was recommended 
that proper adjustment of the surfactant to CNT weight ratio is 
necessary for optimal exfoliation of the CNT.  

Bai et al. [13] selected the Triton-X series surfactants with a 
same hydrophopic functional group and different hydrophilic 
polyethoxyl chain lengths to investigate their adsorption onto 
CNTs and their ability to stabilize CNT suspensions. The 
samples were shaken in a Gyrotory shaker at 200 rpm for 48 
hours, and then underwent entrifugation at 3000g for 30 
minutes. The samples were then filtered to remove the 
suspended CNTs but not significantly remove the surfactants. 
They discovered that adsorption capacities of the surfactants 
increased with decreasing hydrophilic chain length: Triton X-
305 < Triton X-165 < Triton X-114 < Triton X-100. It was 
also found out that suspended CNT amounts in water were 
positively related to the adsorption capacities of the 
surfactants, but negatively with the hydrophilic fraction ratio 
of the X-series surfactants. 

Comparative studies on dispersing multi-wall carbon 
nanotubes using two anionic surfactants (sodium dodecyl 
sulphate, SDS and sodium dodecyl benzosulfonate, SDBS) 
were also conducted [14].  CNTs were shorted by boiling in 
concentrated HNO3 for 1 hour, and added to the surfactant 
solutions of different concentrations that are close to the 
critical micelle concentration (CMC) of both SDS and SDBS 
and sonicated for 5 hours at room temperature. The CNTs 
dispersions were then centrifuged to remove the precipitates 
and non-dispersed material. It was found that both dispersing 
agents form stable suspensions even below their CMC limit.  

II. EXPERIMENTAL 

A. Purification 
An acid solution of H2SO4 and HNO3 is mixed in a 3:1 

ratio. To test the effect of ultrasonication time to the 
dispersion and purification of MWCNTs, the MWCNTs are 
ultrasonicated for 0.5, 2.75 and 5 hours respectively. Samples 
are then filtered with a microfiltration system, using a 
cellulose membrane filter of 0.47 μm pore size. Then the 
filtered MWCNTs are left to dry for 12 hours at room 

temperature, and then in a vacuum oven of 100oC for 5 hours. 
Samples are taken for FESEM and XPS analysis and the best 
sample is identified to be used for making of the 
nanocomposite. 

B.Functionalization of raw MWCNT and purified MWCNTs 
While anionic, cationic and nonionic surfactants have been 

used in previous studies to disperse CNTs, a nonionic 
surfactant was chosen for this experiment due to 
polypropylene’s insolubility in water.  Triton X-100 was used 
due to its availability in the market and previous studies have 
shown that it was an effective dispersing agent [14].  Both raw 
and purified MWCNTs from the previous process are then 
suspended in the Triton X-100 solution (5mg/ml), and sent for 
ultrasonication for 1 hour. The ratio of MWCNTs to surfactant 
is 1g MWCNT: 1.5g Triton X-100. The CNTs are filtered, 
washed and dried to be used for fabrication of the 
nanocomposite. 

C.Fabrication of PP/MWCNT Nanocomposite  
Melt-mixing was chosen over solution mixing due to time 

constraints and the first being a preferred choice for bulk 
production. It was also intended to combine the shear force of 
melt mixing with the functionalized MWCNTs to achieve 
better dispersion of MWCNTs. However, it was found that the 
functionalized MWCNTs form a hardened deposit after 
filtration and drying. A mortar grinder was used to grind the 
deposit into powder-form again before adding into the melt-
mixer.  

Polypropylene and the MWCNTs are mixed using the 
Haake Rheomix 600 mixer under temperatures of 200ºC, 
mixing speed of 30 rpm and a mixing duration of 15 minutes. 
The polypropylene was allowed to be melted for 5 minutes 
prior to adding the MWCNTs, in 0.5, 1.0, 2.0 and 4.0 wt%.  
Subsequently, the mixure is granulated into pellets and 
directly injection molded with the Krauss Maffei 40 Tonne 
injection molding machine into dog bone samples, adhering to 
the standard of ASTM D638.  The injection molding 
parameters are as follows; barrel temperature: 205 – 220ºC, 
mould temperature: 25ºC, pressure: 800 bar, speed: 60 rpm. 

D.Characterization and Mechanical Testing of Composites 
Transmission electron microscopy (TEM), Field Emission 

Scanning Electron Microscopy (FESEM) , and XPS are used 
to check the MWCNT configuration after purification under 
acid treatment.  Unlike the light microscope, the TEM and 
FESEM use electrons instead of light. The electrons function 
as "light source" and their much lower wavelength makes it 
possible to get a resolution of a few angstroms (10-10 m).   As 
a result, these electron microscopes are able to provide small 
area crystallographic information of the nanocomposite.   

XPS is used to determine the composition of 
materials/elements in the MWCNTs. The FESEM, XPS and 
TEM analysis are done in the university’s Central Research 
Laboratory. 
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