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Abstract—Brain Computer Interface (BCI) has been recently 

increased in research. Functional Near Infrared Spectroscope (fNIRs) 
is one the latest technologies which utilize light in the near-infrared 
range to determine brain activities. Because near infrared technology 
allows design of safe, portable, wearable, non-invasive and wireless 
qualities monitoring systems, fNIRs monitoring of brain 
hemodynamics can be value in helping to understand brain tasks. In 
this paper, we present results of fNIRs signal analysis indicating that 
there exist distinct patterns of hemodynamic responses which 
recognize brain tasks toward developing a BCI. We applied two 
different mathematics tools separately, Wavelets analysis for 
preprocessing as signal filters and feature extractions and Neural 
networks for cognition brain tasks as a classification module. We 
also discuss and compare with other methods while our proposals 
perform better with an average accuracy of 99.9% for classification. 
 

Keywords—functional near infrared spectroscope (fNIRs), brain-
computer interface (BCI), wavelets, neural networks, brain activity, 
neuroimaging.  

I. INTRODUCTION 
EUROPHYSIOLOGICAL and neuroimaging   
technologies have contributed much to our understanding 

of normative brain function.  Commonly employed techniques 
such as electroencephalography (EEG), event-related brain 
potentials (ERPs), magnetoencephalography (MEG), positron 
emission tomography (PET), singlepositron emission 
computed tomography (SPECT), and functional magnetic 
resonance imaging (fMRI) have dramatically increased our 
understanding of a broad range of brain activities. EEG and 
ERP paradigms have contributed important data for 
developing models of cognitive and emotional processing. 
However, EEG measures are limited in their ability to provide 
the precise location of an electrical source. EEG does yield 
spatial information, but this spatial information must be 
reconstructed by probabilistic models. fMRI is currently 
considered the “gold standard” for measuring functional brain 
activation. The limitations of fMRI relative to fNIRs include 
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the fact that participants must lie within the confines of the 
magnet bore, which limits its use for many applications. The 
refrigerant systems used to supercool the magnets also 
produce loud noises, which can interfere with certain 
protocols. fMRI is also highly sensitive to movement artifact; 
subject movements on the order of a few millimeters can 
invalidate the data. Finally, fMRI systems are quite expensive. 
[1,2] 

In recent years, functional near-infrared spectroscopy 
(fNIRs) has been introduced as a new neuroimaging modality 
with which to conduct functional brain-imaging studies. fNIRs 
technology uses specific wavelengths of light, introduced at 
the scalp, to enable the noninvasive measurement of changes 
in the relative ratios of deoxygenated hemoglobin (deoxy-Hb) 
and oxygenated hemoglobin (oxy-Hb) during brain activity. 
Wireless fNIRs system consists of personal digital assistant 
(PDA) software controlling the sensor circuitry, reading, 
saving, and sending the data via a wireless network. This 
technology allows the design of portable, safe, affordable, 
noninvasive, and minimally intrusive monitoring systems. 
[1,10] 

The qualities of fNIRs make it an ideal candidate for 
monitoring cortical function in the brain while subjects are 
engaged in various real life or experimental tasks. However, 
the noise including in fNIRs is an important limitation on the 
use of optical data in these applications. Motion artifact 
caused by moving of the head. Head movement can cause the 
NIR detectors to shift and lose contact with the skin, exposing 
them to either ambient light or to light emitted directly from 
the NIR sources or reflected from the skin, rather than being 
reflected from tissue in regions of interest. These effects cause 
sudden increases in the NIR data. Another noise can cause the 
blood to move toward (or away from) the area that is being 
monitored, increasing (or decreasing) the amount of oxygen, 
hence result in an increase (or decrease) in the measured data. 
Hence, canceling noise from fNIRs signals is an important and 
necessary task in order to deploy fNIRs as a brain monitoring 
technology in its full potential to many real life application 
areas.  

Adaptive filtering is one approach to dealing with noise 
signals. Adaptive filtering has been widely used for noise 
reduction in other biomedical applications involving 
electrocardiogram (ECG), EEG [7,8], and fNIRs. In [3] the 
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Wiener filtering approach was proposed to eliminate the need 
to use additional sensors and extra wiring required for 
adaptive filtering. Like adaptive filtering, Wiener filtering is 
an optimal filtering technique in that minimization of the 
mean-square error serves as the basis of its function. In [4] 
authors investigated statistical analysis of fNIRs for purpose 
of cognitive state assessment while user performs a complex 
task. 

In this work, we proposed wavelets analysis to cancel noise 
of fNIRs signals. The wavelets transform bases became the 
foundation for the most popular techniques for signal analysis 
and representation in a wide range of applications. 
Illustrations in this paper using wavelets analysis are 
compared to adaptive filter and Wiener filter. In addition, 
wavelets processing play a role of extraction algorithm to 
draw features of fNIRs signals. Extracted features is inputs of 
final cognition to classify brain tasks by Neural networks. 

In [5] authors presented results of signal analysis indicating 
that there exist distinct patterns of hemodynamic responses 
which could be utilized in a pattern classifier towards  
developing a BCI. They applied two different pattern 
recognition algorithms separately, Support Vector Machines 
(SVM) and Hidden Markov Model (HMM), to classify the 
data offline. SVM classified with an average accuracy of 73%, 
while HMM performed better with an average accuracy of 
89%. 

 
Fig. 1. Structure of fNIRs signals classification. 

 
Neural networks are very powerful tools for pattern 

recognition [10]. The most well-known advantage is that after 
training them, neural networks can be readily used for process 
parameter (or state) assessment without requiring any 
knowledge of the underlying system. In general, it is 
necessary to preprocess their input information to eliminate 
irrelevant information from the inputs and extract features of 
signals. Results of neural networks model in this paper 

classified with an average accuracy of 99%, better than SVM 
and HMM in [5]. 

Throughout this paper, we describe signal analysis to filter 
noises, feature extrations by wavelets techniques and offline 
classification of the NIRS signal using Neural Networks.  The 
structure of entire signals processing is shown in Fig. 1. The 
remaining of paper are fNIRs data acquisition in section 2, 
feature extraction with wavelets analysis in section 3, brain 
task cognition with neural networks in section 4, illustration 
and discussion in section 5, and conclusion section. 

II. FNIRS DATA ACQUISITION 
We used a multichannel fNIRs instrument, OMM-3000 

from Shimadzu Corporation, Japan, shown in Fig. 2. for 
acquiring oxygenated hemoglobin and deoxygenated 
hemoglobin concentration changes. The system operated at 
three different wavelengths of 780 nm, 805 nm and 830 nm, 
emitting an average power of 3 mW.mm−2. The illuminator 
and detector optodes were placed on the scalp. The detector 
optodes were fixed at a distance of 3 cm from the illuminator 
optodes. The optodes were arranged above the hemisphere on 
the subject's head. 

Near-infrared rays leave each illuminator, pass through the 
skull and the brain tissue of the cortex and are received by the 
detector optodes. The photomultiplier cycles through all the 
illuminator–detector pairings to acquire data at every sampling 
period. The data were acquired at a sampling rate of 18 Hz 
and digitized by the 16-bit analog to digital converter. 

The fNIRs instrument was capable of storing the raw signal 
intensity values for each of the 3 wavelengths, as well as the 
derived values of oxygenated and deoxygenated hemoglobin 
concentration changes for all time points in an output file in a 
pre-specified format. Fig.3. shows 7 channels of a task as an 
illustration. The signal preprocessing, analysis and 
classification programs were implemented to read the data 
from the file either in an offline mode or in an online mode. 

 

 
Fig. 2. Shimadzu fNIR-station OMM-3000. 
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Fig. 3. fNIRs signals of 7 channels. 

III. FEATURE EXTRACTION WITH WAVELETS ANALYSIS 
Due to desirable properties concerning approximation 

quality, redundancy, numerical stability, etc., the wavelets 
bases became the foundation for the most popular techniques 
for signal analysis and representation in a wide range of 
applications.  

From [5] the wavelets transform of a signal s is the family 
C(a,b), which depends on two indices a and b. The set to 
which a and b belong 

∫
−

ψ=
R

dt)
a

bt(
a

1)t(s)b,a(C
         (1)  

Where:  
a=2j , b=k2j , (j,k) ∈ Z2  
ψ is wavelet functions 
a is scale of wavelets functions 
b is position of wavelets functions on the signal s. 
From an intuitive point of view, the wavelets 

decomposition consists of calculating a "resemblance index" 
between the signal and the wavelets located at position b and 
of scale a. If the index is large, the resemblance is strong, 
otherwise it is slight. The indexes C(a,b) are called 
coefficients. 

Let us fix j and sum on k. A detail Dj(t) is nothing more 
than the function  

∑ ψ=
∈Zk

k,jj )t()k,j(C)t(D
          (2)  

Now, let us sum on j. The signal is the sum of all the 
details:    

∑=
∈zj

jDs
                 (3) 

The details have just been defined. Take a reference level 
called J. There are two sorts of details. Those associated with 
indices j<J correspond to the scales a=2j ≤ 2J which are the 
fine details. The others, which correspond to j > J, are the 
coarser details.  

We group these latter details into: 
∑=
>Jj

jJ DA
              (4) 

which defines what is called an approximation of the signal 
s. We have just created the details and an approximation.    

      
∑+=
≤Jj

jJ DAs
             (5) 

The equality signifies that s is the sum of its approximation 
AJ and of its fine details. From the previous formula, it is 
obvious that the approximations are related to one another by   

JJ1J DAA +=−             (6) 
The total number of computed coefficients in the matrix 

shown in Fig. 4 is roughly equal to the length of the original 
sequence s. AJ depicts as feature vectors that server as an 
input patterns of next processing in section 4.  

 

 
Fig. 4. Wavelets transform of a sequence s. 

IV. BRAIN TASK COGNITION WITH NEURAL NETWORKS 
From [6], neural networks are very powerful tools for 

classification or pattern recognition.  Informative features are 
extracted from the coefficients computed with the wavelets 
transform of the process signals and used for classification.  

The multi-layer fully connected feed-forward neural 
network depicted in Fig. 5 is used here; it includes an input 
layer, one hidden layer and an output layer. Signal 
propagation is allowed only from the input layer to the hidden 
layer and from the hidden layer to the output layer. Input 
variables come from AJ, wavelets coefficients, mentioned 
above section. The outputs are the desired classes. The 
number of inputs is the number of channels, and the number 
of hidden nodes, transfer functions affect the training 
performance hence need to be chosen carefully.  

As usual, the training is based on the minimization of the 
following quadratic cost function: 

∑ −=
=

N

1n

2
nn )dy(

2
1E

           (7) 
Where: 
N is number of patterns. 
yn is output of network 
dn is desired output. 

 
Fig. 5. Neural Network for classification. 
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V. ILLUSTRATION AND DISCUSSION 
fNIRs data acquisition consists of 3 tasks correspondent to 

controlling physical motion of right arm, imaging the motion 
of right arm, and relaxing.  

 
5.1 Designing filter 
 
Wavelets mother is chosen discrete approximation of 

Meyer wavelet. 
Level of decomposition is 3. 
Results of wavelets analysis show in Fig. 6. 

 
Fig. 6. Wavelets Analysis. 

 
To quantify the improvement, the change in signal to noise 

ratio (SNR) was used as a measurement of performance. The 
SNR-gain is computed as 

gnalfilteredSi

rawSignal
10gain AvgPower

AvgPower
10logSNR =

              (8) 
The average power for the raw and filtered signals, by 

Parseval’s theorem, is computed by Power Spectral Density 
(PSD) as 

    
∑ ω

π
=

π

π−
)(PSD

2
1AvgPower

          (9) 
Results SNRgain shows in table I. and table II 

corresponding to oxygenated hemoglobin (Ox-Hb) and 
deoxygenated hemoglobin (DeOx-Hb). 

 

TABLE I  SIGNAL TO NOISE RATIO (SNR) GAIN OF 7 CHANNELS AND 3 TASKS OF 
OXYGENATED HEMOGLOBIN (OX-HB) 

Ox-
Hb 

Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6 Ch-7 

Task 
1 

6.3203 6.1218 6.5213 7.7351 2.0037 6.723 3.7922 

Task 
2 

7.364 3.8139 7.8768 7.1166 3.4918 6.7698 3.3553 

Task 
3 

6.3562 5.476 7.2603 7.9489 3.1459 7.2193 4.2159 

  
From table I. and table II. SNG-gain average is calcutated 

such as 
SNRgain-average of Ox-Hb = 5.744 
SNRgain-average of DeOx-Hb = 7.746 
 Table III shows the comparison SNG-gain average of 

wavelets filter with Adaptive Filter and Wiener Filter in 2). 

TABLE II SIGNAL TO NOISE RATIO (SNR) GAIN OF 7 CHANNELS AND 3 TASKS 
OF DEOXYGENATED HEMOGLOBIN (DEOX-HB) 

DeOx-
Hb 

Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6 Ch-7 

Task 1 8.8699 8.1896 8.083 9.0927 4.2943 7.3835 8.979 
Task 2 8.4423 9.2044 8.5573 8.8604 6.9695 5.8064 7.9978 
Task 3 8.0968 9.4663 8.6613 7.8358 3.5975 6.3274 7.9426 

  
Results from table III show the accuracy of wavelets filter a 

little bit higher than Wiener filter and definitely higher than 
adaptive filter.  

TABLE III COMPARISON SIGNAL TO NOISE RATIO (SNR) GAIN AVERAGE  

 Adaptive Filter Wiener Filter Wavelets Filter 
SNRgain-average 3.4396 6.6879 6.7448 

 
5.2. Cognition Brain Tasks  
 
Multilayer neural network is built with 3 layers. Input layer 

consists of 7 neurons correspondent to 7 channels of fNIRs 
signals. 7 neurons are set for hidden layer and 1 output. The 
transfer functions of the hidden layer are chosen tagsig-
function while the transfer functions of output neurons are 
purelin-function, a linear function, for representation of many 
different classes. As an example, output equals to +1, 0, -1 
correspondence to task 1, 2, 3.  

 
A. Cognition Task 1 vs Task 3 
 
Original signals and Wavelets approximation coefficients of 

Task 1 vs Task 3 show in Fig. 7. 
 

 
Fig. 7. Original signals and Wavelets approximation coefficients of 
Task 1 vs Task 3. 

 
Output of Neural Classification with 2 distinguished 

classes, and the error of Neural training processing shows in 
Fig. 8. 
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      (a)          (b) 
Fig. 8. (a). Output of Neural Classification with 2 distinguished 
classes, (b) the error of Neural training processing 

Mean square error of classification is 1.6662e-023. 
 
B. Cognition Task 2 vs Task 3: 
 
Original signals and Wavelets approximation coefficients of 

Task 2 vs Task 3 show in Fig. 9. 
 

 
Fig. 9. Original signals and Wavelets approximation coefficients of 

Task 1 vs Task 3. 
 
Output of Neural Classification with 2 distinguished 

classes, and the error of Neural training processing shows in 
Fig. 10. 

   
      (a)            (b) 

Fig. 10. (a). Output of Neural Classification with 2 distinguished 
classes, (b) the error of Neural training processing. 

 
  Mean square error of classification is 5.47322e-010. 
 
C. Cognition Task 1, Task 2 and Task 3 
 
Output of Neural Classification with 3 distinguished 

classes, and the error of Neural training processing shows in 
Fig. 11. 

 

 
     (a)            (b) 
Fig. 11. (a). Output of Neural Classification with 3 distinguished 
classes, (b) the error of Neural training processing 

 
  Mean square error of classification is 4.91857e-022. 
 Comparing to [5] all three experiments show that 

classified wavelet-neuron models obtain the accuracy much 
more than 99.9%. The results determine advantages of 
wavelets analysis as preprocessing and neural networks as 
classified models.  

VI. CONCLUSION 
In this paper we present a novel approach for noise 

cancellation in fNIRs signals using Wavelets analysis. We 
show through some preliminary real data that the proposed 
algorithm works better than the existing algorithm providing 
better SNR-gain. Features extractions from wavelets analysis 
are set as inputs of neural networks classification. Our result 
of high accuracy of offline pattern classification of fNIRs 
signals is up to 99.9%. One disadvantage of the proposed 
algorithm is it works offline. In future, we indicate the 
potential use of such techniques to online fNIRs-BCI systems. 
fNIRs opens many excellent opportunities to cognition brain 
activities and interface to computer as future BCIs. 
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