
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2604

Fully Parameterizable FPGA based
Crypto-Accelerator

Iqbalur Rahman, Miftahur Rahman, Member, IEEE, Abul L Haque, Member, IEEE, and Mostafizur Rahman,

Abstract—In this paper, RSA encryption algorithm and its hard-
ware implementation in Xilinx’s Virtex Field Programmable Gate
Arrays (FPGA) is analyzed. The issues of scalability, flexible per-
formance, and silicon efficiency for the hardware acceleration of
public key crypto systems are being explored in the present work.
Using techniques based on the interleaved math for exponentiation,
the proposed RSA calculation architecture is compared to existing
FPGA-based solutions for speed, FPGA utilization, and scalability.
The paper covers the RSA encryption algorithm, interleaved multipli-
cation, Miller Rabin algorithm for primality test, extended Euclidean
math, basic FPGA technology, and the implementation details of
the proposed RSA calculation architecture. Performance of several
alternative hardware architectures is discussed and compared. Finally,
conclusion is drawn, highlighting the advantages of a fully flexible
& parameterized design.

Keywords—Crypto Accelerator, FPGA, Public Key Cryptography,
RSA.

I. INTRODUCTION

SECURED data transmission through the internet or in the
networks is of utmost importance to many researchers

across the world. The advent of cryptography provides us
a layer of security during data transfer in the net. The
RSA (Rivest, Shamir, Adleman) algorithm is a secure, high
quality, public key algorithm. However, the RSA algorithm
is very computationally intensive, operating on very large
(typically thousands of bits long) integers. One way to address
this problem is to apply cryptographic hardware. A RSA
accelerator which works like coprocessor can provide means
of performing the computationally expensive workload that
usually accompanies various algorithms and protocols.

RSA cryptographic accelerator can provide usefulness on
two fronts. First and most noticeable is increased speed,
which is particularly important to e-commerce companies
that interact with a considerable number of customers daily.
The second benefit is a spin-off of the first one: by reducing
the workload on the system’s CPU, accelerators allow the
system to be used more efficiently for other tasks.

Mr. Iqbalur Rahman Rokon is with the Department of Electrical Engineer-
ing and Computer Science, North South University, Dhaka, 1213 Bangladesh
e-mail: irahman@northsouth.edu.

Dr. Miftahur Rahman is the Chairman at Department of Electrical Engineer-
ing and Computer Science, North South University, Dhaka, 1213 Bangladesh
e-mail: mrahman@northsouth.edu.

Dr. Abul L Haque is the Dean of Department of Electrical Engineering and
Computer Science, North South University, Dhaka, 1213 Bangladesh e-mail:
ahaque@northsouth.edu.

M. Mostafizur Rahman is graduate student from Department of Electrical
Engineering and Computer Science, North South University, Dhaka, 1213
Bangladesh e-mail: mz.rahman@inbox.com

In RSA, a longer key size means better security.
Improvements in the factorization algorithm may inadvertently
require that the size of the key be continually and appropriately
recommended. The flexibility to change key length or modify
the embedded algorithm to respond to design flaws or
changes in standards or data formats, requires hardware
reconfigurability. Reconfigurable hardware applies to a device
that can be configured, at run-time, to implement a function
as a hardware circuit. Commercially available reconfigurable
devices include Field Programmable Gate Arrays (FPGA)
and Complex Programmable Logic Devices(CPLD).

This paper presents an efficient design and implementation
technique of an RSA accelerator on FPGAs. The following
chronology is being followed in presenting the paper. In
section II, RSA algorithm is given in general terms. Then,
in section III, other fundamental algorithms that were used
in the designed are presented. Section IV deal with design
architecture. A top level view of the design and the hierarchy
is shown. Then in section V, we discussed implementation
strategies. Detail of design architecture and hardware blocks
are shown. We explain how parallel computation can gen-
erate faster results, efficient methods of implementing those
hardware blocks and the data path. Further on, in section VI,
implementation results are presented and conclusion is drawn.

II. RSA BASICS

RSA is still the most popular cryptosystem in use today. It
is widely used to suffice the growing demands for security in
communication and computer systems. So, there has been lot
of research for faster and more powerful RSA implementation
in software and hardware end. Hardware solution provides the
best results and maximum throughput compared to software
one’s by far. Its security is closely associated with the difficulty
of factorizing large numbers. This paper describes how to
use the RSA cryptosystem. Especially key generation, the
encryption, and the decryption are treated in detail.

III. FUNDAMENTAL ALGORITHMS

In this section, brief explanation of the algorithms that were
used are presented.

A. Exponential calculation[1]

For fast RSA encryption and decryption, efficient modular
exponentiation is crucial. This can be achieved by the “Square
and Multiply” algorithm. The square and multiply method
is the most popular and effective algorithm for computing



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2605

modular exponentiation. The idea is based on the binary repre-
sentation of the exponent. The technique reduces the problem
to a series of modular multiplications and squaring steps The
square-and-multiply procedure starts from the position of first
one in ’e’, therefore lot of unwanted calculations are saved.

B. Interleaved Modular Multiplication[2]

The basic idea of this algorithm is to interleave multiplica-
tion and reduction such that the intermediate results are kept
as short as possible.

C. Division[3]

A simple and widely implemented class of division algo-
rithm is digit recurrence. The most common implementation
of digit recurrence division in modern microprocessors is SRT
division and non SRT division. SRT or restoring division is
named after Sweeney, Robertson and Tocher, each of whom
developed it independently at around the same time. Restoring
division operates on fixed-point fractional numbers.

D. Primality tester[4][5]

Prime number test is the critical part of RSA key generation.
We implemented the algorithm developed by Miller and Rabin.
It exploits Fermat’s theorem that states (an−1 mod n) = 1,
if n is a prime. Miller and Rabin’s primality test algorithm
is: for efficient hardware implementation, the random number
n is counted as a prime only if TEST returns 10 successive
”inconclusive”. According to the distribution of primes, on
average every 142 trials (0.4ln(2512) will find a prime.

E. GCD[6]

The Euclidean algorithm is used to determine the greatest
common divisor (GCD) of two elements of any Euclidean
domain. The extended Euclidean algorithm is an extension
to the Euclidean algorithm for finding the greatest common
divisor (GCD) of integers a and b: it also finds the integers x
and y in Bzout’s identity: ax+by=gcd (a,b).

The extended Euclidean algorithm is particularly useful
when a and b are co-prime, since x is the modular
multiplicative inverse of (a modulo b). The algorithm
is simplified by removing unnecessary variables and
computations and made it more suitable for hardware
implementation.

Simplified extended Euclidean algorithm keeps trying new b
until it finds gcd(m,b) = 1, then it returns b and it multiplicative
inverse modulo m.

IV. DESIGN ARCHITECTURE

The system architecture of the design is shown in Figure 1.
A random number generator generates pseudo random

numbers and stores them in the rand FIFO. Once the FIFO
is full, the random number generator stops working until a
number is pulled out by the primality tester. The primality

Fig. 1. System Architecture of RSA Accelerator

tester takes a random number as input and tests if it is a
prime. Confirmed primes are put in the prime FIFO. Similar
to the random number generator, primality tester starts new
test only when prime FIFO is not full. A lot of power is saved
by using the two FIFOs because computation is performed
only when needed. When new key pair is required, the down
stream component pulls out two primes from the prime FIFO,
and calculates n and ϕ(n). N is stored in a register. ϕ(n) is
sent to the GCD block, where public exponent e is selected
such that gcd(ϕ(n),e) = 1, and private exponent d is obtained
by inverting e modulo ϕ(n). E, d and n is then stored in
a bigger FIFO which holds 48 bit. Once n, d, and e are
generated, RSA encryption/decryption is simply a modular
exponentiation operation.

Fig. 2. RSA Encryption

Fig. 3. RSA Decryption

The core of the RSA implementation is how efficient the
modular arithmetic operations are, which include modular
addition, modular subtraction, modular multiplication and
modular exponentiation. The RSA also involves some regular
arithmetic operations, such as regular addition, subtraction
and multiplication used to calculate n and ϕ(n), and regular
division used in GCD operation. This thesis shows the detail
work of those units. The design hierarchy is show below-

V. IMPLEMENTATION DETAILS OF BASIC BLOCKS

All the blocks in this design are dependent on new different
operand for functionality, that is- they start working only when
any of the input operands are different otherwise not. This
has a great impact on overall design throughput and allows
maximum utilization in minimum time. 8-bit version of this



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2606

Fig. 4. Design Hierarchy for RSA crypto-accelerator.

parameterized design is shown here for simplicity, which can
be easily extended for 1024 bit or 2048 bit real life usage.
Basic blocks for this design are – FIFO, lfsr, binary weight
calculator, modular multiplier, multiplier, divider, modular
exponent calculator, rom.

A. FIFO

A specialized FIFO is used for this particular design. The
FIFO is 14 bits and avoids consecutive duplicate numbers and
numbers less then 3 as input. It’s another Feature is, it operates
as circular queue, so- it can be used for long period without
initialization. The FIFO is full when there is only one input
left, Thus, helping to avoid erroneous outputs

B. LFSR

Linear Feedback Shift Register (LFSR) is used to gener-
ate pseudo random numbers. In particular, Fibonacci LFSR
was implemented because it is more suitable for hardware
implementation than Galois LFSR. In theory, an n-bit linear
feedback shift register can generate a (2n−1) bit long pseudo
random sequence before repeating. However, an LFSR with
a maximal period must satisfy the following property: the
polynomial formed from a tap sequence plus the constant 1
must be a primitive polynomial modulo 2. We implemented
simple 8 bit LFSR with 4 tap-in, it can be easily modified to
work with 1024 bit numbers with specific tap placement as
described in [7].

C. Binary Weight Calculator

Binary weight calculator calculates number of 1’s in a
binary number; also it gives the position of first one as output,
which is very helpful in modular multiplication and modular
exponentiation unit to avoid unnecessary calculation.

D. Modular Multiplication

Using ripple carry adders, modular multiplication using
shift-add multiplication algorithm is constructed. Interleaved
modular multiplication described in algorithm 2 is used for
modular multiplication, which is particularly suitable for
hardware implementation, the advantages are—

1) No additional modular addition or Subtraction.
2) Direct results are obtained.
3) Relatively simple operation only involves shift and add.
4) 2 subtraction operations can be reduced to one only.
For a 8-bit modular multiplier, inputs opA and opB are both

8 bits. However, opB might be a small number with a lot of
leading 0s. In the hardware implementation, before getting
into the shift-add iterations, we search for the position of the
first leading 1 in opB, and set (k - 1) to be this position,
a separate block called ’BinaryWeight’ is implemented to
perform the operation. By doing this, unnecessary shift and
modular operations are avoided, making the multiplication
faster when opB is small. A 1024-bit modular multiplier can
also be implemented in a similar fashion.

E. Modular Exponent Calculator
The modular exponentiation operation is simply an ex-

ponentiation operation where modular multiplication is in-
tensively performed. We implemented the 8-bit and 16-bit
modular exponentiation components using RL binary method,
where RL stands for the right-to-leftt scanning direction of
the exponent. Algorithm 1 shows detail of RL optimized
algorithm. Similar to modular multiplication, we search for
the position of the first leading 1 in exponent B and set (k - 1)
to be the position. This avoids unnecessary modular squaring
operations. For small exponent such as the public exponent e,
the modular exponentiation is much faster than big exponent
such as the private exponent d.

F. Divider
Non Restoring Division algorithm was chosen for Divider

unit, it is particularly suitable for hardware design because of
its simplicity and less computation. It requires only n steps
and gives quotient and remainder in relatively small time. The
algorithm is described in algorithm 3. The divider accepts big
dividend and small divisor, and returns a big quotient and a
small remainder.

G. Rom
A Rom is implemented which holds only 32 words, prime

numbers from 11- 255 are stored in ROM to assist in GCD
calculation, for 1024 bit implementation, a ROM with 2048
words will be required.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2607

VI. IMPLEMENTATION DETAILS OF BUILDING BLOCKS

Figure 5 shows, a simplified datapath of the whole design,
the clock signal is synchronous and reset is asynchronous.

Fig. 5. RSA Datapath

Initially, the reset signal has to be high for few pulses to
initialize all system signals. Additionally a start signal is used
as synchronous input in building blocks to control execution of
the block and therefore helps in reducing power consumption.

A. Stage 1

Stage1 module consist of 3 basic building blocks
BinWeight, FIFO and LFSR. The module itself has control
signals such as ‘clk’, ‘reset’, ‘start’, ‘read’ as input and 14 bit
data with the name ‘dout’ as output with two other control
signals ‘emptyp’ and ‘fullp’.

In stage 1, only odd numbers that are greater then 2
are selected to store in FIFO, this check for odd number
removes unnecessary computation for even prime numbers.
The numbers are then placed into BinWght module. It has
three outputs. First output is the odd number which is 8 bit,
second is the position, where the first 1 was found, its is 3
bit and the third output is single bit signal named ‘done’ to
indicate the operation is complete. The 8 bit random number
with its binary weight and position of first one then placed into
FIFO which holds 8 words 14 bit each. The block continues to
execute until the FIFO is full, when FIFO is full, it enters IDLE
state. Thus, reduces the power consumption and unnecessary
logic execution. Figure 6 shows block diagram of stage 1.

B. Stage 2

Stage 2 executes miller, rabin’s prime tester for prime
check. Separate LFSR block is used for random number
generation with different initial value, which allows the
sequence to be altered and complete random checking for
primes. Special care is taken to avoid random numbers less
then or equal to 3, and to avoid duplicate random numbers
for prime test. ModExp and InterleavedMult unit does the

Fig. 6. Block diagram for Random number generation unit.

modular multiplication and modular exponent computations
that are required.

The 14 bit FIFO stores 8 bit prime number along with
its binary weight and the position of first one which are 3
bits each for faster multiplication and exponentiation. The
block continues to execute until the FIFO is full, which stores
maximum 8 words. Whenever a word is pulled by upper level
block- stage3, stage2 starts functioning, to find another prime
number to fill that void. Figure 7 shows detail of stage 2.

Fig. 7. Block diagram of Prime number Checker unit.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2608

C. GCD

GCD calculator calculates gcd of input and a prime number
from ROM and finds suitable multiplicative inverse. Sub
blocks of this module are Divider, primeRom, Multiplier. For
8 bit implementation only 32 prime numbers are sufficient,
but for 1024 bit implementation, To get a valid b faster,
pre-computation of all primes less than 2000 excluding
2 is required. Because the product of all these primes
is greater than 21024, which means that any m less than
21024 is prime to at least one of these primes. These primes
are hard-coded in the on-chip block memory called primeRom.

Extended Euclidean requires a regular multiplier to compute
Q*B2. Normal add-shift multiplication algorithm was used for
that. The interface of GCD block is show below-

Fig. 8. Block diagram for GCD calculator

D. Stage 3

Stage 3 is the key generation stage. In this stage both
private keys (d, n) and public keys (e, n) are generated. Sub
blocks that do the computations are Multiplier, GCD, and
FIFO.

At first two different prime number p, q are fetched from
Stage2 FIFO which holds 8 prime number always, result of
(p-1)x(q-1) is then put into GCD module for e, d calculation.

GCD calculator then returns a suitable prime number e
with the condition gcd((n),e)=1 and the multiplicative modulo
inverse d of e using (n). The multiplier and GCD calculator
works in parallel, as the multiplier calculates (pxq) while gcd
calculator works with (n). The result e, d, n are 16 bit each,

Fig. 9. Block diagram for key generation unit

Fig. 10. Block diagram for Encryption unit. (stage 4)

and a larger FIFO that holds 48 bit word is required to put the
result. Thus the FIFO holds both private and public keys at the
end of execution. The block enters idle state when the FIFO
with 8 word depth is full. Figure 9 shows the block diagram.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2609

E. Stage 4

Stage 4 is the higher block in the hierarchy, it encapsulates
all the lower level blocks. This block takes 8 bit message
(M) as input and gives 16 bit cipher text as output. A 16 bit
modular exponential unit does the Me (mod n) computation

F. Conclusion

In this paper, a detail implementation technique for 8-bit
RSA circuit is shown. It is a full-featured parameterized design
of RSA circuit including key generation and data encryption,
which can be extended for 1024/2048 bit implementation
of RSA cryptography. Both RSA key generation and data
encryption component for this 8 bit RSA is suitable to fit into
a single Xilinx Virtex II pro FPGA. The test was conducted
in real hardware. Each sub-component was simulated in
XST and implemented in FPGA and is functionally correct.
According to the synthesis statistics, critical parts like
modular multiplication and modular exponentiation takes 4.2
s, 10s and 45s and 94s for 8 and 16 bits respectively. Turnout
time for 8 bit RSA implementation is 1.2 ms for 100 Mhz
clock.

Following figures show the webworms of major blocks-

Fig. 11. ‘Stage4’ input output signals in webform

Fig. 12. Figure12: ‘Divider’ input output signals in webform

REFERENCES

[1] Lu, Jing, and Qian Wan, . Implementing a 1024 Bit RSA on
FPGA. 03 May 2003. Dept. of CSE., Washington U. 21 Jan. 2008
<www.arl.wustl.edu/˜jl1/education/cs502/doc/report.doc>.

Fig. 13. ‘GCD’ input output signals in webform

Fig. 14. ‘BinWeight’ input output signals in webform

[2] Amanor, David Narh, comp. Efficient Hardware Architectures
For Modular Multiplication On FPGAs. 19 Feb. 2005. The
University of Applied Sciences CityplaceOffenburg. 07 Dec. 2007
<www.crypto.rub.de/imperia/md/content/texte/theses/dnamanorthesis.pdf>.

[3] ”Division (Digital).” Wikipedia. dateMonth4Day17Year200717
Apr. 2007. Wikipedia. dateMonth12Day12Year200712 Dec. 2007
<http://en.wikipedia.org/wiki/Restoring division#Restoring division>.

[4] G. Miller, Riemann’s Hypothesis and Tests for Primality. Proceeding sof
the 7th Annual ACM Symposium on the Theory of Computing, May
1975.

[5] M. Rabin, Probabilistic Algorithms for Primality Testing. Journal of
Number Theory, Dec. 1980.

[6] Wu, C.-L., Lou, D.-C., Chang, T.-J.,” Fast Binary Multiplication
Method forModular Exponentiation.” Tanet, 2005. 22 Nov. 2007.
<tanet2005.nchu.edu.tw/session/TANet2005Sessiondetail.pdf>.

[7] “DS257”,Linear Feedback Shift Register v3.0. V-1, date-
Month3Day28Year200328 MAR 2003. Xilinx. 04 Jan. 2008.

[8] Wockinger, thomas. High-Speed RSA Implementation.07 Jan
2005, Institute of applied information., Graz U. 27 Nov 2007
<www.iaik.tugraz.at/teaching/11 diplomarbeiten/archive/woeckinger.pdf>.

Mr. Iqbalur Rahman Rokon received his BSc
degree in Electrical and Electronic Engineering
from Bangladesh Institute of Technology, Rajshahi,
Bangladesh 1991 and MS degree in Electrical and
Computer Engineering from California University,
Northridge, USA in 1997. During his MS study in
US, he also worked as System Engineer at National
Telecom, Santa Ana, California, USA from 1994
to 1997. Then he started his career at High-Tech
Chip Companies in USA and served as Design
Engineer, Chip (ASIC/FPGA/CPLD) Development,

R&D, Emulex Corporation, Costa Mesa, USA from 1997 to 2003. Then he
joined North South University, Dhaka and has been teaching there as a Faculty
Member of Electrical Engineering and Computer Science Department since
2004. He also served as Proctor of the University from 2007 to 2009. In
addition to his current teaching profession at NSU, Iqbalur Rahman Rokon
is also continuing his high-tech involvement with industry and serving as
consultant of ASIC/FPGA Development at Power IC Limited – a Chip Design
Company at Dhaka, Bangladesh.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2610

Dr. Miftahur Rahman (M’04–to-date) received his
BS and MSc in Physics from the University of
Dhaka, Bangladesh, in 1976 and 1977 respectively.
He started his teaching career as a Lecturer in the
Department of Physics, at the Bangladesh University
of Engineering and Technology (BUET) in 1980. In
1983 he received his MS in Solid State Physics from
Marquette University, Milwaukee, Wisconsin. Later
in 1988 he received his Ph.D. in Solid State Physics
and Optics from the University of Massachusetts
Lowell. He worked as a Technical Consultant at

Arthur D. Little, Inc., Cambridge, MA, USA, from 1988 to 1989. He served
as a Research Associate and Consultant at the Institute for Plastics Innovation
(IPI), UMASS-Lowell, from 1990 to 1995.

He served as a Technical Manager at Grameen Shakti, Dhaka, Bangladesh
from 1995 to 1997. He served as a Professor and Proctor at East West
University, Dhaka, Bangladesh from 1997 to January 2002. In spring 2002
he joined the Department of Computer Science and Engineering, at North
South University (NSU), Dhaka, Bangladesh. He served as the Chairman of
the Department from 2003 to 2007 and is currently serving as the Chairman
of the department, which has been renamed as the Department of Electrical
Engineering and Computer Science (EECS). He is also the coordinator of the
MS in Electronics and Telecommunications program and has been teaching
MS telecom courses and supervising MS theses and projects in the area
of wireless and mobile technology. He is also serving as the Director of
the Center for Information and Communication Technology (CICT). During
his first tenure as the Department Chair, he organized an International
Conference on the Next Generation Wireless Systems in 2006 in Dhaka,
Bangladesh, with the sponsorship of IEEE Communications Society in which
many internationally reputed scientists and scholars attended the conference
and contributed their technical papers. He had the privilege to act as the
Editor of the ICNEWS’06 proceedings in which 71 technical papers were
internationally reviewed and had been included for publication. Currently he
is a member of the Technical Program Committee of the ISIEA09 (IEEE
Symposium on Industrial Electronics and Applications). He has published
papers in refereed journals, and has about 25 international conference papers,
about 25 industrially funded research reports and supervised about 25 BS and
MS projects.

Dr.Abul L. Haque earned his BSc and MSc degrees
in Applied Mathematics from Dhaka University and
his MSc degree in Computer Science from the
University of Western Ontario and his Ph.D. degree
in Computer Science from the University of Okla-
homa. He served in a various teaching positions at
Dhaka University, Yarmouk University, University
of Bahrain before joining as an Assistant Professor
position at North South University in 1994. Cur-
rently he is a Professor of Electrical Engineering
and Computer Science and the Dean of School of

Engineering and Applied Sciences. He has published many papers in the
area of Neural Networks. His current research interests are in the areas of
Algorithms and Computer Architectures.

Mostafizur Rahman is a graduate from the De-
partment of Electrical Engineering and Computer
Science at North South University. He graduated
in April 08 with the distinction of Magna Cum
Laude. His research interests are in Reconfigurable
Computing, Computer Architecture and SoC design.


