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 
Abstract—In this work, effects of the friction and truncation on 

the dynamics of a double-cone gravitational motor, self-propelled on a 
straight V-shaped horizontal rail, are evaluated. Such mechanism has a 
variable radius of contact, and, on one hand, it is similar to a pulley 
mechanism that changes the potential energy into the kinetic energy of 
rotation, but on the other hand, it is similar to a pendulum mechanism 
that converts the potential energy of the suspended body into the 
kinetic energy of translation along a circular path. Movies of the self- 
propelled double-cones, made of S45C carbon steel and wood, along 
rails made of aluminum alloy, were shot for various opening angles of 
the rails. Kinematical features of the double-cones were estimated 
through the slow-motion processing of the recorded movies. Then, a 
kinematical model is derived under assumption that the distance 
traveled by the contact points on the rectilinear rails is identical with 
the distance traveled by the contact points on the truncated conical 
surface. Additionally, a dynamic model, for this particular contact 
problem, was proposed and validated against the experimental results. 
Based on such model, the traction force and the traction torque acting 
on the double-cone are identified. One proved that the rolling traction 
force is always smaller than the sliding friction force; i.e., the 
double-cone is rolling without slipping. Results obtained in this work 
can be used to achieve the proper design of such gravitational motor. 
 

Keywords—Truncated double-cone, friction, rolling and sliding, 
dynamic model, gravitational motor. 

I. INTRODUCTION 

KETCHES of Leonardo da Vinci are often mentioned in 
connection with the “over-balanced wheel” and “ascending 

(double)-cone” [1], [2], which are both gravitational motors 
able to convert the inputted potential energy into the outputted 
rotational and/or translational kinetic energy. Such motors can 
operate by harnessing energy from the gravitational field of the 
Earth, i.e. from an environmentally friendly source of energy. 
In 1829, the concept of a self-propelled railway vehicle was 
proposed, and although it was not materialized, it can be seen as 
a commendable attempt to turn into practice the double-cone 
gravitational motor. Such vehicle was imagined as having a 
central “body” with conical “wheels” applied at its ends, and 
running on three-dimensionally curved rails [3]. Obviously, 
such gravitational train could not compete with trains using 
combustible and electrical energy sources. Still, nowadays 
trains employ slightly conical wheels, to reduce the rubbing and 
to ease the movement of the vehicle around curves [4]. 

Double-cone gravitational motor might have applicative 
potential as generator of electrical power, but in order to cause 
the expediency of its industrial production, the concrete range 
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of practical applications should be decided according to its 
range for the efficiency and outputted power. In order to design 
appropriately such gravitational motor, an unsophisticated but 
accurate theoretical model is required. Apparent paradox of the 
ascending double-cone is presented in the Physics classroom in 
correlation with the center of gravity and the moment of inertia, 
through facile tests and simplified theoretical models [5]. Also, 
complex mathematical and physical models, dedicated to cones 
traveling on rectilinear rails, horizontally or upwardly directed 
[6], or addressing sophisticated problems related to the rolling 
friction of various bodies of revolution [7], were reported. 

Recently, a simple geometrical and kinematical model 
associated to double-cones, traveling on straight V-shaped 
horizontally displaced rails, was proposed [8]. Such analysis 
revealed that the points of contact between the double-cone and 
rails move on the conical surface along a logarithmic spiral. 
Based on common geometrical conditions, the maximal 
number of rotations, to be achieved by the double-cone, was 
estimated [8]. Such model predicted a slightly larger number of 
rotations, with a maximal relative error of 10-20 %, for carbon 
steel double-cones traveling along aluminum rails. However, 
the model accuracy, for double-cones and rails made of 
different materials, was not evaluated. 

For this reason, in the present work, films of double-cones 
made of S45C carbon steel and Japanese beech, self-propelling 
on horizontal V-shaped rails, made of aluminum alloy, are shot 
for different entrance spans of the rails. Then, the previously 
suggested kinematical model [8] is improved to achieve higher 
accuracy, by including the effect of cone truncation. Our target 
is to achieve theoretical predictions with a relative error lower 
than 5%, relative to the number of rotations determined from 
the slow-motion analysis of the taken films. 

Supplementarily, a model based on the Laws of Dynamics, 
applied for both motions of rotation and translation of the 
double-cone, is proposed and then, validated relative to the total 
traveling time determined from the rolling tests. This model 
allows for a thorough evaluation of the dynamic characteristics 
of the conical gravitational motor. For instance, the traction 
force and the traction torque acting on the double-cone can be 
clarified, and the self-propelling ability can be interpreted 
based on the movement regime of rolling without slipping. 

II. TEST RIG AND EXPERIMENTAL PROCEDURE 

Two cones, made of the same material, each having a height 
of H = 100 mm, and a radius at the base circle of R = 25 mm, are 
joined together by using a bonding adhesive, to achieve the 
so-called double-cone (Fig. 1). Therefore, the apex angle of the 

cone can be calculated as:   )/(tan 1 HR 14.036 deg (see 
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Fig. 2). However, the actual manufactured cones are slightly 
truncated, to avoid eventual injuries by the needle-like conical 
tips (see section IV for the geometrical details). 

Two double-cones, one made of S45C carbon steel and the 
other made in wood (Japanese beech), were fabricated. 
Material diversity helps in our quest to clarify the influence of 
the rolling and sliding on the dynamics of the conical 
gravitational motor. 

Table I shows, for the geometrically idealized double-cones, 
the physical properties (i.e., the diameter 2R of the base circle, 
the total height 2H, the apex angle Ψ, the mass m, and the 
moment of inertia I = 0.3mR2); then, the material properties (i.e., 
the modulus of elasticity Ec, and the Poisson’s ratio νc); and 
finally, the tribological properties (i.e., the static and dynamic 
friction coefficients μs and μ, given for parts from steel or wood, 
sliding on a counter-part made of aluminum alloy [9]-[11]). 
Rails have the modulus of elasticity of Er = 74 GPa, the 
Poisson’s ratio of νr = 0.33, the length of L0 = 1,000 mm (Fig. 2), 
the height of H0 = 50 mm (Fig. 8), and the chamfering radius of 
R0 = 1 mm (Fig. 8). They are disposed on a horizontal table to 
form a V letter, which has an entrance span L2 and an exit span 
L1, where L2 ≤ L1 (see Fig. 2). 

 
TABLE I 

PHYSICAL, MATERIAL, AND TRIBOLOGICAL PROPERTIES OF THE 

GEOMETRICALLY IDEALIZED DOUBLE-CONES MADE OF STEEL AND WOOD 

Property 
Metallic 

double-cone 
Wooden 

double-cone 
Diameter, 2R [mm] 50 50 

Total height (length), 2H [mm] 200 200 

Apex angle, Ψ [deg] 14.036 14.036 

Mass, m [kg] 1.051 0.1102 

Moment of inertia, I [kg·mm2] 197.0625 20.6625 

Material S45C carbon steel Japanese beech 

Modulus of elasticity, Ec [GPa] 206 13 

Poisson’s ratio, νc [-] 0.3 0.35 

Static friction coefficient, μs [-] 0.61 0.3 

Dynamic friction coefficient, μ [-] 0.47 0.2 

 
Double-cone made of S45C carbon steel,
m = 1.051 kg

Double-cone made of wood (Japanese beech), 
m = 0.1102 kg

Double-cone made of S45C carbon steel,
m = 1.051 kg

Double-cone made of wood (Japanese beech), 
m = 0.1102 kg  

Fig. 1 Photographs of the tested metallic and wooden double-cones 
 

Fig. 2 illustrates a schematic view of the metallic or wooden 
double-cone, rolling on the V-shaped horizontal rails. Exit span 
of the tracks is set to a constant value of L1 = 185 mm. On the 
other hand, the entrance span L2 of the rails is taken as variable, 
i.e., it is adjusted, starting from L2 = 0 mm, with a pitch of 10 
mm (see Table II). For instance, Fig. 3 illustrates photographs 

of the metallic and wooden double-cones for an entrance span 
of L2 = 0 mm. Note that for L2 = L1, tracks become parallel, and 
in such case, the double-cone is unable to self-propel along the 
rails. Influence of the entrance span is quantified by defining an 
opening angle )/)(5.0(sin 021

1 LLL    of the rails (Fig. 2). 

One proved that the opening angle decreases almost linearly 
from its maximal value of 5.307 deg, found for L2 = 0, to its 
minimal value of 0 deg, obtained for parallel tracks [8]. 

As illustrated in Fig. 2, the start position of the double-cone 
was empirically adopted at a distance LS = 60 mm [6]. In this 
way, the initial span between the points of contact with rails 
becomes sufficiently large to achieve stable commencing 
conditions of the rolling motion, even for small values of L2. 
 

L
2

2H

L
1

L0

Central plane

)
2

(sin
0

211

L

LL 
 

Rail made of
aluminum alloy2R

)(tan 1

H

R

LS

Start position

Advance direction 

of the double-cone

O1

Contact 
point P

Contact 
point Q

L
2

2H

L
1

L0

Central plane

)
2

(sin
0

211

L

LL 
 

Rail made of
aluminum alloy2R

)(tan 1

H

R

LS

Start position

Advance direction 

of the double-cone

O1

Contact 
point P

Contact 
point Q

 

Fig. 2 Schematic view of the metallic or wooden double-cone, rolling 
on the V-shaped horizontal rails, made of aluminum alloy 

 

Wooden double-cone

Entrance span, 
L2 = 0 mm

Entrance span, 
L2 = 0 mm

Metallic double-cone Wooden double-cone

Entrance span, 
L2 = 0 mm

Entrance span, 
L2 = 0 mm

Metallic double-cone  

Fig. 3 Photographs of the metallic and wooden double-cones for an 
entrance span of L2 = 0 mm 

 
The following experimental procedure was adopted: 

1) As shown in Fig. 2, rails made of A5052 aluminum alloy 
are positioned on a horizontal experimental table, with nil 
angle of inclination (0 ± 0.3 deg). Note that the radius of 
the double-cone cannot exceed the height of the rails (R ≤ 
H0). Exit span, which has to satisfy the condition L1 ≤ 2H, 
is fixed to a certain desired value, e.g., L1 = 185 mm, in 
these particular tests. 

2) Entrance span L2, which has to satisfy the condition L2 ≤ L1, 
is adjusted to a desired value (see Table II). 

3) To avoid the supplying of input kinetic energy into the 
system, the double-cone is carefully placed on the rails at 
the start position of LS = 60 mm (see Fig. 2). 
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4) Double-cone starts to self-propel along the rails due to the 
initially gained potential energy, which is transformed into 
the kinetic energy, of rotation and translation (see Fig. 10). 

5) In order to easily observe the movement of the double- 
cone along the rails, generatrix lines and circular symbols 
were marked on the conical surface (see Fig. 1). For each 
entrance span of the rails, movies were shot from a 
convenient position near to the exit region of the tracks. 

In the same time, the total traveling time T of the double- 
cone was measured by using a stopwatch. In order to achieve 
theoretical predictions with a relative error smaller than 5%, the 
reference experimental results should be quite accurately 
obtained. For this reason, three tests were carried-out for each 
experimental configuration, and the results were averaged. 
6) Number of rotations, the variable period of rotation, and 

the total travelling times of the double-cones were 
determined as described in detail by [8]. 

III. EXPERIMENTAL RESULTS AND THEIR SIGNIFICANCE 

Number of rotations n, total traveling time T measured by 
using a stopwatch, and total traveling time Tm calculated from 
the recorded movies of the metallic and wooden double-cones 
are shown in Table II. Increase of the total traveling time and 
number of rotations of the double-cone can be observed at 
augmentation of the entrance span of the rails. 

Relative difference between the total traveling time given by 
the stopwatch and the total traveling time determined from the 
slow-motion analysis of the recorded movies was found to be 
smaller than 5 %. Hence, it seems that the total traveling time of 
the double-cone was measured quite precisely. 

However, rather large difference was unexpectedly obtained 
between the numbers of rotations n for the metallic and wooden 
double-cones. This result is unexpected, since the kinematical 
model [8] predicts the same number of rotations nt, regardless 
the material used for the double-cone fabrication (Table II). 

Results shown in the second column of Table II are obtained 
by starting from the following general expression of the total 
number of rotations nt [8]: 
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n S
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 (1) 

 
Then, by substituting in (1) the opening angle   of the rails, 
the apex angle   of the cone, the contact radius 0r  at the start 

position of the double-cone on the rails (see Fig. 10): 
 

2
2

0 cos

tansintan5.0 
 SLLR

r , (2) 

and the angle )tan(tansin 1    of the trajectory of the 

mass center (see Figs. 9 and 10): 
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the following expression, particularized for the ideal conical 

geometry with sharp tips, was derived as [8]: 
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Note that (1) was obtained from a kinematical model, in 

which the points of contact P and Q (Fig. 2), between the 
double-cone and rails, move on the conical surface along a 
three-dimensional logarithmic spiral. Besides, (1) was derived 
under the so-called “no-slip” or “pure rolling” condition, i.e. 
under the hypothesis that the distance SLL 0  traveled by the 

contact point on the straight rail, equals the distance traveled by 
the same contact point along the logarithmic spiral trajectory. 

Theoretical number of rotations nt predicted by (4) together 
with (3) depends only on the geometrical parameters associated 
to the double-cone (R, H), and to the rails (L0, L1, L2, and LS). 
Hence, (4) predicts the same number of rotations nt, regardless 
the material used for the double-cone fabrication. Although (4) 
gives results with a maximal relative error smaller than 11 %, 
for the metallic cone, the error increases up to 38 %, for the 
wooden cone (see Table II). In order to reduce the discrepancy 
between the theoretical and experimental results, an improved 
model is proposed in section IV, by including the influence of 
truncation of the conical tips. 

As already stressed, the double-cone is unable to self-propel 
along parallel rails. Theoretical model reliably predicts such 
behavior, since by imposing the condition L2 = L1, one obtains 
from (4) a nil number of rotations, i.e., nt = ln(1) = 0. 

 
TABLE II 

VARIATION OF THE NUMBER OF ROTATIONS, TOTAL TRAVELING TIME 

MEASURED BY USING A STOPWATCH, AND TOTAL TRAVELING TIME 

DETERMINED THROUGH THE SLOW-MOTION PROCESSING OF THE RECORDED 

MOVIES, FOR THE METALLIC AND WOODEN DOUBLE-CONES 

L2 
[mm] 

nt 
[-] 

Metallic double-cone Wooden double-cone 

n [-] T [s] Tm [s] n [-] T [s] Tm [s] 

0 17.31 16.5 3.94 3.91 14.0 4.39 4.22 

10 17.95 17.0 4.27 4.13 15.0 4.48 4.40 

20 18.64 18.2 4.49 4.42 15.5 4.46 4.20 

30 19.39 18.5 4.66 4.44 16.0 4.82 4.66 

40 20.21 20.0 4.93 4.94 16.3 4.90 4.80 

50 21.12 20.5 5.20 5.10 17.0 5.24 5.18 

60 22.13 21.0 5.51 5.34 18.0 5.62 5.51 

70 23.25 22.0 5.90 5.81 18.5 6.00 5.90 

80 24.51 23.0 6.30 6.28 19.5 6.34 6.16 

90 25.95 24.0 6.91 6.75 20.5 6.89 6.76 

100 27.60 25.5 7.48 7.34 21.5 7.45 7.36 

110 29.52 27.5 8.48 8.30 22.5 8.02 7.75 

120 31.79 29.3 9.45 9.38 24.0 9.01 8.90 

130 34.53 31.7 10.82 10.58 25.5 10.50 10.02 

140 37.91 34.2 12.98 12.87 27.5 12.44 12.10 

150 42.23 38.0 16.30 15.88 --- --- --- 

IV. MODEL IMPROVEMENT BY CONSIDERING THE EFFECT OF 

TRUNCATION OF THE CONICAL TIPS 

As mentioned in section II, the actual manufactured cones 
are slightly truncated, to avoid injuries by the needle-like tips. 
Thus, Fig. 4 presents the geometry of the actually fabricated 
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cones, and Table III illustrates the corrected physical properties, 
relative to those shown by Table I, for the idealized cones. 

Mass values remain unchanged, since they are not calculated, 
but measured for the actually fabricated double-cones, by using 
a digital balance. On the other hand, the moment of inertia It of 
the truncated cone has to be accurately recalculated as: 

 

])/(1/[])/(1[3.0 3*5*2 RRRRmRIt   (5) 
 

However, for the double-cones used in this work, 
insignificant change in the values of the moment of inertia was 
observed (i.e., IIt   as can be seen from Tables I and III). 

Thus, main effect of truncation is the slight reduction in the 
apex angle, from the ideal value of   )/(tan 1 HR 14.036 

deg (Table I), to values of   ]/)[(tan *1 HRR 13.766 

deg, for the metallic cone, and 13.016 deg, for the wooden cone 
(Table III). Such angular change seems negligible, but due to 
the strong nonlinear effects induced by the logarithmic and 
trigonometric functions, it is responsible for the considerable 
alteration of the computed number of rotations. 
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Fig. 4 Geometry of the actual double-cones, having truncated tips 
 

TABLE III 
REAL OR CORRECTED PHYSICAL PROPERTIES OF THE TESTED DOUBLE-CONES 

MADE OF CARBON STEEL AND WOOD 

Property of the double-cone Metallic Wooden 

Truncation diameter, 2R* [mm] 1 4 

Total height (length), 2H [mm] 200 199 

Apex angle, Ψ [deg] 13.766 13.016 

Moment of inertia, It [kg·mm2] 197.0641 20.6730 

 
Thus, by substituting the corrected apex angle in the model, 

one finds the revised contact radius 0r  at the start position of 

the double-cone on the rails: 
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and the revised angle   of the trajectory of the mass center: 
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Also, the substitution of (6) in (1) leads to the revised number 

of rotations ntr for the truncated double-cone, as follows: 
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Note that, by imposing the condition R* = 0 in (6)-(8) of the 

truncated double-cones, one regains (2)-(4) of the ideal double- 
cones with sharp tips. On the other hand, by imposing the 
condition R* = R in (8), i.e., the double-cone transforms into a 
cylinder, one obtains a nil number of rotations, i.e. ntr = ln(1) = 
0. Thus, the cylinder is unable to self-propel along horizontal 
V-shaped rails, a result well-known in the literature [5], [6]. 

Figs. 5 and 6 present the variation of the number of rotations 
versus the entrance span of the rails for the wooden and the 
metallic double-cones, respectively. Solid lines illustrate the 
results given by (4) for the ideal cone with sharp tips, circular 
symbols present the experimental results, and rhombic symbols 
show the results given by (8) for the truncated cones. Compared 
to the experimental results, (8) produces quite good predictions, 
with a maximal relative error smaller than 5%, both for the 
metallic and wooden double-cones. 
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Fig. 5 Variation of the number of rotations versus the entrance span of 
the rails, for the wooden double-cone (Solid line: results for the ideal 

cone with sharp tips; circular symbols: experimental results; and 
rhombic symbols: results for the truncated cone) 
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Fig. 6 Variation of the number of rotations versus the entrance span 
of the rails, for the metallic double-cone (Solid line: results for the 

ideal cone with sharp tips; circular symbols: experimental results; and 
rhombic symbols: results for the truncated cone) 

 
In conclusion, improvement of the theoretical model was 

successfully achieved by taking into account the real geometry 
of the fabricated double-cones. It seems that not the material, 
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but the slight change in the apex angle, due to the truncation 
process, is responsible for the difference observed between the 
numbers of rotations for the metallic and wooden double-cones. 

V. LAW OF DYNAMICS FOR THE TRANSLATION MOTION 

Due to the geometrical and loading symmetry of the studied 
system relative to the Ox axis (Fig. 7), the friction forces acting 
in the contact points P and Q during the movement of double- 
cone on the rails, are vectors occurring along the tracks, but 
opposing the advance direction of the double-cone [8]: 
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On the other hand, the reaction forces (see Figs. 8 and 9), 

acting in the same contact points P and Q, can be written as [8]: 
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Thus, Newton’s Law of Dynamics, for the translation motion 

of the mass center O1 of the double-cone, can be written as: 
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which leads to the following scalar equations for accelerations 
along all three axes of the xyz system of coordinates: 
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As expected, due to the geometrical and loading symmetry of 

the studied system relative to the Ox axis (see Figs. 7 and 8), the 
lateral acceleration becomes nil (ay = 0); i.e., the mass center O1 
moves in the central vertical plane xOz (see Fig. 9). 
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Fig. 7 Upper view of the contact between the double-cone and rails, 
showing the corresponding friction forces 
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Fig. 8 Frontal view of the contact between the double-cone and rails, 
showing the corresponding normal and gravitational forces 
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Fig. 9 Lateral view of the contact between the double-cone and rails, 
showing the corresponding normal and gravitational forces 

 
Moduli a, N, and Ff of the acceleration vector, normal force, 

and friction force, can be determined from some kinematical 
conditions, which are depending on the actual regime of motion 
of the double-cone. Typically, three movement regimes can be 
encountered, as follows: pure sliding (slipping), pure rolling, 
and a combination of rolling and slipping [7], [10]. 

In order to establish the movement regime of double-cones, 
one rewrites (1) along the rails, as follows: 

 

ftf
x FNFN

a
m 222sin

cos

cos
2

cos
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
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


  (13) 

 

Term tN2  can be regarded as a traction force acting on the 

cone, and  cos/sincos t  as a traction coefficient. 

Slipping commences if the traction force is larger than the 
static sliding friction force ( sN2 ), and then, slipping is 

maintained if the traction force exceeds the dynamic sliding 
friction force ( N2 ). 

For the ideal double-cones (Table I), the traction coefficient 
monotonically decreases from a value of 0.0226 for L2 = 0, to a 
value of 0.0006 for L2 = 180 mm. For the real truncated wooden 
(metallic) cone, the traction coefficient monotonically reduces 
from a value of 0.0210 (0.0222) for L2 = 0, to a value of 0.0051 
(0.0042) for L2 = 140 mm (150 mm). Consequently, the traction 
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coefficient is much smaller than the static and dynamic sliding 
friction coefficients (0.3 and 0.2 for the wooden cone; 0.61 and 
0.47 for the metallic cone, see Table I). 

Accordingly, the assumption of “no-slip” or “pure rolling”, 
used to derive the models (4) and (8), seems to be justified. 

In order to clarify aspects concerning the trajectory, velocity 
and acceleration of the mass center, one firstly considers the 
relationship between the coordinates of the contact point P, and 
mass center O1, as follows (see Fig. 9): 
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where the instantaneous contact radius r can be written as [8]: 
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Concerning the trajectory of the mass center, by 

differentiating (14) and (15), one obtains the following 
relationship between the vertical and longitudinal coordinates 
of the point O1: 
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This means that the mass center of the double-cone moves on 

a descending straight line that displays an inclination angle   
relative to the horizontal line (Fig. 10). Such result agrees with 
the previously reported findings [6], [8]. 

Next, by differentiating against the time t the third equation 
of (14) and (15), one obtains: 
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which leads after some manipulations, to the following velocity 
components of the mass center: 
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Then, by differentiating (18) against the time t, one finds the 

acceleration components of the mass center, as follows: 
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As expected, the lateral velocity and acceleration of the mass 

center becomes nil, since the point O1 moves in the central 

vertical plane xOz. Moreover, the velocity V


 and acceleration 
a


 are vectors perpendicular on the instantaneous contact radius, 
and consequently, they move on the same straight line as the 
point O1 (see Fig. 10). 

Thus, the gradual reduction of the contact radius leads to the 
height reduction z  of the mass center of the double-cone. 
This causes a proportional decrease of the potential energy: 

 

cos)( 0 rrmgzmgEp   (20) 
 

from an initial or input potential energy cos00, mgrEp   (Fig. 

10). Hence, such mechanism can be regarded as a gravitational 
motor, which transforms the initial or input potential energy 
into the kinetic energy, of rotation and translation. In order to 
fully determine the energy Ep,0 one needs the initial contact 
radius r0, which for the truncated double-cones is given by (6). 

Finally, by substituting (19) in (12), and retaining only the 
first and third equations, which contain the desired information, 
one obtains a set of two equations with three unknowns (the 
moduli a, N, and Ff), as follows: 
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In order to solve the problem, a third equation, obtained by 

applying the Law of Dynamics for the rotation movement of the 
double-cone, will be added in the next section. 
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Fig. 10 Change in the contact radius, and implicitly, change in the 
height of the mass center due to the motion of the double-cone on rails 

VI. LAW OF DYNAMICS FOR THE ROTATION MOTION 

First, in order to clarify the angular velocity   of the rolling 
double-cone, it is useful to observe that the number of rotations 
N* of the double-cone, at a certain instant t, can be expressed as: 
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where S(t) is the instantaneous distance traveled by the contact 
point P along the straight rail, which can be calculated as: 
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Combining the first equation of (14) and (15), one obtains 
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that the instantaneous contact radius r can be written as: 
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which allows us to rewrite (23) as follows: 
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By substituting (25) in (22), the number of rotations N* of the 

double-cone, at a certain instant t, can be rewritten as: 
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Then, the angular velocity   can be derived as: 
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in which the derivative dtdr /  can be substituted from the 
second equation of (17), combined with (18), as follows: 
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Finally, the angular velocity of the double-cone is found as: 
 

rV /  (29) 
 

This unexpectedly means that, the spinning speed   (Fig. 
10) is simply proportional to the velocity of the mass center O1, 
and inversely proportional to the contact radius. Thus, although 
the double-cone has a variable contact radius, result (29) is 
similar to formulae obtained for objects of constant radius of 
contact, such as cylinders or spheres rolling on straight parallel 
tracks. 

Next, in order to explain the self-propelling ability of the 
double-cone along the rails, the Law of Dynamics for rotation is 
applied relative to the PQ axis, determined by the contact points. 
Note that the normal forces NP and NQ, the friction forces Ff,P 
and Ff,Q, and the component cosmg  of the gravitational 

force are vectors passing through the PQ axis (Figs. 7-9). Hence, 
they are unable to cause revolution of the double-cone around 
this axis. Only the component sinmg  of the gravitational 

force is able to cause clockwise rotation of the double-cone 
around the PQ axis (Fig. 9). Thus, the corresponding moment of 
revolution can be written as: 

 

sin, mgrM Pt   (30) 
 

Since the torque (30) is responsible for commencing the 
rolling of the double-cone along rails, it appears to be a traction 
torque. 

For parallel rails (L2 = L1), the angles   and   become nil 

(see Fig. 2 and (7)). Hence, the traction torque (30) becomes 
zero, and as expected, the double-cone is unable to self-propel 
against such parallel tracks. 

Equation describing the starting of the double-cone’s rolling 
movement on the rails can be written as: 

 

PtPP MI ,  (31) 
 

where P  is the angular acceleration, and PI  is the moment of 

inertia of the double-cone against the PQ axis (see also (5)): 
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Thus, the easiest way to achieve rotation of the double-cone 
is around its axis of symmetry. The higher moment of inertia 
(32) relative to the PQ axis implies that larger torque is needed 
to spin the double-cone around this axis. Substituting (32) in 
(31), one finds the expression of angular acceleration versus 
radius r: 

 

22 3.0
sin

Rr

r
gP 

   (33) 

 
Fig. 11 shows that the angular acceleration increases when 

the contact radius reduces from its initial (maximal) value r0 to 
0.548R, and then decreases when r further reduces from 0.548R 
to the final (minimal) radius of contact rf. Such behavior was 
confirmed by the films shot for the rolling double-cones. 
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Fig. 11 Variation of the angular acceleration versus the contact radius 
 
Note that, by substituting the final value of the longitudinal 

coordinate of the mass center  cos01
LxO  (see Figs. 2 and 7) 

in (15), the minimal contact radius can be found, as follows: 
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 (34) 

 
Adequate design of the gravitational motor is achieved if the 

minimal radius exceeds the truncation radius ( *Rrf  ). 

On the other hand, the Law of Dynamics for rotation can be 
applied relative to the axis of symmetry of the double-cone. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:1, 2017

40

 

 

From this different point of view, the components cosPN  

and cosQN  of the normal forces, and also the gravitational 

force, are vectors passing through the axis of symmetry of the 
double-cone (see Fig. 8). Hence, they are unable to cause 
revolution of the double-cone around this axis. Moreover, the 
components sinQN  and  sinPN  of the normal forces, 

and the lateral components  sinfF  of the friction forces, are 

vectors parallel to the axis of symmetry of the double-cone (see 
Figs. 7-9). Hence, they are also unable to produce revolution. 
Only the longitudinal components cos2 fF  of the friction 

forces are able to cause clockwise rotation of the double-cone. 
Their corresponding moment of revolution can be written as: 

 

coscos2
1,  rFM fOt  (35) 

 
Since this traction torque is produced by the dynamic friction 

force, which occurs after the rolling process has commenced, it 
can be regarded as a torque responsible for the continuation of 
the previously started rolling movement of the double-cone 
along the rails. Thus, the torque PtM ,  appears to be the cause, 

and the torque 
1,OtM  appears to be the effect. Also, the dynamic 

friction force fF  appears to be a desired force. 

Next, one analyzes the ratio of the traction torques (35) and 
(30), which can be derived based on (21), as: 
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Because the acceleration a  of the mass center is positive, as 

expected, the rolling starting torque PtM ,  that is induced by the 

gravitational force is larger than the rolling continuation torque 

1,OtM  that is produced by the dynamic friction force. 

Since the continuation of the double-cone’s rolling on the 
rails can be described by: 

 

1,OtMI   (37) 
 
the angular acceleration   of the mass center can be derived, 
after some manipulations of (35)-(37), as: 
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Condition of pure rolling of the double-cone can be imposed 

in two different ways. In the usual way, one imagines that the 
acceleration at the contact point P is nil, this leading to: 

 

raraaP   0  (39) 
 
Nevertheless, the condition of pure rolling can be understood 

in a more intuitive manner, by imagining that the acceleration 
of the mass center equals the tangential acceleration produced 

by the rotation of the double-cone around the PQ axis, i.e.: 
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VII. RESULTS AND DISCUSSIONS 

Both conditions (39) and (40), for the pure rolling movement 
of the double-cone, lead to the same results for the moduli of 
the normal force, friction force, and angular acceleration, as: 
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Similarly to the sliding friction coefficient, based on (41), an 

equivalent friction coefficient can be defined, as: 
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where t  is the traction coefficient, already defined in Section 

V (see (13)). As expected, the equivalent friction coefficient is 
smaller than the traction coefficient ( te   ). 

Note that the forces (41), accelerations (40)-(41), and the 
equivalent friction coefficient (42) can be regarded as functions 
of the instantaneous contact radius r of the double-cone. 

Variation of the angular acceleration versus the radius of 
contact was already illustrated in Fig. 11. Additionally, from 
(41) and (42), one observes that, while the normal force, the 
friction force, and the equivalent friction coefficient 
monotonically increase, the acceleration monotonically 
decreases, when the contact radius reduces from its initial 
(maximal) value of r0, to its final (minimal) value of rf. 

Fig. 12 presents the variation of the dimensionless angular 
acceleration gR /  versus the entrance span L2 of the rails, for 

the initial and final radii of contact of the double-cone. One 
observes that the angular acceleration decreases against L2, 
linearly at the final radius, and nonlinearly at the initial radius. 

Fig. 13 shows the variation of the dimensionless acceleration 
a/g versus the entrance span L2 of the rails, for the initial and 
final radii of contact of the double-cone. One observes that the 
acceleration monotonically decreases against L2, both for the 
initial and final radii of contact. When the tracks become almost 
parallel (L2 = 180 mm), both acceleration (Fig. 13) and angular 
acceleration (Fig. 12) approaches zero. 

Fig. 14 illustrates the variation of the traction coefficient, and 
the variation of the equivalent friction coefficients versus the 
entrance span L2 of the rails, for the initial and final radii of 
contact of the double-cone. As expected, traction coefficient is 
always larger than the friction coefficient, and the friction at rf 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:1, 2017

41

 

 

is always higher than the friction at r0. Note that the difference 
between traction coefficient and friction coefficient at rf is very 
small. For this reason, the acceleration at rf is closed to zero 
(Fig. 13). Traction coefficient and the friction coefficient 
calculated for rf, decrease linearly against L2. Conversely, the 
coefficient of friction calculated for r0, increases up to a 
maximum reached at L2 = 60 mm, and then, decreases 
nonlinearly versus L2. 
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Fig. 12 Variation of the dimensionless angular acceleration versus the 
entrance span of the rails, for the initial and final radii of contact 
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Fig. 13 Variation of the dimensionless acceleration versus the entrance 
span of the rails, for the initial and final radii of contact 
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Fig. 14 Variation of the traction coefficient and equivalent friction 
coefficients versus the entrance span of the rails, for the initial and 

final radii of contact 
 
To complete the Dynamic analysis of the gravitational motor, 

it is necessary to find the variation of the contact radius versus 
time. With this purpose, by differentiating (28) and substituting 
(40) in the resulting equation, the second derivative of the 
contact radius against time is obtained, as: 
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Second order differential (43) is non-homogeneous due to 
the right-side )3.0/( 222 Rrr   term. However, it can be solved 

in a first approximation, by developing in a Taylor series 
around r0 the non-homogeneous term, and by retaining only the 
first, constant term. In such conditions, (43) can be rewritten as: 
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By integrating (44) twice against the time, and by imposing 

the following boundary conditions: 
 

0)0(tan)0(;)0( 0  tVt
dt

dr
rtr   (45) 

 
one finds the variation of the contact radius versus time, in a 
first approximation, as: 
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Total travelling time T of the double-cone can be determined 

from the condition: 
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which leads to: 
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Figs. 15 and 16 illustrate the variation of the total traveling 

time of the double-cone versus the entrance span of the rails, for 
the wooden and metallic cones, respectively. On these graphs, 
the solid red lines present the theoretical results, obtained in a 
first approximation by using (48). Circular symbols denote the 
data obtained during the rolling experiments. 

One observes that the maximal relative difference between 
the theoretical and experimental results is smaller than 18 %, 
although the nonlinear term of (43) is reduced to a constant. 
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Fig. 15 Variation of the total traveling time versus the entrance span of 
the rails, for the wooden double-cone (red solid line: theoretical results 
predicted by (48); circular symbols: experimental results; and, green 

solid line: theoretical results predicted by (55)) 
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Accuracy augmentation of the theoretical predictions can be 
achieved by reintegrating the differential equation (43), where 
the non-homogeneous term is better approximated, by 
substituting (46) for the contact radius. In such circumstances, 
(43) can be rewritten as: 
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where the parameters   and   are defined by: 
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Fig. 16 Variation of the total traveling time versus the entrance span of 
the rails, for the metallic double-cone (red solid line: theoretical results 
predicted by (48); circular symbols: experimental results; and green 

solid line: theoretical results predicted by (55)) 
 
Then, by integrating (49) twice against the time, under the 

same boundary conditions (45), one obtains the variation of the 
contact radius versus time, in presumably, a more accurate 
second approximation, as: 
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where functions 321 ,, fff  are defined in the following manner. 
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Again, the total traveling time T of the double-cone can be 

determined by imposing the condition (47), which leads to the 
following transcendent equation, to be solved for T: 
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Results obtained by using (55) are shown in solid green lines 

on Figs. 15 and 16, for the wooden and metallic double-cones. 
Maximal relative difference, between the results predicted by 
(55) and the experimental results, is smaller than to 5.9 %. Thus, 
as expected, (55) offers more accurate predictions than (48). 
However, since there is no analytical closed solution for (55), 
the transcendent equation has to be numerically solved. 

VIII. CONCLUSIONS 

In this paper, frictional effects on the dynamics of truncated 
metallic and wooden double-cones, able to self-propel on 
straight tracks that are placed on a horizontal table to form a V 
letter, were evaluated. From the experimental and theoretical 
analysis of this conical gravitational motor, the following 
conclusions can be drawn: 
1) Total number of rotations depends only on the geometrical 

parameters associated to the double-cone and rails, i.e. the 
base circle radius, truncation radius, and height of the cone, 
the length, exit span and entrance span of the rails, as well 
as the start position of the cone on the tracks. 

2) An improved theoretical model was achieved by 
considering the real geometry of the double-cone, i.e. by 
including the effect of truncation of the conical tips. Based 
on such model, the number of rotations of the cone was 
predicted quite accurately, i.e. with a relative error lower 
than 5%. 

3) Main effect of conical truncation was found to be a slight 
change in the apex angle of the cones. Although, such 
angular change seems negligible at a first glance, due to the 
strong nonlinear effects induced by the trigonometric and 
logarithmic functions, it produces considerable change of 
the calculated number of rotations. 

4) Traction coefficient was found to be much smaller than the 
static and dynamic sliding friction coefficients. This 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:1, 2017

43

 

 

feature justified the assumption of “no-slip” or “pure 
rolling”, used to derive the theoretical model. 

5) Augmentation of the total traveling time and number of 
rotations of the double-cone was observed at enlargement 
of the entrance span of the rails. However, double-cone 
was unable to self-propel along parallel tracks. Proposed 
model reliably predicted such behavior, and also the 
well-known fact that a cylinder cannot self-propel on 
horizontal V-shaped rails. 

6) Although the double-cone has a variable contact radius, its 
spinning speed has found to be proportional to the velocity 
of the mass center, and inversely proportional to the 
contact radius. Unexpectedly, such result is similar to 
formulae obtained for objects of constant radius of contact, 
such as cylinders and spheres rolling on straight parallel 
tracks. 

7) Angular acceleration increased up to a point of maximum 
and then decreased, when the contact radius was reduced, 
from its initial (maximal) value, to its final (minimal) 
value. 

8) While the normal force, friction force, and the equivalent 
friction coefficient monotonically increased, the 
acceleration monotonically decreased when the contact 
radius was reduced, from its initial value, to its final value. 

9) Dimensionless angular and translational accelerations of 
the mass center monotonically decreased versus the 
entrance span of the rails, linearly at the final contact 
radius, and nonlinearly at the initial contact radius. When 
tracks became parallel, both accelerations approached 
zero. 

10) Equivalent friction coefficient was smaller than traction 
coefficient. Friction estimated at the final radius of contact 
was higher than friction determined at the initial radius of 
contact. 

11) Traction coefficient, and friction coefficient, calculated at 
the final radius of contact, decreased linearly versus the 
entrance span of the rails. On the other hand, friction 
coefficient estimated at the initial radius of contact, 
increased slightly up to a maximal value, and then, 
decreased nonlinearly versus the entrance span of the rails. 

12) Total traveling time of the double-cone was computed, in a 
first approximation, quite easily but somewhat imprecisely, 
by employing an analytical expression. As alternative, to 
obtain more accurate predictions, a transcendent equation 
to be solved numerically for the total traveling time, was 
suggested. 
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