
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

378

Abstract—Transmission Control Protocol (TCP) among the

wired and wireless networks, it still has a practical problem; where
the congestion control mechanism does not permit the data stream to
get complete bandwidth over the existing network links. To solve this
problem, many TCP protocols have been introduced with high speed
performance. Therefore, an enhanced congestion window (cwnd) for
the congestion control mechanism is proposed in this article to
improve the performance of TCP by increasing the number of cycles
of the new window to improve the transmitted packet number. The
proposed algorithm used a new mechanism based on the available
bandwidth of the connection to detect the capacity of network path in
order to improve the regular clocking of congestion avoidance
mechanism. The work in this paper based on using Network
Simulator 2 (NS-2) to simulate the proposed algorithm.

Keywords—TCP, cwnd, Congestion Control, NS-2.

I. INTRODUCTION
HE network simulator NS-2 [1] is a freely accessible
object-oriented and discrete–event network simulator,

which provides a structure for constructing the network
prototype. NS-2 identifies data as input parameters, analyzing
data output and giving outcomes and results. Two main
reasons for the wide impact of NS-2 are as follows, the first is
because it is free, where that fits researchers in laboratories
and universities, and the second reason is the huge range of
network modules and objects that can implemented by NS-2
[2].

The TCP protocol is the most widely used protocol for
wired and wireless systems, although TCP was not originally
designed for real time applications and not for wireless
networks. Then we need to develop new TCP versions, or at
least choose a suitable TCP variant for each new network to be
more efficient and more reliable with this network. For the
first time to the congestion control mechanisms in early 1980
and was designed primarily to stop the collapse with traffic
congestion typical of that era. In recent years, increased
volume of traffic generated by real-time applications, a high
proportion of the large transport package and congestion
control in more often than not opt for these types of
applications [3].

Ghassan A. Abed is with Ministry of Science and Technology, Baghdad,

Iraq (e-mail: dr.ghassan.abed@ieee.org).
Akbal O. Salman is with Technical College, Al-Musaib, Iraq (e-mail:

it.akbal@yahoo.com).
Bayan M. Sabbar is with Al-Nahrain University, Baghdad, Iraq (e-mail:

dr_b2012@yahoo.co.uk).

Besides, the systems can fit into the new system is
uncontrolled, so much the overall productivity of the
oscillating flow and one which, in turn, can result in poor
application performance. Apart from concerns about the
network level, and those types of applications a lot of care,
end-to-end delay in the speed and smooth congestion control,
this does not fit the traditional schemes.

In this research, we will investigate improving the
performance of the new congestion control algorithm,
developed to be able to transfer high rate of packet over large
bandwidth low-latency platform. When using TCP over the
cellular infrastructure, and the result is that both times of end-
to-end production and use of radio links is very weak. This is
because the dynamic characteristics of TCP and wireless
connections do not fit well together [4].

TCP limits transmission rate by controlling the send
congestion window size, which is the number of packets that
can be transmitted in the flow. Generally, the time between the
submission and receipt of ACK packet is Round-Trip Time
(RTT). The TCP sender can send up to the congestion window
size of data packets during one RTT. Once send the TCP
window size of data packets, it can send the new data packet
only after it is reached to some of the ACKs to the sender.
Therefore, the average rate of more than TCP RTT is almost
the size of the window divided by the RTT [5].

The most important concept in TCP congestion control is
the congestion window, where the window is the amount of
data that have been sent, but which have not yet received any
confession. Congestion window constant means that the
broadcast packet and a new one for each ACK that is received
while the control is in the rate of transmission indirectly by
adjusting the size of the congestion. It has been documented
standard way to do so in RFC2581 [6], usually referred to as
TCP Reno. The other common TCP versions are Newneno [7]
and TCP with selective ACK (Sack) [8].

In order to improve TCP performance, many TCP variants,
which mainly differ with each other on the functions of
congestion control, have been proposed. Currently, there are
six TCP source variants; Tahoe, Reno, Newreno, Fack, Sack,
and Vegas, adding many other extended variants. Each variant
has been a private congestion control algorithm or developed a
previous algorithm, to be efficient and reliable with a new
end-to-end application.

II. PROPOSED MECHANISM
Primary role, to control congestion, adjusts the window of

Frequent and Systematic Timing Enhancement of
Congestion Window in Typical Transmission Control

Protocol
Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

379

data transmission at sender side in such a way that is
preventing buffer overflow in the recipient, but also in the
intermediate routers. To achieve this, TCP used another
variable to control the congestion window. Congestion control
represents a number of segments of appreciation that can be
injected into the network without causing congestion. The
challenge is to take advantage of the available space in the
store network routers. Routers do not participate in the TCP
layer and the chip cannot be used to adjust the TCP ACK
frame. To resolve this problem, TCP assumes network
congestion as the retransmission timer expires, and that it
interacts with the network congestion by adjusting the
congestion window using two algorithms, slow start and
congestion avoidance, as shown in Fig. 1.

In the slow start phase, and when the connection is
established, is first set the value of cwnd to one and then each
received ACK value is updated to: cwnd= cwnd+1 which
means doubling the cwnd per RTT.

The rapid growth of cwnd continues until the packet loss
was observed, causing the value of slow-start threshold
(ssthresh) is updated to: ssthresh=cwnd/2. After losing the
packet, the connection starts from slow start again by set
cwnd=1, and is increasing exponentially until the window is
equal to ssthresh, the estimate of available bandwidth in the
network.

Fig. 1 TCP slow-start and congestion avoidance

At this point, in goes to the congestion avoidance phase,

where the value of cwnd is less aggressive with the pattern:
cwnd=cwnd+1/cwnd, which implies a linear rather than
exponential growth. And will continue to increase until the
written disclosure of packet loss. The new mechanism proposed
in this article introduces new congestion avoidance algorithms
by estimate the predictable throughput with the prospect of
higher productivity, regardless of the level of congestion.

The new algorithm depends on using the available capacity
on the network links to detect the increasing or decreasing the
size of the congestion window to obtain an adaptive
congestion avoidance mechanism.

The evaluation and representation of the new algorithm
performed using NS-2 to analyze the performance of the
proposed mechanism over many experiments.

Certainly, the proposed algorithm provided an increment in
the network path about 20-30%, and that allows growing the
bottleneck capacity too, even the network suffers from
congestion. In proposed mechanism, we used classic
exponential increment to in slow-start phase. Where
congestion window cwnd less than slow-start threshold
ssthresh and the window size increases by one, as explained in
(1):

 if (cwnd < ssthresh)
 Then

 cwnd=cwnd+1 (1)

TCP sender update’s congestion window size cwnd in the

congestion avoidance phase is according to the following
equation when it receives an ACK packet from the receiver
TCP as shown in (2):

 cwnd=cwnd+(f/cwnd) (2)

where f is control parameter. From this equation, we expect
that the congestion window size increases by f segments in
every RTT. The main function of the proposed mechanism is
to regulate f dynamically and adaptively, while the original
TCP Reno uses a fixed value of f=1. In the rest of this
subsection, we explain how to change f to the network
condition and the current throughput of the TCP connection.
The classic algorithm’s code is as follows:

 cwnd_ = cwnd_ + (f / cwnd_)
Where:

 cwnd_ : is the real cwnd variable in NS-2.
 ssthresh_: is the real ssthresh variable in NS-2.
 f : control parameter, and f=1 in Reno.

In proposed mechanism, we need to update f for (2) when

the sender of TCP receives a new ACK. By this ACK-based
mechanism, the proposed mechanism can accommodate the
fluctuating of RTTs of the network path. In fact we depend on
four main parameters to updates f values every RTT. These
parameters illustrated below:
• ssthresh: slow-start threshold of network path.
• cwnd: the last value of cwnd.
• wnd_const: packets per RTT.
• K_parameter: k parameter in binomial controls.

 By using these parameters for determining f, the degree of
increase of congestion window size becomes too large when
the current throughput of a TCP connection is far below the
target throughput. The large values of f will cause bursty
packet losses in the network and resulting in performance
degradation due to retransmission timeouts. On the other hand,
when the network has sufficient residual bandwidth, the
degree of increase of the congestion window size becomes
smaller than one.

Therefore, we limit the maximum and minimum values of f.
For that, every RTT, the new value of f becomes:

 f=ssthresh*wnd_const (3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

380

 In (3), f will equal the available bandwidth; this will adjust
the sending interval of the data packets according to the
available bandwidth of the network path. Next, when the
proposed formula in (3) has obtained a larger throughput as
explained, we need to minimize the value off to avoiding
packet losses. The control of this problem by divides the last
value off obtained from (3) by the previous cwnd value
multiplied by the exponent cwnd to the k parameter in
binomial control as shown in (4):

 f=f/(cwnd*pow(cwnd,k_parameter)) (4)

This means, the proposed mechanism steals bandwidth from

competing flows in the network in order to achieve the
bandwidth required by the upper-layer application. In
summary, the proposed mechanism updates f using the
following formula when the TCP sender receives a new ACK:

 f=wnd_const_*ssthresh_/cwnd_
 *pow(cwnd_, k_parameter_);

 cwnd_ = cwnd_ + (f / cwnd_);

III. RESULTS AND DISCUSSION
Firstly, we check whether the new mechanism can be

effective to the bandwidth available in the network path. In
these experiments, we performed the data transfer using the
new TCP by change the bottleneck bandwidth of the network
and keep all other parameters. As shown in Fig. 2, we used a
bandwidth of 100 Mbps and test the behavior of cwnd of new
TCP and compared it with TCP Reno. The measurement
results of cwnd during the experiment explain that the
congestion window of new TCP performed well compared
with Reno congestion window, so the clocking of new TCP is
also better than Reno clocking; in addition we have a smooth
slow-start phase like Reno.

Fig. 2 Behavior of new mechanism with Reno (BW=100Mbps)

Fig. 3 Behavior of new mechanism with Reno (BW=200 Mbps)

In Fig. 3, we can note the large increment in sound between

new TCP and Reno, and this difference because that we
increased the bandwidth from 100Mbps in firs experiment
(Fig. 2) to 200 Mbps. This increment permits to the new
mechanism to open cwnd reaches to 75 packets while Reno
kept the same packet level in two experiments of less than 65
packets. The reason beyond to the difference in the
mechanism used in Reno and new TCP, as we explained that
because Reno used f=1, while new TCP estimates the
available capacity of the network path.

The performance variation of two mechanisms appears
clearly in the next test, when we used a bandwidth of 500
Mbps as shown in Fig. 4. This leads to getting a cwnd
exceeded 80 packets provided by new TCP, with constant
window size in Reno. Furthermore, Fig. 4 shows that the
available bandwidth will gives a throughput of cross traffic.
That is, TCP Reno cannot be used for background data
transfer. That means that the new TCP will increase the cwnd
in same time that it will not decrease the throughput of the co-
existing foreground traffic.

Fig. 4 Behavior of new mechanism and Reno (BW=500 Mbps)

Furthermore, Figs. 2-4, show that the cwnd of new TCP is

closest to the available bandwidth. Therefore, the new
mechanism can utilize the available bandwidth better than
Reno.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

381

These results clearly show the proposed mechanism which
utilizes the available bandwidth information obtained by the
new formula, performs well in the experimental network
environment. For this reason and from previous experiments,
it is not efficient to use Reno or any other classic TCP variants
over high bandwidth networks because of the limited
performance of congestion control for these variants and that
is the main reason to develop new mechanisms has more
efficiency.

IV. CONCLUSION
This article proposed a new mechanism to improve the

clocking of the congestion window in TCP congestion
Control. The new mechanism modifies the degree of increase
of the congestion window size of a TCP connection in the
congestion avoidance phase by using the information of the
available bandwidth of the network path. The enhanced
mechanism provides about 125 packets as a maximum
congestion point, but Reno kept the same previous value of 65
packets. On the other hand, the new TCP gave a performance
speed more than twice that obtained from Reno, when it
completes one clocking cycle of cwnd in Reno, we obtained
more than two cycles in new TCP. That means we will send
more than double amount of packets in new mechanism.

V. FUTURE WORK
The future work of this article will emphasize to modify the

slow-start mechanism of the TCP to improve the congestion
control of standard TCP variants.

REFERENCES
[1] Simulator, N., ns-2. 1989.
[2] J. Olsén, Stochastic modeling and simulation of the TCP protocol. 2003:

Matematiska Institutionen.
[3] G. A. Abed, M. Ismail, and K. Jumari, "Distinguishing Employment of

Stream Control Transmission Protocol over LTE-Advanced Networks,"
Research Journal of Information Technology, vol. 3, pp. 207-214, 2011.

[1] N. Moller. Automatic Control in TCP over Wireless. Licentiate Thesis,
Stockholm, Sweden, 2005.

[2] S. Choi. Design and Analysis for TCP-Friendly Window-based
Congestion Control. In: PhD Thesis, University College London, 2006.

[3] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC
2581, April 1999.

[4] S. Floyd and T. Henderson. The NewReno modification to TCP’s fast
recovery algorithm. RFC 2582, April 1999.

[5] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective
acknowledgment options. RFC 2018, October 1996.

[6] S. Floyd, J. Mahdavi, M. Mathis, and M Podolsky. An extension to the
selective acknowledgement (SACK) option for TCP. RFC 2883, July
2000.

[7] G. A. Abed, M. Ismail, and K. Jumari, “Appraisal of Long Term
Evolution System with Diversified TCP's,” Modelling Symposium
(AMS), 2011 Fifth Asia, 2011, pp. 236-239.

[8] G. A. Abed, M. Ismail, and K. Jumari, “Traffic Modeling of LTE
Mobile Broadband Network Based on NS-2 Simulator,” Computational
Intelligence, Communication Systems and Networks (CICSyN), 2011
Third International Conference on, 2011, pp. 120-125.

