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Frequency Response of Complex Systems with
Localized Nonlinearities

E. Menga, S. Hernandez

Abstract—Finite Element Models (FEMs) are widely used in
order to study and predict the dynamic properties of structures and
usually, the prediction can be obtained with much more accuracy in
the case of a single component than in the case of assemblies.
Especially for structural dynamics studies, in the low and middle
frequency range, most complex FEMs can be seen as assemblies
made by linear components joined together at interfaces. From a
modelling and computational point of view, these types of joints can
be seen as localized sources of stiffness and damping and can be
modelled as lumped spring/damper elements, most of time,
characterized by nonlinear constitutive laws. On the other side, most
of FE programs are able to run nonlinear analysis in time-domain.
They treat the whole structure as nonlinear, even if there is one
nonlinear degree of freedom (DOF) out of thousands of linear ones,
making the analysis unnecessarily expensive from a computational
point of view. In this work, a methodology in order to obtain the
nonlinear frequency response of structures, whose nonlinearities can
be considered as localized sources, is presented. The work extends
the well-known Structural Dynamic Modification Method (SDMM)
to a nonlinear set of modifications, and allows getting the Nonlinear
Frequency Response Functions (NLFRFs), through an ‘updating’
process of the Linear Frequency Response Functions (LFRFs). A
brief summary of the analytical concepts is given, starting from the
linear formulation and understanding what the implications of the
nonlinear one, are. The response of the system is formulated in both:
time and frequency domain. First the Modal Database is extracted
and the linear response is calculated. Secondly the nonlinear response
is obtained thru the NL SDMM, by updating the underlying linear
behavior of the system. The methodology, implemented in
MATLAB, has been successfully applied to estimate the nonlinear
frequency response of two systems. The first one is a two DOFs
spring-mass-damper system, and the second example takes into
account a full aircraft FE Model. In spite of the different levels of
complexity, both examples show the reliability and effectiveness of
the method. The results highlight a feasible and robust procedure,
which allows a quick estimation of the effect of localized
nonlinearities on the dynamic behavior. The method is particularly
powerful when most of the FE Model can be considered as acting
linearly and the nonlinear behavior is restricted to few degrees of
freedom. The procedure is very attractive from a computational point
of view because the FEM needs to be run just once, which allows
faster nonlinear sensitivity analysis and easier implementation of
optimization procedures for the calibration of nonlinear models.
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I. INTRODUCTION

NALYTICAL simulations, and in particular FEMs, are of

very commonly used in many industrial fields to optimize
products in terms of quality, time to delivery and costs. One of
the key aspects is the tendency to replace, when possible, the
experimental tests, which usually are expensive, with virtual-
tests based on high-fidelity simulations. On the other side, as
the number of components in the assembly increases, the
calculation quality declines because the connection
mechanisms between components are not represented
sufficiently. That is particularly true in the case of structural
dynamic simulations, where each component can be often
considered acting in a linear field, but when the components
are jointed together, nonlinear behavior appears because of
interfaces. Commercial FE programs (i.e. Nastran, ANSYS,
Abaqus, etc.) are able to run time-domain nonlinear
simulations, and in spite of the percentage of nonlinear DOFs,
maybe just few over thousands of linear ones, the whole
structure is treated as nonlinear. Consequently, the
computational costs become much higher than the equivalent
linear case. The situation is even more complicated if the
nonlinear results are required in the frequency-domain because
frequency response solutions are based on a linear modal
decomposition approach. If NLFRFs are required, one
possible approach is running, for each desired frequency
response point, a time domain analysis having the harmonic
excitation force at that frequency, obtain the time response,
and store the steady-state peak. Hence the collection of the so
obtained, steady-state peaks, allows to build the NLFRFs.
From the above considerations, the need to make these types
of calculations more efficient is really deemed. The strategy
for challenging the problem, takes advantages from the
following concepts:

v Localized nonlinearity: the nonlinear behavior is
restricted to few degrees of freedom out of thousands of
linear ones. It can be simulated by the use of nonlinear
lumped elements, which connect pairs of DOFs. Hence
the nonlinear properties can be expressed in terms of
stiffness and damping nonlinear properties.

v’ Steady-state conditions: the frequency response analysis,
for definition, considers the response of the structure in
steady-state conditions. In literature it is also called
‘harmonic response’, because the response is expected to
be harmonic and at the same frequency of the harmonic
excitation. It means that the response in the transient
period can be avoided during the calculation and only the
steady-state phase is of interest.

Modal Decomposition Approach: as consequence of the
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first two concepts, it can be said that the NLFRFs can be
obtained updating the LFRFs, because the ‘nonlinear
modifications’ do not affect significantly the linear modal
base.
The methodology presented in this work extends the
SDMM, usually applied to a linear set of Iumped
modifications [1], [2], to the nonlinear field.

II.SDMM

The objective of this chapter is to describe the SDMM,
which is defined as the procedure which permits one to
evaluate the impact of a set of changes on the structural
dynamic behavior, without the need to continuously re-run the
FEM Model. The modified dynamic behavior can be
expressed as function of the baseline FEM Dynamic Database
and the set of modifications.

Many authors have formulated and completed the linear
theoretical problem, highlighting that the method becomes
particularly efficient if into the modification lumped elements
are involved. Lumped modifications consist of whatever
relationship between two DOFs, both of the structures or one
DOF belonging to the structure and another one belonging to
an external fixed point. Usually the relationship is expressed
as a combination of lumped masses, spring and damper
elements. A very good theoretical approach can be found in
the work of [1]. Significant effort and work can be found in
the publications of [2], [3]. In the following two paragraphs,
first the Linear SDMM is completed and secondly the NL
SDMM is formulated.

A.Linear SDMM

In this paragraph, the theoretical base of the linear SDM is
given, because the understanding of the nonlinear algorithm
requires the deep understanding of the linear one. The
objective of the SDMM is to develop a mathematical
formulation, which allows one to express the modified
dynamic behavior as function of the baseline FEM Dynamic
Database and a set of modifications. This set of modification
is defined as the Modification Matrix.

The baseline FEM Dynamic Database can be expressed in
terms of the Modal Matrix [3] or Frequency Response
Functions [1], [2]. In this study the Modal Matrix Database is
considered, in which case the Eigenvalues, Eigenvectors of the
baseline model need to be available. The Modal Matrix needs
to include the results of all the DOFs of interest, including
those one where the Modification Matrix is applied.

The dynamic equilibrium of a structure in the frequency
domain can be expressed as:

[-M@® + j(oC + G) + Ku(w) =F (w) (1)

M is the mass matrix, C and G, respectively, the viscous and
the structural damping matrices, K the stiffness matrix, u the
field of displacements and F the force applied. If the field of
displacements is expressed as a linear combination of the
eigenvectors associated with the system (1), the latter is
transformed from the physical coordinates to the modal

coordinates by means of the following transformation:
u(w) = FRF(0) = ®q(w) ()

The field of displacements is defined Frequency Response
Functions (FRFs).

Considering now, the modal matrix @ normalized with
respect to the mass, and multiplying all the terms for the
transpose @' the system (1) becomes finally:

[R+ j(oC +G)la(w) =F (@) (3)
where
R=[-0"MOo’ + O Kd]=[- 10" + A] )

The second relationship of equation (XX) is valid only in
the case that the Modal Matrix is Mass Normalized. The mass
normalization gives the advantage that from the baseline FEM
only the spectral data (eigenvalues, eigenvectors) concerning
the DOFs we are interested in, are required. Therefore, [ | ] is

~

the unitary matrix, [ C ] and [ G ] are the normalized damping
matrices, [ A ] is the normalized stiffness matrix, whose terms
are the square of the eigenvalues, and F(w)the vector of

modal forces.
Finally, the FRFs are obtained as:

FRF (0) = ®q(w) = ®[R + j(&C +G)]"'F(w) (5)
Let us consider now a set of dynamic modifications,

involving mass and stiffness variations of the baseline terms,
expressed by the Modification Matrix:

AR(0) = [- 0*AM () + AK ()] 6)

If the modification matrix is included in the system (1),
following the previous steps it is obtained:

FRF, ,(®) = ®[R + AR + j(&C + G)]"'F () 0
where
AR = ®" AR(w)® )

The Modified FRFs, in terms of displacements, are obtained
by means of (7). If the FRFs are escalated to the magnitude of
the input force, or, which is equivalent, in the case of unitary
force input, the FRFs take the name of Transfer Functions
(TFs). In the linear case, in spite of the magnitude of the input,
the TFs are constant values because they express the
relationship between the outputs and the input.

It is clear that, the knowledge of the FE Baseline Modal
Matrix and the definition of the Modification Matrix, allows
the direct calculation of the modified field of displacements
without any need to re-run the FEM.
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Looking at (7), it is worth pointing out that the linear SDM
formulation allows dealing with frequency-dependent lumped
elements. The use of the frequency dependent Modification
Matrix in the frequency domain is still a linear problem. Also,
it should be noted that the size of the FEMs, in terms of DOFs,
is not an issue, in fact, the baseline Modal Matrix can be
restricted to few DOFs. This set must, at least, include the
DOFs where the change is required and those ones where the
dynamic response needs to be evaluated. More details on this
last point are given in references [1]-[3].

B.Non-Linear SDMM

The frequency-dependency of the modification matrix does
not affect the linearity of the problem; therefore, the nonlinear
lumped elements are considered those elements whose
constitutive equations express dependency on the relative
amplitude. In the linear case, the Transfer Function (TF),
defined for each DOF as the ratio between the output
acceleration, or displacement, and the input force, is an
invariant of the system. But, if the structure acts nonlinearly,
the TF depends on the magnitude of the input force. Hence in
the nonlinear case, even if, the same symbols are still used, it
is more correct to speak about the NLFRFs Matrix instead of
the TF Matrix. The NL TF Matrix can be obtained later,
dividing the NLFRFs Matrix by the input force value.
Evidently, the NL TF Matrix is not unique and is dependent
on the magnitude of the input force. Equations (1) and (2) are
still valid but if we define ‘U’ as the relative displacement
experimented by the lumped elements, the Modification
Matrix, in the nonlinear case looks like:

AR(Q),U) = [— a)zAM (C(),U)+AK(C(),U)] )

It means that the system described by (7) becomes non-
linear

FRE\L moa (@,U) =

-~ e (10)
D[R + AR(w,u) + j(wC + G)]_l F(w)

The nonlinear system (10), where all the nonlinear terms are
included in the Modification Matrix, requires an iterative
algorithm in order to be solved. The convergence of the
solution is assured when the relative displacements of the
lumped modified elements reach stabilized values. For each
values of interest in the frequency domain, the relative
displacements of all lumped elements involved in the
Modification Matrix, need to be evaluated. At the end of each
frequency step, the peaks of the steady-state time-domain
responses are stored in order to build-up the NL FRFs
response.

The NL SDM allows the calculation of the nonlinear
response without any need to re-run the FEM. The nonlinear
response is calculated thru updating the underlying linear
FRFs. It evidently means a drastic reduction of the
computational costs, allowing faster sensitivities analysis and
easier implementation of inverse methods for optimization and

calibration of the FEMs. To test the method, in the next
chapter, a two DOFs system is analyzed.

III. NL SDMM: Two- DOFS SYSTEM EXAMPLE

The reliability and robustness of NL SDM algorithm are
tested by the following example.

Let us consider the following 2-DOFS system (Fig. 1),
whose linear behavior is update thru the bilinear stiffness
element (Fig. 2):

Ks1 Ks2 Ks3
AVAN _
Ci C2 Cs

Fig. 1 Two- DOFs system

E A \ F

/
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Fig. 2 Bilinear Stiffness Element

The Modification Matrix associated with the spring Ks2 is:

_ AKelem(a)a U) - A|<elem(607 U)
N%J&@—LN%MQm mg%mm} "

Being the constitutive equation of the element:

AK e (0,U) =k, =k, if U -U;=Uu, <=U,
AK e (0,U) = kequ - ko if —U;=U, >U,
where:
KUtk (u-uy)
q ! (12)

Even if not strictly required, it is expected that the underline
linear element has the stiffness value ko » which is not so far

from the nonlinear values. For instance, k, could be the mean
value between k and k, . The values of the problem are

given in Table I.

The NL FRFs are calculated updating the stiffness Ks2 to a
nonlinear behaviour. It is considered bilinear with stiffening
effect. The underline linear value is 20 [N/mm] and the second
branch has a value of 40 [N/mm]. The relative displacement
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Ua, which defines the boundary between the two branches, has
a value of 4 mm.

TABLE 1
Two DOFS SYSTEM: VALUES OF PARAMETERS

PARAMETER VALUE

MI [Ton] 3.00E-2

M2 [Ton] 5.00E-2
Ks1 [N/mm] 20
Ks2 [N/mm] 20
Ks3 [N/mm] 80

The problem is formulated in terms of both: time-domain
and frequency-domain equations.

The time-domain dynamic problem is solved by mean of
ODE45 already included in MATLAB [6], which uses an
explicit Runge-Kutta integration procedure of the State-Space
equations.

MLUi(t) + Cu(t) + Ku(t) =F (t) (13)

The State-Space formulation allows the solution of N DOFs
system with N second order differential equations to 2*N first
order differential equations. The first order form of the
equations of motion is known as State Space Form. Details on
the numerical implementation of state-space equations can be
found in [5], also a very good explanation, with an intuitive
and pragmatic approach to this formulation, is carried out in
[6]. With no further details, because of the scope of this paper,
the State-Space problem can be formulated as:

(D) = Ap(t) + BF ()

being
0 I 0
A . .~ |and B o
-M7K -M7C M

The validation of the NL SDM is completed in three main
steps:

1. First the comparison between the structural response
obtained in the frequency domain and the FRFs obtained
collecting the peaks of the steady-state part of the time-
domain response (Fig. 3) is done. The results, which are
in very good agreement, are shown in Fig. 4. It is worth to
mention that the damping formulation in the frequency
domain and the damping matrix used in the time-domain
equations need to be equivalent in order to compare the
results. In order to define such equivalency, the damping
matrix in the time domain is considered proportional to
the mass matrix thru the coefficient o and to the stiffness
matrix thru the coefficient . The equivalent modal
damping is:

(14)

Po,
2

o) =2+ (15)
2.

In this exercise, the value used for a is 1.5 and B is set to
Zero.

The modal matrix, normalized to the mass, and the normal
modes are:

-507 2767. 516 0
O= ;A=
—214 -393 0 760

05

Displ. [rmm]

o

T T T T
MASS1 Displ.
MASS2 Displ. 1

TIME[sec]

Fig. 3 Time Domain results for a given frequency value
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Displ-Time-MASS1

Displ-Time-MASS2

FRF Magnitude [mm]

Frequency [Hz]
Fig. 4 Frequency Domain vs. Steady-State Time-Domain

Secondly, the NLFRFs are obtained thru the resolution of stiffness, which increases in the second branch, has two

the State-Space Time Domain equations taking into effects: the magnitude of the peaks at resonance decreases
account the nonlinear stiffness formulation and, as in the and the frequency of resonance shifts to higher values.
previous point, collecting the steady-state peaks. The This is the typical stiffening effect.

results are shown in Fig. 5. The effect of having a bilinear

16 T T T T T T T T

— = = Displ-Time-MASS1 o =

— — — Displ-Time-MASS2

Displ-NL-Time-MASS1

Displ-NL-Time-MASS2

FRF Magnitude [mm)

Frequency [Hz]

Fig. 5 Linear vs. Nonlinear Frequency Response

3. Finally, the NLFRFs are obtained by mean of the NL the nonlinear properties of the elements based on their relative
SDM formulation. The State-Space equations in this case  physical displacements.

are formulated in modal coordinates. The Modification Fig. 6 shows the good agreement of the results.
Matrix updates the unitary mass matrix and the
eigenvalues stiffness matrix. Hence, there is no need to re- p(t) = Ap(t) + B[f(t)
run the FEM because the nonlinear behavior is obtained being (16)
as an ‘update’ of the underlying linear behavior. In this
case, the state variables ‘p’ (16) are obtained in modal A:{ 0 L} and B :{0}
coordinates, and therefore a back transformation to the - - |
physical coordinates is required by mean of the spectral
matrix (17). s(t) = Op(t) (17)
This back-transformation, modal to physical coordinate,
needs to be included in the NL SDM iterative procedure, being In the next chapter, the NL SDMM is tested on a real
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industrial application. A much more complex model is used
and the underlying linear Modal Database is extracted from

the FEM built in NASTRAN.

15 T T T ! T T T T !
Displ - MASS1 - Time Domain State-Space
Displ - MASS2 - Time Domain State-Space
#  Displ-MASS1- NLSDM
*  Displ-MASS2- NLSDM

— 10 o : ;

£

E

@

=

=

E

f=2]

&

=

w

v

w5

G‘
35

Frequency [Hz]

Fig. 6 Non Linear SDM Method results

IV. NL SDMM APPLIED TO THE APU SUSPENSION SYSTEM
FE MODEL

For testing the strength and robustness of the method on a
real industrial application, the FEM of the Auxiliary Power
Suspension System is considered. The nonlinear behavior of
this system is characterized by the rubber mounts, which
present a dynamic stiffness with a softening effect. In the
NASTRAN FEM, these elements are simulated by linear
springs. First, the Eigenvalues and Eigenvectors are extracted
by solving the normal modes SOL103 in NASTRAN, also the
LFRFs are calculated, solving the system in (7) and
considering a null Modification Matrix. This step is
completely equivalent in solving the problem in NASTRAN
SOL111. Secondly, the underlying linear model is updated
through the NL SDM Method, introducing in the system
nonlinear springs instead of linear ones. The NLFRFs are
obtained and the nonlinear dynamic behavior of the structure
is analyzed to check the coherency with the type of
nonlinearity introduced in the system.

A. Description of the APU Suspension System Model

The focus of this study is on the interfaces between the
Auxiliary Power Unit (APU) and its Suspension System. The
APU is installed in the aircraft Tail-Cone by its Suspension
System, which has a double purpose: to sustain the inertia
loads at which the APU is submitted and to isolate the
airframe from the APU’s vibrations.

The Suspension System consists of three principals’
subassembly called:

v Left-Hand: three rods, three APU lugs on the structure
side, one Rubber Mount

v' Right -Hand: two rods, two APU lugs on the structure
side, one Rubber Mount

v' Aft —Hand: two rods, two APU lugs on the structure side,
one Rubber Mount

Each rubber mount is done by a steel isolator housing with
an elastomeric inside.

*2@%9

Q)
B

BONDING
STRAP

VIBRATION
ISOLATOR
s122K8

VIBRATION
ISOLATOR
5121K8

AFT APU
MOUNT BRACKET
5126x8
BOND ING:
STRAP

Fub LH

APU MOUNT
BRACKET
5124K0

FRBOAY 16 WU VATY VT

Fig. 7 APU Suspension System

Experimentally, it is seen that the dynamic stiffness of the
rubber mounts depends both on the frequency and on the
dynamic amplitude. Fig. 7 shows an example of the trend of
the dynamic stiffness of the rubber mount when it is stretched
by an axial force.

In the FEM, the rubber mounts can be modelled by means
of spring/damper elements connecting a pair of nodes. Each
rubber mount is described by three lumped spring/damper
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elements, one for the axial direction and other two for the
radial one. In this work the focus is on the stiffness properties,
the damping is assumed to be fixed and its values are
calculated from the area of the hysteretic loop. It is introduced
in the FEM as localized structural damping. Interesting
experimental research to characterize lumped nonlinear
properties can be also found in [4].

Dynamic K* vs Amplitude (d.a) Preload 240 Ibf 72 F Axial

105000 -
100000 -
95000 -
90000 -
85000 -
80000 -
75000 ~
70000 -
65000 -
60000 ~

o 0.01 0,02 0,03 0,04

Amplitude (inch d.a.)

K* (Iblin)

— b2 10 hz — 20 hz

Fig. 8 Rubber Mounts dynamic stiffness

A full FE aircraft model is used in order to show that the
methodology does not present any limitation concerning the
size of the model. In Figs. 9 and 10 some details can be seen.
The linear behavior of the rubber mounts is introduced in
NASTRAN by CBUSH cards. The input load is applied to the
APU Centre of Gravity in vertical (Z+) direction, see Fig. 10.
The APU is modelled like a heavy mass, using the CONM2
card of NASTRAN.

Fig. 9 Full FE A/C Model

B. Nonlinear ‘Update’ of the Rubber Mounts Stiffness

According to Fig. 8, the rubber mounts present a nonlinear
behavior characterized by a softening effect: the higher the
relative displacements, the lower the dynamic stiffness.

The NL SDMM is used in order to include this nonlinear
behavior and see the effect on the FRFs of the model. The
frequency range of interest is between 10 Hz and 20 Hz,
where the APU Suspension System Modes are.
Experimentally, it is also known that the rubber mount
dynamic behavior affects the response of the system above 12-
14 Hz. Having a softening effect, some peaks of the FRFs are
expected moving to lower frequencies.

Before running the NL analysis, the linear FRFs obtained

from both codes, using the same modal base, are checked. In
the Fig. 11, the frequency response has been compared in all
the DOFs of interest; as example Fig. 11 shows, the response
of the pair of DOFs which defines the spring in the Z direction
of the forward rubber mount. The very good agreement
between both codes, ABAQUS and NL SDMM, implemented
in MATLAB, can be seen.

Fig. 12 Detail of APU Suspension System
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FRF Magniude |G)
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Displ-FRF-RUBMNT1-GRID1-Z

Displ-FRF-RUDMNT1-ORID2-Z

[} SDM solver -1

] SDM solver

15 16 17 18 19 20

Frequency [Hz]

Fig. 13 NASTRAN Frequency Response vs. SDMM (linear case)

The stiffness behavior of the spring element representative
of the forward rubber mount behavior in Z-direction is
updated from its linear behavior to a bilinear stiffness, with a
softening effect. The second branch is characterized by half of
the underlying linear stiffness. The nonlinear results are
compared with those obtained by means of the nonlinear
ABAQUS code. The model has run in ABAQUS several times
with different values of the frequency of the input force and
consequently, storing the peaks of the steady-state response,
the FRFs are built-up. On the other side, the NL SDMM
obtains the results always with the same linear modal base and
the NL FRFs are obtained with the same iterative procedure
described in the easier case of the 2-DOFs system.

Fig. 12 shows that, as expected, the FRF peak of the

frequency about 14.5 Hz, due to the softening effect, shifts to
lower frequency, about 13.5 Hz. Evidently to introduce the
nonlinearity in the system affects the frequency range where
the local APU suspension system modes are involved. The
agreement between the NL SDMM and the nonlinear results
obtained in ABAQUS is very good.

Lastly in Fig. 13, the results coming from NL SDMM are
presented, when instead of updating just one of the linear
springs to nonlinear behavior, all the springs representative of
the rubber mounts are considered as nonlinear. In this last
‘updating’, nine springs, hence 18 DOFs, are included into the
Modification Matrix. Also in this case, the results respond to
the expected behavior and the agreement with the results
obtained in ABAQUS code are very good.

3 T T

FRF Magnitude [G]

=—FRF-LINEAR-RUBMNT1-GRID1-Z
FRF-LINEAR-RUBMNT1-GRID2-Z 1

———ABAQUS-NONLINEAR-RUBMNT1-GRID1-Z
—=——ABAQUS-NONLINEAR-RUBMNT1-GRID2-Z
B NL SDMM FRFs RUBMNT1 GRID1
B NL SDMM FRFs RUBMNT1 GRID2

15 16 17 18 19 20

Frequency [Hz]

Fig. 14 ABAQUS Frequency Response vs. NL SDMM (nonlinear case)
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— ——FRF - ABAQUS -RUBMNT1-GRID1-Z
— ——FRF -ABAQUS-RUBMNT1-GRID2-Z

B FRF - NL SDMM - GRID1 - RUBMNT1

15 16 17 18 19 20

Frequency [Hz]

Fig. 15 ABAQUS Frequency Response vs. NL SDMM (nonlinear case)

V.CONCLUSION

A novel approach to update the linear FRFs with localized
nonlinearities has been presented. It extends the well-known
SDM Method, based on Modal Database updating, to a set of
nonlinear modifications by means of an iterative procedure in
the State-Space form. The linear method is reviewed and the
nonlinear one is explained through a bilinear stiffness element.

In any case, the methodology has very general applicability,
and in fact, there is no limitation to the size of the model in
terms of the DOFs. The Modal Matrix is required only to
contain the DOFs involved in the Modification Matrix, those
where the loads are applied and those where the dynamic
responses are required. After that, the estimation of the
nonlinear behavior in the frequency domain is obtained
without any need to re-run the FEM, being just an update of
the underlying linear behavior.

The approach is very practical and theoretically, whatever
the type of nonlinear lumped element that can be
implemented. Both dependency on frequency and dynamic
amplitude can be considered at the same time. The method has
been successfully implemented in MATLAB and its reliability
and robustness have been demonstrated thru two examples
with different levels of complexity. The first nonlinear
dynamic study regards a 2-DOFs system, and the second, a
much more complex full A/C FEM. Both cases of the study
show very good agreement between the nonlinear code and the
NL SDMM method.

Finally, the approach seen for elements having nonlinear

stiffness can be extended to those ones having both, nonlinear
stiffness and nonlinear damping properties, i.e. spring-damper
elements. That offers a rather easy and straight way of dealing
with elements having a quite complex structural dynamic
behavior which usually makes the simulations extremely time-
expensive.
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