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Abstract—Frequency estimation of a sinusoid in white noise using
maximum entropy power spectral estimation has been shown to be
very sensitive to initial sinusoidal phase. This paper presents use of
wavelet transform to find an analytic signal for frequency estimation
using maximum entropy method (MEM) and compared the results
with frequency estimation using analytic signal by Hilbert transform
method and frequency estimation using real data together with MEM.
The presented method shows the improved estimation precision and
antinoise performance.
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I. INTRODUCTION

FREQUENCY estimation of a sinusoid from noisy

signal occurs in many signal processing problems.

Frequency estimation from the narrow band signal recorded

in noisy environment requires robust and high resolution

spectrum estimation techniques. The spectrum estimation

methods are generally categorized into two classes: The

classical or nonparametric method and parametric method.

The nonparametric methods are based on estimating the

autocorrelation sequence from the given set of data. The

power spectrum is then obtained by Fourier transform of

the estimated autocorrelation sequence. The nonparametric

methods include the periodogram method, the modified

periodogram method, Bartlett’s method, Welch’s method,

Blackman - Tukey method etc.

The parametric methods of the spectrum estimation are

based on a parametric model for the data. These methods select

the model, estimate the model parameters using the given data

and then, estimate the power spectrum by incorporating the

estimated parameters in the parametric form of the spectrum.

The MEM is equivalent to spectrum estimation using all pole

model.

Burg MEM extrapolates the known auto correlation function

using the assumption that unknown information is subjected

to the maximum entropy. Burg’s algorithm has the problem of

line splitting and spectral shifting. The spectral line splitting is

due to Levinson recursion and selection of one order reflection

coefficient in Yule-Walker equation. Frequency estimation

using Burg’s method is also affected by various factors such

as data length, signal to noise ratio and initial phase of signal

data.
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Chen and Stegen [1] showed that frequency estimation

of a sinusoid in white noise using maximum entropy

power spectrum estimation with Burg’s estimate for reflection

coefficient method is very sensitive to initial phase of the

sinusoid for short data length. Phase dependent frequency

estimation is due to interaction between the positive and

negative frequency spectra [2]. This dependence of frequency

estimation on phase can be reduced by reducing the interaction

between positive and negative frequency. Kay [3] showed

that the dependence of frequency estimation of a sinusoid (in

white noise) on the initial phase of the signal can be reduced

significantly using an analytic signal approach, as the analytic

signal of a real sinusoid in white noise obtained using Hilbert

transform has zero power in negative Nyquist interval. But, it

results in nonwhite noise. For the peak of the estimated power

spectral density to be an unbiased estimate of frequency, it

requires the whiteness of the noise. Since the noise in this

analytic signal is nonwhite, Jackson and Tufts [4], [5] showed

that it can be made white by reducing the sampling rate by two.

They showed that the performance of frequency estimation can

be improved by processing a complex valued version of the

real value input signal, with the corresponding sampling rate

reduced by half.

Kay used Hilbert transform to obtain an analytic signal.

We used wavelet transform theorems presented by Gao [6] to

obtain an analytic signal.

II. HILBERT TRANSFORM

Hilbert transform (HT) has useful applications in signal

processing and network theory. It is also used in radar

signal processing, seismic signal processing, speech signal

processing, communication systems etc. The Hilbert transform

f̂(t) of the function f(t) is defined for all t by

f̂(t) =
1

π
P

∫ ∞

−∞

f(τ)

t− τ
dτ

if the integral exists. P denotes the Cauchy principal value of

the integral.

The HT of a signal fεL2(R) or generally fεLp(R), where,

1 < p < ∞ is defined in the spatial domain as convolution

with the Hilbert kernel.

Hf = h ∗ f
The Hilbert kernel is given by h(t) = 1

πt

An ideal HT is an all pass filter that provides a 90o phase

shift to the signal at its input. The frequency response of the
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ideal Hilbert transformer is defined as

H(w) =

{
j; 0 < w ≤ π
−j; −π < w < 0

(1)

The unit sample response of an ideal HT is

hd(n) =

{
2
π

sin2 (πn)
2

n ; n �= 0
0; n=0

(2)

hd(n) is infinite in duration and noncausal. The slow decay

rate and the infinite length of the impulse of HT generates

oscillatory behaviour known as Gibbs effect. This oscillatory

behaviour of impulse response of HT reduces the estimation

precision in digital implementation.

III. ANALYTIC SIGNAL

Complex signal, whose imaginary part is the HT of its real

part, is called the analytic signal. An analytic signal has one

sided Fourier spectrum.

IV. WAVELET TRANSFORM

Wavelet is a time frequency transform. The wavelet

transform (WT) employs a set of basis functions which are

scaled version of single mother function. The continuous-time

wavelet transform (CWT) of f(t) with respect to a wavelet

Ψ(t) is defined as

W (a, b) =

∫ ∞

−∞
f(t)

1√|a|Ψ
∗
(
t− b

a

)
dt

Thus, the WT is a two variable function where a and b are

real and ∗ denotes complex conjugation. f(t) and Ψ(t) belong

to L2(R), the set of square integrable functions, also called the

set of energy signals. a is called the scale or dilation variable.

b represents the time shift or translation. The normalization

factor of 1√
|a| insures that the energy remains the same for

all a and b.
As the CWT is generated using dilation and translation

of a single function Ψ(t), the wavelet is called as mother

wavelet. This mother wavelet has to satisfy two conditions

known as regularity and admissibility condition. Also, Ψ(t)
must be compactly supported in both time and frequency. The

CWT is able to localize events both in time and in frequency,

which is useful for nonstationary signal analysis. The WT has

zoom in zoom out property, as the size of the analysis window

can be changed.

A. Analytic Signal Using Wavelet Transform

We used the wavelet based method proposed by Gao [6] to

calculate the analytic part of a real valued signal in L2(R).
Gao showed that the analytic part of any arbitrary real valued

signal s(t) ∈ L2(R, dt) is

1

Cg

∫ ∞

0

S(t, a)
da

a
= s(t) + jH[s(t)] (3)

where S(t, a) is defined as

S(b, a) =
1

a

∫ ∞

−∞
s(t)ḡ(

t− b

a
)dt (4)

t, b ∈ R, R is the real number set and a > 0.

S(b, a) is the wavelet transform of s(t) with respect to the

analytic wavelet function g(t). g(t) and its Fourier transform

ĝ(ω) satisfying g(t) ∈ L1(R, dt)
⋂

L2(R, dt) and ĝ(ω) ∈
L1(R\{0}, dω/|ω|) ∩ L2(R\{0}, dω/|ω|) respectively. The

real part gR(t) of g(t) is even. ¯g(t) is the complex conjugate

of g(t) and Cg =
∫∞
0

(ĝR(ω)/ω)dω, with 0 < Cg < ∞.

V. MAXIMUM ENTROPY METHOD

Spectral estimation using the MEM is used to improve

the spectral quality based on the principle of maximum

entropy. The method is based on choosing the spectrum which

corresponds to the most random or the most unpredictable

time series whose autocorrelation function agrees with the

known values. Burgs proposed the maximum entropy spectral

analysis method [2] to enhance the spectrum resolution and

to increase the adaptability of spectral estimation algorithm to

signal length, signal to noise ratio and initial phase.

The MEM for spectral estimation is based on an explicit

extrapolation of a finite length sequence of a known

autocorrelation of a random process [8]. This extrapolation

has to be performed in such a way that the random process

characterized by the extrapolated autocorrelation sequence

has maximum entropy. The random process is assumed

to be Gaussian; so that, the maximizing entropy becomes

mathematically solvable. For a Gaussian random process x(n),
with spectrum Px(e

jw) and autocorrelation rx(k) for lags

|k| ≤ p, MEM extrapolates rx(k) for |k| > p. The entropy

of the random variable x(n) is expressed by

H(x) =
1

2π

∫ π

−π

lnPx(e
jw)dw (5)

MEM maximizes H(x) by assuming the following condition

1

2π

∫ π

−π

Px(e
jwk)dw = rx(k); |k| ≤ p (6)

Representing the extrapolated autocorrelation by re(k), the

power spectrum of x(n) can be written as

Px(e
jw) =

p∑
k=−p

rx(k)e
−jkw +

∑
|k|>p

re(k)e
−jkw (7)

For a valid power spectrum, Px(e
jw) should be real

valued and nonnegative for all w. A maximum entropy

extrapolation is equivalent to finding the sequence of the

extrapolated autocorrelations that make xn as white (random)

as possible. From the power spectrum point of view, this

maximum entropy extrapolation makes the power spectrum as

flat as possible. Assuming x(n) to be the Gaussian process

with autocorrelation rx(k) for |k| ≤ p, the extrapolated

autocorrelation re(k) that maximizes the entropy, can be

obtained by setting

∂H(x)

∂r∗e(k)
= 0; |k| > p (8)

or

∂H(x)

∂r∗e(k)
=

1

2π

∫ π

−π

1

Px(ejw)

∂Px(e
jw)

∂r∗e(k)
dw = 0; |k| > p (9)
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where,
∂Px(e

jw)

∂r∗e(k)
= ejkw (10)

Substituting (10) in (9)

1

2π

∫ π

−π

1

Px(ejw)
ejkwdw = 0; |k| > p

Defining, Qx(
jw) = 1

Px(ejw)

1

2π

∫ π

−π

Qx(
jw)ejkwdw = 0

or,

qx(k) = 0; |k| > p

which shows that the inverse Fourier transform of Qx(
jw),

namely, qx(k) is equal to zero for |k| > p. As the Fourier

transform of qx(k) is

Qx(e
jw) =

1

Px(ejw)
=

∞∑
−∞

qx(k)e
−jkw (11)

From (7), the MEM estimate of the power spectrum

Px(e
jw) for a Gaussian process is defined as

P̂MEM =
1∑p

−p qx(k)e
−jkw

(12)

Noting that qx(−k) = q∗x(k), and

p∑
k=−p

qx(
k)e−jkw =

p∑
k=1

q∗x(k)e
+jkw + q0 +

p∑
k=1

qx(k)e
−jkw

(13)

P̂MEM =
b(0)b∗(0)

[1 +
∑p

k=1 ap(k)e
−jkw][1 +

∑p
k=1 a

∗
p(k)e

jkw]
(14)

P̂MEM =
|b(0)|2

|1 +∑p
k=1 ap(k)e

−jkw|2 (15)

VI. MAXIMUM ENTROPY ESTIMATION USING ANALYTIC

SIGNAL

We used Key’s method of maximum entropy using analytic

signal. Let

X
′
t = Asin(ω0t+ φ) +W

′
t (16)

be the real discrete signal where W
′
t is white noise with zero

mean and RW ′ (k) = E(W
′
tW

′
t+k) = σ2

W ′ δ(k) then, the

corresponding analytic signal is

Z
′
t = X

′
t + jX̂

′
t (17)

where

Z
′
t = −jAej(w0t+φ) +Wt + jŴt (18)

and X̂
′
t is the Hilbert transform of X

′
t . The resultant

downsampled signal is

Zt = Z
′
2t = −jAej(2ω0t+φ) +W c

(t) (19)

where E[W c
t ] = 0 and RW c(k) = E[W c∗

t W c
t+k].

The maximum entropy power spectral estimator has been

used to find the real and complex spectrum. They are

Pr(w) =
PprΔ0

|1 + a1re
−jω + ...+ arpr

e−jωpr |2 (20)

Pc(w) =
PpcΔ0

|1 + a1ce
−jω + ...+ acpc

e−jωpc |2 (21)

where pr and pc are predictor order for the real and complex

spectra respectively. The parameter sets {ar1, ..., arpr, Ppr} and

{ac1, ..., acpc, Ppc} are determined from the Burg estimation

method together with Levinson recursion [7]. Here pc =
1
2pr.

Ppr and Ppc are prediction error power for the real and

complex spectra respectively.

VII. SIMULATION RESULTS

A MATLAB based simulation is used on real and analytic

signal by Hilbert transform method and wavelet transform

method to compare the effect of initial phase on frequency

estimation. Single real sinusoid in white Gaussian noise is

used. The frequency of the sinusoid is 1 Hz, sampled 20

times/second or sampling time = Δ0 = 0.05 second. 41

samples of real data has been used. The predictor order used

is 9 and SNR=10 dB and phase of input sinusoid is varied.

The peak of Pr(ω) or Pc(ω) gives estimated frequency.

Analytic signal is formed using Hilbert transform and

wavelet transform method. The modified Morlet wavelet is

defined as

gτ (t) = eimte(−1/2)[
√
2σm/(2πτ)t]2

= cos(mt)e−(1/2)[
√

2σm/(2πτ)t]2 + jsin(mt)e−(1/2)[
√
2σm/(2πτ)t]2

(22)

where m is the angular frequency, τ is the number of cycles

of carrier wave in an envelope. σ is a real number related

to precision (when |g(t)| ≤ e−σ2

, g(t) can be approximated

as zero). Let C =
√
2σm/2πτ . For numerical computation

m2/(4C2) is large enough so that the wavelet defined in (19)

satisfies Theorem 2 in [6].

For wavelet method, σ = 5, τ = 4, m = 28.28. Phase

of the input sinusoid is varied. The dependence of frequency

estimation on sinusoid phase for real signal, analytic signal by

Hilbert transform and analytic signal by wavelet transform are

shown in Fig. 1. Large variations are obtained, when real data

are used and it is reduced when analytic signal by Hilbert

transform is used. This variation is further reduced, when

analytic signal by wavelet method is used. The maximum

frequency deviation using real data is 11 percent, using

analytic signal by Hilbert transform is 4.4 percent and using

wavelet transform is 0.39 percent. For SNR = 5 dB, the error

obtained by using real data is 13.78 percent, 6.67 percent

by Hilbert transform method and 0.39 percent by wavelet

transform method.

VIII. CONCLUSION

The wavelet method gives the smallest dependence of

frequency estimation on the phase of the sinusoid in white

noise. This is due to time frequency localization property
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Fig. 1 Frequency estimate versus phase for SNR=10 dB. Green color shows
for real data, blue color for analytic signal by Hilbert transform and red

color shows for analytic signal using Wavelet transform method

Fig. 2 Frequency estimate versus phase for SNR=5 dB. Green color shows
for real data, blue color for analytic signal by Hilbert transform and red

color shows for analytic signal using Wavelet transform method

and antinoise performance of the wavelet transform. Also,

the oscillatory nature (Gibbs phenomenon) of the impulse

response of Hilbert transform reduces the estimation precision

in digital implementation.
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